Definition. Let $a \in \mathbb{R}$ and $\varepsilon > 0$. Then the ε -neighborhood about a is the set $N_{\varepsilon}(a) := \{x \in \mathbb{R} : |x-a| < \varepsilon\}.$ Recall for two real numbers x and a, the distance d(x, a) between x and a is d(x,a) := |x-a|and for an $\varepsilon > 0$ $|x-a| < \varepsilon \quad \Longleftrightarrow \quad -\varepsilon < x-a < \varepsilon \quad \Longleftrightarrow \quad a-\varepsilon < x < a+\varepsilon \;.$ Thus we can think of an ε_{2} neighborhood of a in several ways (see book's Figure 2.2.4 on page 35): Def2.2.7 $N_{\varepsilon}(a) = \{x \in \mathbb{R} : d(x, a) < \varepsilon\}$ BS4p35 $= \{ x \in \mathbb{R} \colon |x - a| < \varepsilon \}$ $= \{ x \in \mathbb{R} \colon -\varepsilon < x - a < \varepsilon \}$ $= \{ x \in \mathbb{R} \colon a - \varepsilon < x < a + \varepsilon \}$ $= (a - \varepsilon, a + \varepsilon) \quad \iff$ an open interval An ε -neighborhood about *a* is also called an ε -neighborhood of *a*. BTW: The notation $N_{\varepsilon}(a)$ for a <u>N</u>eighborhood is more common than the book's notation of $V_{\varepsilon}(a)$.

Variant of book's ER 2.2.16

Let $a \in \mathbb{R}$ and $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$.

 Express N_{ε1}(a) ∩ N_{ε2}(a) as a δ-neighborhood about a. So find δ > 0 so that N_{ε1}(a) ∩ N_{ε2}(a) = N_δ(a). Explain geometrically (not algebraically) why your δ works.
Express N_{ε1}(a) ∪ N_{ε2}(a) as a γ-neighborhood about a.

So find $\gamma > 0$ so that $N_{\varepsilon_1}(a) \cup N_{\varepsilon_2}(a) = N_{\gamma}(a)$. Explain geometrically (not algebraically) why your γ works.

.....

§2.2 BS4p36