The Geometric-Arithmetic Mean Inequality is on pages 29–30. Recall the terminology: for $a \ge 0$ and $b \ge 0$, geometric mean of a and b is $= \sqrt{ab}$ (GM) arithmetic mean of a and b is $= \frac{a+b}{2}$. (AM) The Geometric-Arithmetic Mean Inequality says (think: GM \le AM) $\sqrt{ab} \le \frac{a+b}{2}$ (GM/AM)

with equality occurring if and only if a = b.

ER 2.1.51 An application of the Geometric-Arithmetic Mean Inequality. §2.1 BS4p29-30

Let $x \ge 0$ and $y \ge 0$ and $z \ge 0$. Using the Geometric-Arithmetic Mean inequality, prove that

$$xy + yz + xz \le x^2 + y^2 + z^2.$$
 (1)

Hint: Get a system of three inequalities, each from the GM-AM inequality.

.....