Def. For $r \in \mathbb{R}$ and $B \subseteq \mathbb{R}$, define $rB := \{rb : b \in B\}$.

In class and on pervious HW, we showed the following two theorems.

- **Thm 1**. Let T be a nonempty bounded subset of \mathbb{R} . Let p > 0. Then $\sup (pT) = p \sup T$.
- **Thm 2**. Let T be a nonempty bounded subset of \mathbb{R} . Let p > 0. Then $\inf(pT) = p \inf T$.
- **Thm 3**. Let T be a nonempty bounded subset of \mathbb{R} . Then $\sup (-T) = -\inf T$.

Variant of book's ER 2.4.4b

§2.4 BS4p45

- **Thm 4.** Let T be a nonempty bounded subset of \mathbb{R} . Let n < 0. Then $\sup (nT) = n \inf T$.
- **Thm 5**. Let T be a nonempty bounded subset of \mathbb{R} . Let n < 0. Then $\inf (nT) = n \sup T$.
- 1. Give a (short) proof of Thm 4 by using (some of): Thm 1, Thm 2, Thm 3.
- 2. Give a (short) proof of Thm 5 by using (some of): Thm 1, Thm 2, Thm 3, Thm 4.
- ▶. HINT: nT = (-n)(-T).

.....

250101 Page 1 of 1