Variant of book's ER 2.5.10 Nested Interval Property.

 $\begin{array}{c} \S 2.5 \\ \mathrm{BS4p53} \end{array}$

Let $I_n = [a_n, b_n] \subseteq \mathbb{R}$ with $a_n \leq b_n$. Let the I_n 's be nested with $I_n \supseteq I_{n+1}$ for each $n \in \mathbb{N}$.

Let $A = \{a_j : j \in \mathbb{N}\}$ and $a_0 = \sup A$.

Let $B = \{b_k : k \in \mathbb{N}\}$ and $b_0 = \inf B$.

Prove that

$$\bigcap_{n\in\mathbb{N}} I_n = [a_0, b_0]. \tag{1}$$

Hint. In class we showed (thus you can use) the following claims.

Claim 1. The a_j 's are increasing.

Claim 2. The b_k 's are decreasing.

Claim 3. If $j, k \in \mathbb{N}$ then $a_j \leq b_k$.

Claim 4. $a_0 \in \bigcap_{n \in \mathbb{N}} I_n$.

.....

250101 Page 1 of 1