Skip to main content

Section 1.1 Algebraic View

Definition 1.1.1. Vectors in \(\R^2\).

A vector in \(\R^2\) is an ordered pair of real numbers \(\vec{u} = \left[\begin{array}{c} u_1\\u_2 \end{array}\right]\text{.}\)

Definition 1.1.2. Vectors in \(\R^3\).

A vector in \(\R^3\) is an ordered triple of real numbers, \(\vec{u} = \left[\begin{array}{c} u_1\\u_2\\u_3 \end{array}\right]\text{.}\)

Insight 1.1.3.

  • We denote vectors by bold lower case, \(\mathbf{u} \text{,}\) or by an arrow over a character \(\vec{u}\text{.}\)
  • When talking about vectors we will usually refer to column vectors and write them either as \(\left[\begin{array}{c} 1\\2 \end{array}\right]\) or as a transposed row vector \(\left[ 1, 2 \right]^{\mathsf{T}}\text{.}\)

Definition 1.1.4. Coordinates of a vector.

Given a vector \(\vec{u} = \left[ u_1, u_2 \right]^{\mathsf{T}}\text{,}\) the scalars \(u_1\) and \(u_2\) are called the coordinates or components of the vector.

Subsection 1.1.1 Basic Vector Operations in \(\R^2\)

Given \(\vec{u} = \left[ u_1, u_2\right]^{\T}\text{,}\) \(\vec{v} = \left[ v_1, v_2\right]^{\T}\text{,}\) and scalar \(c \text{,}\) vector addition, subtraction and scalar multiplication are defined as
\begin{equation*} \vec{u} + \vec{v} = \left[\begin{array}{c} u_1+v_1\\ u_2+v_2 \end{array}\right], \hspace{1cm} \vec{u} - \vec{v} = \left[\begin{array}{c} u_1-v_1\\ u_2-v_2 \end{array}\right], \hspace{1cm} c \vec{u} = \left[\begin{array}{c} c u_1\\ c u_2 \end{array}\right]. \end{equation*}

Subsection 1.1.2 Basic Vector Operations in \(\R^3\)

Given two vectors \(\vec{u} = \left[ u_1, u_2, u_3\right]^{\T}\text{,}\) \(\vec{v} = \left[ v_1, v_2, v_3\right]^{\T}\text{,}\) and scalar \(c \text{,}\) we can define vector addition, subtraction and scalar multiplication as
\begin{equation*} \vec{u} + \vec{v} = \left[\begin{array}{c} u_1+v_1\\ u_2+v_2\\ u_3+v_3 \end{array}\right], \hspace{1cm} \vec{u} - \vec{v} = \left[\begin{array}{c} u_1-v_1\\ u_2-v_2 \\u_3- v_3 \end{array}\right], \hspace{1cm} c \vec{u} = \left[\begin{array}{c} c u_1\\ c u_2\\ c u_3 \end{array}\right]. \end{equation*}

Subsection 1.1.3 Properties of vector addition and scalar multiplication

Let \(\vec{u}, \vec{v}, \vec{w}\) be vectors in either \(\R^2\) or \(\R^3\) and \(c, d\) scalars,
Properties of vector addition
  • Commutative property.
    \(\displaystyle \vec{u} + \vec{v} = \vec{v} + \vec{u} \)
  • Associative property.
    \(\displaystyle \vec{u} + \left( \vec{v} + \vec{w}\right) = \left( \vec{u} + \vec{v} \right) + \vec{w} \)
  • Zero vector, \(\vec{0}= \left[ 0, 0, 0 \right]^{\T} \).
    \(\displaystyle \vec{u} + \vec{0} = \vec{u}\)
  • Negative vector.
    \(\displaystyle \vec{u} + \left( -\vec{u}\right) = \vec{0}\)
Properties of scalar multiplication
  • Distributive property 1.
    \(\displaystyle c\,\left(\vec{u} + \vec{v}\right) = c\,\vec{u} + c\,\vec{v} \)
  • Distributive property 2.
    \(\displaystyle \left(c+d\right)\,\vec{u} = c\,\vec{u} + d\,\vec{u} \)
  • Distributive property 3.
    \(\displaystyle c\,\left(d\,\vec{u}\right) = \left(c\,d\right) \vec{u}\)
  • Scalar multiplication by 1.
    \(\displaystyle 1\,\vec{u} =\vec{u}\)
\(~\)
Find \(\vec{z} = {2} \vec{u} - {2} \vec{v} + {2} \vec{w} \text{,}\) where
\begin{equation*} \vec{u} = \left[ \begin{array}{r} {-4} \\ {3} \\ {-4} \end{array}\right], \hspace{0.5cm} \vec{v} = \left[ \begin{array}{r} {4}\\ {4} \\ {-1} \end{array}\right], \hspace{0.5cm} \text{and} \hspace{0.5cm} \vec{w} = \left[ \begin{array}{r} {4}\\ {-3} \\ {2} \end{array}\right]. \end{equation*}
\(\displaystyle{}\)
\(\vec{z} = \left[ \right.\) , , \(\left. \right]^{\T}\)
Answer 1.
\(-8\)
Answer 2.
\(-8\)
Answer 3.
\(-2\)
Solution.
\begin{equation*} \vec{z} = \left[ \begin{array}{r} ({2} \cdot {-4}) - ({2} \cdot {4}) + ({2} \cdot {4})\\ ({2} \cdot {3}) - ({2} \cdot {4}) + ({2} \cdot {-3})\\ ({2} \cdot {-4}) - ({2} \cdot {-1}) + ({2} \cdot {2})\\ \end{array} \right] = \left[ \begin{array}{r} ({-8}) - ({8}) + ({8})\\ ({6}) - ({8}) + ({-6})\\ ({-8}) - ({-2}) + ({4})\\ \end{array} \right] = \left[ \begin{array}{r} {-8}\\ {-8} \\ {-2} \end{array} \right] \end{equation*}
\(~\)

Definition 1.1.6. Distance Between Two Vectors.

The distance between two vector is given by
\begin{equation*} \text{distance } = \sqrt{\left(u_1 - v_1\right)^2 + \left(u_2 - v_2\right)^2 +\left(u_3 - v_3\right)^2}. \end{equation*}
Find the distance between the two vectors \(\vec{u} = \left[\begin{array}{c} 3\\-1\\4 \end{array}\right]\) and \(\vec{v} = \left[\begin{array}{c} 0\\2\\-2 \end{array}\right].\)
\begin{equation*} \text{distance } = \sqrt{\left(3 - 0\right)^2 + \left(-1 - 2\right)^2 +\left(4 - (-2)\right)^2} = \sqrt{9 + 9 +36} = \sqrt{54} = 7.3485. \end{equation*}
Find the distance between
\begin{equation*} \vec{u} = \left[ \begin{array}{r} {-3} \\ {-1} \end{array}\right] \hspace{0.5cm} \text{ and }\hspace{0.5cm} \vec{v} = \left[ \begin{array}{r} {1}\\ {1} \end{array}\right]. \end{equation*}
\(\displaystyle{}\)
Distance = .
Answer.
\(4.47214\)
Solution.
\begin{equation*} \text{Distance} = \sqrt{\left({-3}- {1}\right)^2 + \left({-1}- {1}\right)^2} = \sqrt{\left({-4}\right)^2 + \left({-2}\right)^2} = \sqrt{{20}} = {4.47214}. \end{equation*}