Skip to main content

Section 2.3 Cylindrical Coordinates

Cylindrical \(\left(r, \theta , z \right)\) and rectangular \(\left(x,y,z\right)\) coordinates are related to each other by the following relations.
  • From cartesian to cylindrical.
    \begin{equation*} r = \sqrt{x^2 + y^2}, \hspace{0.5cm} \text{ and } \hspace{0.5cm} \theta = \left\{\begin{array}{ll} \tan^{-1}\displaystyle\frac{y}{x} \amp \text{ if } x \gt 0 \text{ and } y \ge 0\\ \pi + \tan^{-1}\displaystyle\frac{y}{x} \amp \text{ if } x \lt 0\\ 2 \pi + \tan^{-1}\displaystyle\frac{y}{x} \amp \text{ if } x \gt 0 \text{ and } y \lt 0\\ \end{array} \right., \hspace{0.5cm} \text{ and } \hspace{0.5cm} z = z. \end{equation*}
    The conditions on \(\theta\) is to ensure \(0 \le \theta \le 2 \pi\text{.}\)
    \(~\)
  • From cylindrical to cartesian.
    \begin{equation*} x = r \cos \theta, \hspace{0.5cm} y = r \sin \theta, \hspace{0.5cm} \text{ and } \hspace{0.5cm} z=z. \end{equation*}
\(~\)
Convert the point in cylindrical coordinates to cartesian without using a calculator; use the figure below instead.
\(~\)
Cylindrical: \(\left( {-3}, \displaystyle {{\frac{1}{2}}} \pi, {-3}\right)\)
Cartesian: ( , , ).
Answer 1.
\(0\)
Answer 2.
\(-3\)
Answer 3.
\(-3\)