Homework
Math 554.001⊕
Spring 2025
Prof. Girardi
A ⊕ indicates link should opens in new tab
Textbook: |
Introduction to Real Analysis, 4th ed., by Bartle and Sherbert. |
HW set |
section pages |
note to yourself of due date
|
Homework Instructions⊕ and
Handouts⊕ |
| | |
- ER 0.0.1. Read the Homework Instructions and list at least 5 items you want to remember.
- ER 0.0.2. Read the Writing Guidelines (WG) on the Handout page.
List at least 5 items to remember.
|
HW is posted on Blackboard.
The below list is not current.
Please see Bb for current list.
|
Since induction (§1.2) is covered in Math 300, there will
be no formal lectures over §1.2.
Here is a summary and 3 examples of proofs by induction to help with §1.2.
- ER 0.0.1. Read the
Homework Instructions
and list at least 5 items you want to remember.
- ER 0.0.2. Read the Writing Guidelines (WG) on the
Handout page.
List at least 5 items to remember.
- ER 1.2.5
- ER 1.2.14 (Use induction. Do not use calculus.)
- ER 1.2.15 (Use induction. Do not use calculus.)
- ER 1.2.20
- ER 1.1.1
- ER 1.1.4 Variant. Show
Thm 1.1.4+ part (2), which is a DeMorgan Law.
You may use symbolic logic language, as we did in class for part (1).
- ER 1.1.5.
- ER 1.1.7
- ER 1.1.10
- ER 1.1.19a. You may use (3) and (4) from
Functions
and Sets.
- ER 1.1.19b. You may use (3) and (4) from
Functions
and Sets.
-
ER 1.1.15 Variant. Verify (8) from Functions and Sets,
which is about preimages of unions.
You may use symbolic logic language, as
we did in class for (9).
- ER 1.1.21. You may use the result shown in class that
if f and g are injective then g ∘ f is injective.
- ER 1.1.23
- ER 2.1.17. Will use this ER and Thm 2.1.9 lots.
- ER 2.1.18
- ER 2.1.22 (a) and (b). For (a), do by using Bernoulli's inequality (Ex. 2.1.13).
-
ER 2.1.51 Not in book. An application of the
Geometric-Arithmetic Mean inequality (see book's Example 2.1.13).
-
ER 2.2.51 Not in book.
The 4 triangle inequalities.
-
ER 2.2.18a Variant
max/min via midpt
-
ER 2.2.16 Variant
ε-NBHDs: ∩ and ∪
-
ER 2.2.17 Variant
making disjoint ε-NBHDs
-
ER 2.3.5 Variant
max/min and sup/inf chart
-
ER 2.3.10 Variant
sup of a union
-
ER 2.3.11 Variant
sup/inf for A⊆B
-
ER 2.4.1 Variant
sup for 1-1/n
-
ER 2.4.2 Variant
sup and inf for 1/j - 1/k
-
ER 2.4.4a Variant
inf when multiply a set by postive number
-
ER 2.4.4b Variant
sup/inf when multiply a set by negative number
-
ER 2.4.8 Variant
sup of the range of sum of 2 function
-
ER 2.4.14 Variant
dyadics
-
ER 2.4.19 Variant
density
-
ER 2.5.7+2.5.8 Variant
NIP closed
-
ER 2.5.9 Variant
NIP bounded
-
ER 2.5.10 Variant
NIP [a,b]
- ER 3.1.5c
- ER 3.1.12
- ER 3.1.18
- ER 1.3.6
- ER 1.3.8
- ER 1.3.13. Can use, without proving, ER 1.3.12, which says:
card of power set of a set with n elements is 2n.
[the collection ℱ(ℕ) of finite subets of ℕ is countable]
- ER 1.3.51
[card of finite-vs-infinite sequences of 0's and 1's]
-
ER 3.2.51 ERs 3.2.51-3.2.53 go together. Read all three before attempting any of them.
-
ER 3.2.52 ERs 3.2.51-3.2.53 go together. Read all three before attempting any of them.
-
ER 3.2.53 ERs 3.2.51-3.2.53 go together. Read all three before attempting any of them.
- ER 3.4.9
- ER 3.4.11
- ER 3.4.17.
Hint on ER 3.4.17 If you explain your answer intitutively, then a formal proof is not needed.
HW is posted on Blackboard.
This list is not current.
Please see Bb for current list.
|
Findable from URL: http://people.math.sc.edu/girardi/w554.html
|