.

Variant of book's ER 2.3.5 Max/Min and Sup/Inf chart.

Consider the below subsets S of \mathbb{R} . Find the max S and min S, provided they exist (use \nexists for does not exists). Find the sup S and inf S in the extended sense (so in $\widehat{\mathbb{R}} \stackrel{\text{i.e.}}{=} \mathbb{R} \cup \{\pm \infty\}$). No proofs needed. Just use your intuition. Just type your solutions directly into the below chart. Some samples from class are included.

	$S \downarrow$	$\min S$	$\inf S$	$\max S$	$\sup S$				
$\text{recalls} \Rightarrow$	$S\subseteq \mathbb{R}$	must be in S	in $\widehat{\mathbb{R}}$	must be in S	$\text{in}\;\widehat{\mathbb{R}}$				
Samples from class.									
sample	$\left[0,\sqrt{2}\right]$	0	0	$\sqrt{2}$	$\sqrt{2}$				
sample	$\mathbb R$	∄	$-\infty$	∌	$+\infty$				
Now onto the assigned homework problems.									
(1)	$\{x \colon x^2 - 4x - 5 \le 0\}$								
(2)	$\left\{1 + \frac{(-1)^n}{n} \colon n \in \mathbb{N}\right\}$								
(3)	$(0,1)\cap\mathbb{Q}$								

Part of chart to fill out. You can just print this page and fill out the chart below.

	$S onumber \downarrow$	$\min S$	$\inf S$	$\max S$	$\sup S$
(1)	$\{x \colon x^2 - 4x - 5 \le 0\}$				
(2)	$\left\{1 + \frac{(-1)^n}{n} \colon n \in \mathbb{N}\right\}$				
(3)	$(0,1)\cap\mathbb{Q}$				

 $\S2.3$ BS4