Skip to main content

Subsection 2.2 Symmetric and skew-symmetric matrices

Definition 2.2.41. Symmetric matrix.

A symmetric matrix is a square matrix that is equal to its transpose.
The following matrices are symmetric
\begin{equation*} \left[ \begin{array}{rr} 0 \amp 1\\ 1 \amp 3 \end{array}\right], \hspace{0.7cm} \left[ \begin{array}{rrr} -1 \amp 2 \amp -3 \\ 2 \amp 0 \amp 1\\ -3 \amp 1 \amp 5 \end{array}\right], \hspace{0.7cm} \left[ \begin{array}{rrrr} 1 \amp 1 \amp 4 \amp 6\\ 1 \amp -2 \amp 2 \amp 5\\ 4 \amp 2 \amp 4 \amp 3\\ 6 \amp 5 \amp 3 \amp 1 \end{array}\right] \end{equation*}
The following matrices are not symmetric
\begin{equation*} \left[ \begin{array}{rr} 1 \amp 0\\ 1 \amp 3 \end{array}\right], \hspace{0.7cm} \left[ \begin{array}{rrr} -1 \amp 2 \amp -3 \\ -2 \amp 0 \amp 1\\ -3 \amp 1 \amp 5 \end{array}\right], \hspace{0.7cm} \left[ \begin{array}{rrrr} 1 \amp 1 \amp 4 \amp 3\\ 1 \amp -2 \amp 2 \amp 7\\ 3 \amp 2 \amp 4 \amp 3\\ 6 \amp 1 \amp 3 \amp 1 \end{array}\right] \end{equation*}
Determine whether the given matrix is symmetric or not
\begin{equation*} \begin{array}{lrrrr} \lceil \amp {-3} \amp {3} \amp {-7} \amp \rceil\\ \vert \amp {-3} \amp {8} \amp {5} \amp \vert \\ \lfloor \amp {7} \amp {-5} \amp {5} \amp \rfloor \end{array} \end{equation*}
  • Symmetric
  • Not Symmetric
\begin{equation*} \begin{array}{lrrr} \lceil \amp {-1} \amp {7} \amp \rceil\\ \vert \amp {7} \amp {8} \amp \vert\\ \lfloor \amp {-3} \amp {7} \amp \rfloor \end{array} \end{equation*}
  • Symmetric
  • Not Symmetric
\begin{equation*} \begin{array}{lrrrr} \lceil \amp {-1} \amp {7} \amp {5} \amp \rceil\\ \vert \amp {7} \amp {7} \amp {8} \amp \vert\\ \lfloor \amp {5} \amp {8} \amp {5} \amp \rfloor \end{array} \end{equation*}
  • Symmetric
  • Not Symmetric
Answer 1.
\(\text{Not Symmetric}\)
Answer 2.
\(\text{Not Symmetric}\)
Answer 3.
\(\text{Symmetric}\)
\(\, \)

Definition 2.2.44. Skew-symmetric matrix.

A skew-symmetric matrix is a square matrix whose transpose equals its negative.
\begin{equation*} \boldsymbol{A}^{\mathsf{T}} = - \boldsymbol{A}. \end{equation*}
The following matrix is skew symmetric,
\begin{equation*} \boldsymbol{A} = \left[\begin{array}{rrr} 1 \amp -2 \amp 3 \\ 2 \amp 0 \amp 4\\ -3 \amp -4 \amp 1 \end{array}\right]. \end{equation*}
Note that
\begin{equation*} \begin{array}{ccc} a_{12}\amp = \amp - a_{21}\\ a_{13}\amp = \amp - a_{31}\\ a_{23}\amp = \amp - a_{32} \end{array} \end{equation*}