On this homework $\langle provided your specifically reference it when used \rangle$ you may use the following Theorem from class.

Nested Interval Property. $\langle \text{Really a Theorem} \rangle$.

Let $(I_n)_{n=1}^{\infty}$ be a sequence of nonempty closed bounded intervals of \mathbb{R} that are nested in the sense

 $I_{j+1} \subseteq I_j$ for each $j \in \mathbb{N}$.

Then

(1) $\bigcap_{n=1}^{\infty} I_n$ is nonempty,

(2) and if furthermore the $\lim_{n \to \infty} \text{length}(I_n) = 0$ then $\bigcap_{n=1}^{\infty} I_n$ has preciously one element.

Variant of book's ER 2.5.7+2.5.8

1. For each $n \in \mathbb{N}$, let

$$I_n := \left[0, \frac{1}{n}\right].$$

Prove that $\bigcap_{n=1}^{\infty} I_n = \{0\}.$

2. For each $n \in \mathbb{N}$, let

$$J_n := \left(0, \frac{1}{n}\right).$$

Prove that $\bigcap_{n=1}^{\infty} J_n = \emptyset$.

3. In the above statement of the Nested Interval Property, can the assumption that the intervals are closed be omitted? Justify your answer.

.....

\$2.5BS4p52