Skip to main content

Section 1.5 Vector Inequalities

By definition,
\begin{equation*} \vec{u} \cdot \vec{v} = \Vert \vec{u} \Vert \Vert \vec{v} \Vert \cos \theta, \end{equation*}
where \(\theta\) is the angle between the two vectors. Taking absolute values on both sides gives,
\begin{equation*} \begin{array}{ccc} \left| \vec{u} \cdot \vec{v} \right| \amp =\amp \left|\Vert \vec{u} \Vert \Vert \vec{v} \Vert \cos \theta\right|,\\ \amp = \amp \Vert \vec{u} \Vert \Vert \vec{v} \Vert \left|\cos \theta\right|,\\ \amp \le \amp \Vert \vec{u} \Vert \Vert \vec{v} \Vert. \end{array} \end{equation*}
Since \(\left|\cos \theta\right| \le 1\) for any angle \(\theta\) \(\qed\)
\(~\)
Verify the Cauchy-Schwarz inequality for \(\vec{u} = -\hi + \hj + \hk\) and \(\vec{v} = 2\hi + \hj - 3\hk\text{.}\)
\begin{equation*} \begin{array}{ccc} \vec{u} \cdot \vec{v} \amp = \amp -2 +1 -3 = -4\\ \left|\vec{u} \cdot \vec{v}\right| \amp = \amp 4\\ \amp \amp\\ \Vert \vec{u} \Vert \amp =\amp \sqrt{(-1)^2 + 1 + 1} = \sqrt{3}\\ \Vert \vec{v} \Vert \amp =\amp \sqrt{2^2 + 1 + (-3)^2} = \sqrt{14}\\ \Vert \vec{u} \Vert\Vert \vec{v} \Vert \amp = \amp \sqrt{3} \cdot \sqrt{14} = \sqrt{42} \approx 6.481.\\ \amp \Rightarrow \amp\\ \left|\vec{u} \cdot \vec{v}\right| \amp \lt \amp \Vert \vec{u} \Vert\Vert \vec{v} \Vert.\\ (4) \amp \amp (6.481) \end{array} \end{equation*}
\(~\)
\begin{equation*} \begin{array}{ccc} \Vert \vec{u} + \vec{v} \Vert^2 \amp =\amp \left( \vec{u} + \vec{v} \right) \cdot \left( \vec{u} + \vec{v} \right)\\ \amp = \amp \vec{u} \cdot \vec{u} + 2\, \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v}\\ \amp = \amp \Vert \vec{u} \Vert^2 + 2\, \vec{u} \cdot \vec{v} + \Vert \vec{v} \Vert^2 \end{array} \end{equation*}
We use the Cauchy-Schwarz inequality to express the dot product, in the middle, in terms of the magnitudes,
\begin{equation*} \begin{array}{ccc} \Vert \vec{u} \Vert^2 + 2\, \vec{u} \cdot \vec{v} + \Vert \vec{v} \Vert^2 \amp \le \amp \Vert \vec{u} \Vert^2 + 2\, \Vert \vec{u} \Vert \Vert \vec{v} \Vert + \Vert \vec{v} \Vert^2\\ \amp \le \amp \left(\Vert \vec{u} \Vert + \Vert \vec{v} \Vert \right)^2. \end{array} \end{equation*}
Thus,
\begin{equation*} \Vert \vec{u} + \vec{v} \Vert^2 \le \left(\Vert \vec{u} \Vert + \Vert \vec{v} \Vert \right)^2. \end{equation*}
Taking the roots on both sides proves the theorem \(\qed\)
\(~\)
Verify that unlike the Cauchy-Schwarz inequality; the equality in the triangle inequality does not hold when one of the vectors is a scalar multiple of the other.
\begin{equation*} \begin{array}{ccc} \vec{u} \amp = \amp 3\hi - 2\hj + \hk\\ \vec{v} \amp = \amp -6\hi + 4\hj - 2 \hk\\ \amp \amp \\ \Vert \vec{u} \Vert \amp = \amp = \sqrt{9+4+1} = \sqrt{14}\\ \Vert \vec{v} \Vert \amp = \amp = \sqrt{36+16+4} = \sqrt{56} = 2 \sqrt{14}\\ \Vert \vec{u}\Vert + \Vert \vec{v} \Vert \amp = \amp 3\sqrt{14}.\\ \amp \amp \\ \vec{u} + \vec{v} \amp = \amp -3 \hi + 2\hj -1\hk\\ \Vert \vec{u} + \vec{v} \Vert \amp = \amp \sqrt{(-3)^2 + 2^2 + (-1)^2} = \sqrt{14}\\ \end{array} \end{equation*}
\begin{equation*} \begin{array}{ccc} \amp \amp \\ \Vert \vec{u} + \vec{v} \Vert \amp = \amp \displaystyle \frac{1}{2} \Vert \vec{u}\Vert + \Vert \vec{v} \Vert \\ \amp \Rightarrow \amp \\ \Vert \vec{u} + \vec{v} \Vert \amp \ne \amp \Vert \vec{u}\Vert + \Vert \vec{v} \Vert. \\ \end{array} \end{equation*}