Subsection 1.3 Algebraic properties of matrix operations
Subsubsection 1.3.1 Properties of matrix sum
For the properties shown below, \(\boldsymbol{A}_{m\times n}, \boldsymbol{B}_{m\times n}, \text{ and } \boldsymbol{C}_{m\times n} \) are matrices and \(r \text{ and } s \) are scalars.
-
Commutative property.The sum of two matrices is commutative:\begin{equation*} \boldsymbol{A}_{m\times n} + \boldsymbol{B}_{m\times n} = \boldsymbol{B}_{m\times n} + \boldsymbol{A}_{m\times n} \end{equation*}\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{ccc} 4 \amp 3 \amp 1\\ -1 \amp 0 \amp -2\\ \end{array} \right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{ccc} 2 \amp 0 \amp -1\\ 3 \amp 5 \amp -1\\ \end{array} \right]. \end{equation*}\begin{equation*} \boldsymbol{A}+ \boldsymbol{B} = \left[ \begin{array}{ccc} 4 \amp 3 \amp 1\\ -1 \amp 0 \amp -2\\ \end{array} \right] \hspace{0.2cm} + \hspace{0.2cm} \left[ \begin{array}{ccc} 2 \amp 0 \amp -1\\ 3 \amp 5 \amp -1\\ \end{array} \right] \hspace{0.5cm} = \hspace{0.5cm} \left[ \begin{array}{ccc} 6 \amp 3 \amp 0\\ 2 \amp 5 \amp -3\\ \end{array} \right]. \end{equation*}\begin{equation*} \boldsymbol{B}+ \boldsymbol{A} = \left[ \begin{array}{ccc} 2 \amp 0 \amp -1\\ 3 \amp 5 \amp -1\\ \end{array} \right] \hspace{0.2cm} + \hspace{0.2cm} \left[ \begin{array}{ccc} 4 \amp 3 \amp 1\\ -1 \amp 0 \amp -2\\ \end{array} \right] \hspace{0.5cm} = \hspace{0.5cm} \left[ \begin{array}{ccc} 6 \amp 3 \amp 0\\ 2 \amp 5 \amp -3\\ \end{array} \right]. \end{equation*}
-
Associative property.Matrix addition is associative :\begin{equation*} \boldsymbol{A}_{m\times n} + \left( \boldsymbol{B}_{m\times n} + \boldsymbol{C}_{m\times n} \right) = \left(\boldsymbol{A}_{m\times n} + \boldsymbol{B}_{m\times n}\right) + \boldsymbol{C}_{m\times n}. \end{equation*}
Example 1.3.16. Associative property.
If we have more than two matrices to add, we can first sum two of them and then add the third matrix to this result. This property tells us that the order in which we choose the first two matrices does not matter.Consider the following three matrices\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{cc} 2 \amp 1 \\ 0 \amp 3\\ \end{array}\right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{cc} -1 \amp 0 \\ 1 \amp 2\\ \end{array}\right], \hspace{1cm} \boldsymbol{C} = \left[ \begin{array}{cc} 0 \amp -4 \\ 1 \amp -2\\ \end{array}\right]. \end{equation*}-
Note that \(\boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} \) can be obtained by first adding \(\boldsymbol{A} \) and \(\boldsymbol{B}\) and then adding the resulting matrix to \(\boldsymbol{C}: \)\begin{equation*} \boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} = \left(\boldsymbol{A} + \boldsymbol{B}\right) + \boldsymbol{C}. \end{equation*}\begin{equation*} \left(\boldsymbol{A} + \boldsymbol{B}\right) = \left[ \begin{array}{cc} 2 \amp 1 \\ 0 \amp 3\\ \end{array}\right] + \left[ \begin{array}{cc} -1 \amp 0 \\ 1 \amp 2\\ \end{array}\right] = \left[ \begin{array}{cc} 1 \amp 1 \\ 1 \amp 5\\ \end{array}\right] \end{equation*}\begin{equation*} \left(\boldsymbol{A} + \boldsymbol{B}\right) + \boldsymbol{C} = \left[ \begin{array}{cc} 1 \amp 1 \\ 1 \amp 5\\ \end{array}\right] + \left[ \begin{array}{cc} 0 \amp -4 \\ 1 \amp -2\\ \end{array}\right]= \left[ \begin{array}{cc} 1 \amp -3 \\ 2 \amp 3\\ \end{array}\right]. \end{equation*}
-
Alternatively, \(\boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} \) can be obtained by first adding \(\boldsymbol{B} \) and \(\boldsymbol{C}\) and then adding the resulting matrix to \(\boldsymbol{A}: \)\begin{equation*} \boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} = \boldsymbol{A} + \left(\boldsymbol{B} + \boldsymbol{C}\right). \end{equation*}\begin{equation*} \left(\boldsymbol{B} + \boldsymbol{C}\right) = \left[ \begin{array}{cc} -1 \amp 0 \\ 1 \amp 2\\ \end{array}\right] + \left[ \begin{array}{cc} 0 \amp -4 \\ 1 \amp -2\\ \end{array}\right] = \left[ \begin{array}{cc} -1 \amp -4 \\ 2 \amp 0\\ \end{array}\right] \end{equation*}\begin{equation*} \boldsymbol{A} + \left(\boldsymbol{B}+ \boldsymbol{C} \right) = \left[ \begin{array}{cc} 2 \amp 1 \\ 0 \amp 3\\ \end{array}\right] + \left[ \begin{array}{cc} -1 \amp -4 \\ 2 \amp 0\\ \end{array}\right]= \left[ \begin{array}{cc} 1 \amp -3 \\ 2 \amp 3\\ \end{array}\right]. \end{equation*}
-
Another alternative is to find \(\boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} \) by first adding \(\boldsymbol{A} \) and \(\boldsymbol{C}\) and then adding the resulting matrix to \(\boldsymbol{B}: \)\begin{equation*} \boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} = \left( \boldsymbol{A} + \boldsymbol{C}\right) + \boldsymbol{B}. \end{equation*}\begin{equation*} \left(\boldsymbol{A} + \boldsymbol{C}\right) = \left[ \begin{array}{cc} 2 \amp 1 \\ 0 \amp 3\\ \end{array}\right] + \left[ \begin{array}{cc} 0 \amp -4 \\ 1 \amp -2\\ \end{array}\right] = \left[ \begin{array}{cc} 2 \amp -3 \\ 1 \amp 1\\ \end{array}\right] \end{equation*}\begin{equation*} \left(\boldsymbol{A} + \boldsymbol{C} \right)+ \boldsymbol{B} = \left[ \begin{array}{cc} 2 \amp -3 \\ 1 \amp 1\\ \end{array}\right] + \left[ \begin{array}{cc} -1 \amp 0 \\ 1 \amp 2\\ \end{array}\right]= \left[ \begin{array}{cc} 1 \amp -3 \\ 2 \amp 3\\ \end{array}\right]. \end{equation*}
-
Subsubsection 1.3.2 Properties of matrix-scalar multiplication
For the properties shown below, \(\boldsymbol{A}_{m\times n}, \boldsymbol{B}_{m\times n}, \text{ and } \boldsymbol{C}_{m\times n} \) are matrices and \(r \text{ and } s \) are scalars.
-
Distributive property 1.Multiplication of a matrix by a scalar is distributive with respect to matrix addition:\begin{equation*} r \left( \boldsymbol{A}_{m\times n} + \boldsymbol{B}_{m\times n}\right) = r\, \boldsymbol{A}_{m\times n} + r\, \boldsymbol{B}_{m\times n}. \end{equation*}
Example 1.3.17. Distributive property 1.
\begin{equation*} \begin{array}{ccc} 4 \times \left( \left[ \begin{array}{rr} -1 \amp 2 \\ 0 \amp 4 \\ 1 \amp 3 \\ -2 \amp 1 \\ \end{array}\right] + \left[ \begin{array}{rr} 3 \amp -1 \\ 1 \amp 1 \\ 2 \amp -4 \\ -2 \amp 2 \\ \end{array}\right] \right) \amp = \amp 4 \times \left[ \begin{array}{rr} -1 \amp 2 \\ 0 \amp 4 \\ 1 \amp 3 \\ -2 \amp 1 \\ \end{array}\right] + 4 \times \left[ \begin{array}{rr} 3 \amp -1 \\ 1 \amp 1 \\ 2 \amp -4 \\ -2 \amp 2 \\ \end{array}\right] \\ \end{array} \end{equation*}\begin{equation*} \hspace{1.5cm} \begin{array}{ccc} 4 \times \left( \left[ \begin{array}{rr} 2 \amp 1 \\ 1 \amp 5 \\ 3 \amp -1 \\ -4 \amp 3 \\ \end{array}\right] \right) \amp \hspace{0.9cm} = \hspace{0.9cm} \amp \left[ \begin{array}{rr} -4 \amp 8 \\ 0 \amp 16 \\ 4 \amp 12 \\ -8 \amp 4 \\ \end{array}\right] + \left[ \begin{array}{rr} 12 \amp -4 \\ 4 \amp 4 \\ 8 \amp -16 \\ -8 \amp 8 \\ \end{array}\right] \\ \amp \amp\\ \left[ \begin{array}{rr} 8 \amp 4 \\ 4 \amp 20 \\ 12 \amp -4 \\ -16 \amp 12 \\ \end{array}\right] \amp \hspace{0.9cm} = \hspace{0.9cm} \amp \left[ \begin{array}{rr} 8 \amp 4 \\ 4 \amp 20 \\ 12 \amp -4 \\ -16 \amp 12 \\ \end{array}\right] \\ \end{array} \end{equation*} -
Distributive property 2.Multiplication of a matrix by a scalar is distributive with respect to the scalar addition:\begin{equation*} \left(r+s \right) \boldsymbol{C}_{m\times n} = r\, \boldsymbol{C}_{m\times n} + s\, \boldsymbol{C}_{m\times n}. \end{equation*}
Example 1.3.18. Distributive property 2.
\begin{equation*} \begin{array}{l} (2 + 4) \times \left[\begin{array}{rr} -2 \amp 1 \\ 0 \amp 1 \\ \end{array}\right] = 2 \times \left[\begin{array}{rr} -2 \amp 1 \\ 0 \amp 1 \\ \end{array}\right] + 4 \times \left[\begin{array}{rr} -2 \amp 1 \\ 0 \amp 1 \\ \end{array}\right]\\ \amp \amp \\ \hspace{0.7cm} 6 \times \left[\begin{array}{rr} -2 \amp 1 \\ 0 \amp 1 \\ \end{array}\right] \hspace{0.5cm} = \hspace{0.5cm} \left[\begin{array}{rr} -4 \amp 2 \\ 0 \amp 2 \\ \end{array}\right] \hspace{0.3cm} + \hspace{0.3cm} \left[\begin{array}{rr} -8 \amp 4 \\ 0 \amp 4 \\ \end{array}\right]\\ \amp \amp \\ \hspace{0.7cm}\left[\begin{array}{rr} -12 \amp 6 \\ 0 \amp 6 \\ \end{array}\right] \hspace{1.1cm} = \hspace{1.5cm} \left[\begin{array}{rr} -12 \amp 6 \\ 0 \amp 6 \\ \end{array}\right] \\ \end{array} \end{equation*} -
Associative property.Multiplication of a matrix by a scalar is associative with respect to the scalar multiplication:\begin{equation*} r \left(s \times \boldsymbol{C}_{m\times n} \right) = (r\, s) \boldsymbol{C}_{m\times n}. \end{equation*}
Example 1.3.19. Associative property.
\begin{equation*} \begin{array}{l} -1 \times \left( 2\times \left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 2 \amp 0 \amp -1 \\ 3 \amp 0 \amp 0\\ \end{array}\right] \right) = (-1 \times 2 ) \times \left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 2 \amp 0 \amp -1 \\ 3 \amp 0 \amp 0\\ \end{array}\right] \\ \amp \amp \\ \hspace{0.7cm} -1 \times \left[\begin{array}{rrr} 2 \amp -2 \amp 6 \\ 4 \amp 0 \amp -2 \\ 6 \amp 0 \amp 0\\ \end{array}\right] \hspace{0.9cm} = \hspace{0.9cm} -2 \times \left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 2 \amp 0 \amp -1 \\ 3 \amp 0 \amp 0\\ \end{array}\right]\\ \amp \amp \\ \hspace{1.1cm}\left[\begin{array}{rrr} -2 \amp 2 \amp -6 \\ -4 \amp 0 \amp 2 \\ -6 \amp 0 \amp 0\\ \end{array}\right] \hspace{1.6cm} = \hspace{1cm} \left[\begin{array}{rrr} -2 \amp 2 \amp -6 \\ -4 \amp 0 \amp 2 \\ -6 \amp 0 \amp 0\\ \end{array}\right] \\ \end{array} \end{equation*}
Subsubsection 1.3.3 Properties of matrix-matrix multiplication
For the properties shown below, \(\boldsymbol{A}, \boldsymbol{B}, \text{ and } \boldsymbol{C} \) are matrices and \(r \) is a scalar. The sizes for the matrices will be given for each property.
-
Associative property.Matrix-matrix multiplication is associative:\begin{equation*} \begin{array}{ccc} \boldsymbol{A} \left(\boldsymbol{B}\,\boldsymbol{C}\right) \amp = \amp \left(\boldsymbol{A}\,\boldsymbol{B}\right)\,\boldsymbol{C}\\ \amp \amp \\ \boldsymbol{A}_{m\times n} \left(\boldsymbol{B}_{n\times p} \boldsymbol{C}_{p\times q}\right) \amp = \amp \left(\boldsymbol{A}_{m\times n} \boldsymbol{B}_{n\times p}\right) \boldsymbol{C}_{p\times q}.\\ \end{array} \end{equation*}
Example 1.3.20. Associative property.
\begin{equation*} \begin{array}{ccc} \boldsymbol{A}_{3\times 2} \left(\boldsymbol{B}_{2\times 4} \boldsymbol{C}_{4\times 3}\right) \amp = \amp \left(\boldsymbol{A}_{3\times 2} \boldsymbol{B}_{2\times 4}\right) \boldsymbol{C}_{4\times 3}\\ \amp \amp \\ \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left( \left[ \begin{array}{rrrr} 0 \amp 1 \amp -1 \amp 3\\ 2 \amp -1 \amp 1 \amp -2\\ \end{array}\right]\, \left[ \begin{array}{rrr} 1 \amp -1 \amp -3\\ 2 \amp 3 \amp 1 \\ 4 \amp 1 \amp 0 \\ 0 \amp -2 \amp 1 \\ \end{array}\right] \right) \amp = \amp \left( \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right] \, \left[ \begin{array}{rrrr} 0 \amp 1 \amp -1 \amp 3\\ 2 \amp -1 \amp 1 \amp -2\\ \end{array}\right] \right)\, \left[ \begin{array}{rrr} 1 \amp -1 \amp -3\\ 2 \amp 3 \amp 1 \\ 4 \amp 1 \amp 0 \\ 0 \amp -2 \amp 1 \\ \end{array}\right] \end{array} \end{equation*}\begin{equation*} \begin{array}{lll} \hspace{2cm} \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left[ \begin{array}{rrr} -6 \amp -5 \amp 4 \\ 4 \amp 0 \amp -9 \\ \end{array}\right] \hspace{2.8cm} \amp = \amp \hspace{1.7cm} \left[ \begin{array}{rrrr} 2 \amp 0 \amp -1 \amp 1 \\ 0 \amp -2 \amp 4 \amp -6 \\ 2 \amp 2 \amp -5 \amp 7 \\ \end{array}\right]\, \left[ \begin{array}{rrr} 1 \amp -1 \amp -3\\ 2 \amp 3 \amp 1 \\ 4 \amp 1 \amp 0 \\ 0 \amp -2 \amp 1 \\ \end{array}\right]\\ \amp \amp \\ \hspace{2.2cm} \left[ \begin{array}{rrr} -2 \amp -5 \amp -5 \\ 12 \amp 10 \amp -8 \\ -14 \amp -15 \amp 3 \\ \end{array}\right]_{3 \times 3} \amp = \amp \hspace{2.2cm} \left[ \begin{array}{rrr} -2 \amp -5 \amp -5 \\ 12 \amp 10 \amp -8 \\ -14 \amp -15 \amp 3 \\ \end{array}\right]_{3 \times 3} \end{array} \end{equation*} -
Distributive property.Matrix-matrix multiplication is distributive with respect to matrix addition:
-
Case 1:\begin{equation*} \begin{array}{ccc} \boldsymbol{A}\,\left(\boldsymbol{B} + \boldsymbol{C} \right) \amp = \amp \boldsymbol{A}\,\boldsymbol{B} + \boldsymbol{A}\,\boldsymbol{C} \amp \amp\\ \boldsymbol{A}_{m\times n}\,\left(\boldsymbol{B}_{n\times p} + \boldsymbol{C}_{n\times p} \right) \amp = \amp \boldsymbol{A}_{m\times n}\,\boldsymbol{B}_{n\times p} + \boldsymbol{A}_{m\times n}\,\boldsymbol{C}_{n\times p} \end{array} \end{equation*}
Example 1.3.21. Distributive property - Case 1.
\begin{equation*} \begin{array}{ccc} \boldsymbol{A}_{3\times 2}\,\left(\boldsymbol{B}_{2\times 4} + \boldsymbol{C}_{2\times 4}\right) \amp = \amp \boldsymbol{A}_{3\times 2}\,\boldsymbol{B}_{2\times 4} + \boldsymbol{A}_{3\times 2}\,\boldsymbol{C}_{2\times 4}\\ \amp \amp \\ \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left( \left[ \begin{array}{rrrr} 0 \amp 1 \amp -1 \amp 3\\ 2 \amp -1 \amp 1 \amp -2\\ \end{array}\right] + \left[ \begin{array}{rrrr} 1 \amp -1 \amp -3 \amp 1\\ 2 \amp 3 \amp 1 \amp 0 \\ \end{array}\right] \right) \amp = \amp \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left[ \begin{array}{rrrr} 0 \amp 1 \amp -1 \amp 3\\ 2 \amp -1 \amp 1 \amp -2\\ \end{array}\right] + \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left[ \begin{array}{rrrr} 1 \amp -1 \amp -3 \amp 1\\ 2 \amp 3 \amp 1 \amp 0 \\ \end{array}\right] \end{array} \end{equation*}\begin{equation*} \begin{array}{lll} \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \hspace{1cm} \left[ \begin{array}{rrrr} 1 \amp 0 \amp-4 \amp 4\\ 4 \amp 2 \amp 2 \amp -2\\ \end{array}\right] \hspace{4.3cm} \amp = \amp \hspace{1cm}\left[ \begin{array}{rrrr} 2 \amp 0 \amp 0 \amp 1\\ 0 \amp -2 \amp 2 \amp -6\\ 2 \amp 2 \amp -2 \amp 7\\ \end{array}\right] \hspace{1cm} + \hspace{0.4cm} \left[ \begin{array}{rrrr} 3 \amp 2 \amp -2 \amp 1\\ -2 \amp 2 \amp 6 \amp -2\\ 5 \amp 0 \amp -8 \amp 3\\ \end{array}\right]\\ \amp \amp\\ \hspace{5cm}\left[ \begin{array}{rrrr} 5 \amp 2 \amp -2 \amp 2\\ -2 \amp 0 \amp 8 \amp -8\\ 7 \amp 2 \amp -10 \amp 10\\ \end{array}\right] \amp = \amp \hspace{2cm}\left[ \begin{array}{rrrr} 5 \amp 2 \amp -2 \amp 2\\ -2 \amp 0 \amp 8 \amp -8\\ 7 \amp 2 \amp -10 \amp 10\\ \end{array}\right] \end{array} \end{equation*} -
Case 2:\begin{equation*} \begin{array}{ccc} \left( \boldsymbol{A} + \boldsymbol{B}\right)\,\boldsymbol{C} \amp = \amp \boldsymbol{A}\,\boldsymbol{C} + \boldsymbol{B}\,\boldsymbol{C} \amp \amp\\ \left( \boldsymbol{A}_{m\times n} + \boldsymbol{B}_{m\times n}\right)\,\boldsymbol{C}_{n\times p} \amp = \amp \boldsymbol{A}_{m\times n}\,\boldsymbol{C}_{n\times p} + \boldsymbol{B}_{m\times n}\,\boldsymbol{C}_{n\times p} \end{array} \end{equation*}
Example 1.3.22. Distributive property - Case 2.
\begin{equation*} \begin{array}{ccc} \left( \boldsymbol{A}_{2\times 2} + \boldsymbol{B}_{2\times 2}\right)\,\boldsymbol{C}_{2\times 3} \amp = \amp \boldsymbol{A}_{2\times 2}\,\boldsymbol{C}_{2\times 3} + \boldsymbol{B}_{2\times 2}\,\boldsymbol{C}_{2\times 3}\\ \amp \amp \\ \left( \left[ \begin{array}{rr} 1 \amp 0\\ 0 \amp 1 \\ \end{array}\right] + \left[ \begin{array}{rr} 3 \amp -2\\ 1 \amp 4 \\ \end{array}\right] \right)\, \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right] \amp = \amp \left[ \begin{array}{rr} 1 \amp 0\\ 0 \amp 1 \\ \end{array}\right]\, \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right] + \left[ \begin{array}{rr} 3 \amp -2\\ 1 \amp 4 \\ \end{array}\right]\, \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right] \end{array} \end{equation*}\begin{equation*} \begin{array}{lll} \hspace{1cm}\left[ \begin{array}{rr} 4 \amp -2\\ 1 \amp 5 \\ \end{array}\right]\, \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right]\hspace{1.5cm} \amp = \amp \hspace{1cm} \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right] + \left[ \begin{array}{rrr} 4 \amp -3 \amp 2\\ 6 \amp 13 \amp -4 \end{array}\right]\\ \amp \amp\\ \hspace{2cm}\left[ \begin{array}{rrr} 6 \amp -2 \amp 2\\ 7 \amp 16 \amp -5 \end{array}\right] \amp = \amp \hspace{2cm}\left[ \begin{array}{rrr} 6 \amp -2 \amp 2\\ 7 \amp 16 \amp -5 \end{array}\right] \end{array} \end{equation*}
-
-
Associative property with scalar multiplication.Matrix multiplication is associative with respect to scalar multiplication:\begin{equation*} \begin{array}{cll} r \left(\boldsymbol{A}\,\boldsymbol{B}\right) \amp = \left(r\,\boldsymbol{A}\right)\,\boldsymbol{B} \amp = \boldsymbol{A}\,\left(r\,\boldsymbol{B} \right)\\ \amp \amp\\ r \left(\boldsymbol{A}_{m\times n}\,\boldsymbol{B}_{n\times p}\right) \amp = \left(r\,\boldsymbol{A}\right)_{m\times n}\,\boldsymbol{B}_{n\times p} \amp = \boldsymbol{A}_{m\times n}\,\left(r\,\boldsymbol{B} \right)_{n\times p} \end{array} \end{equation*}
Example 1.3.23. Associative property with scalar multiplication.
\begin{equation*} \begin{array}{cll} 2 \left(\boldsymbol{A}_{2\times 2}\,\boldsymbol{B}_{2\times 2}\right) \amp = \left(2\,\boldsymbol{A}\right)_{2\times 2}\,\boldsymbol{B}_{2\times 2} \amp = \boldsymbol{A}_{2\times 2}\,\left(2\,\boldsymbol{B} \right)_{2\times 2} \amp \amp \\ \amp \amp \\ 2 \left( \left[ \begin{array}{rr} 3 \amp 2\\ 1 \amp 0\\ \end{array}\right]\, \left[ \begin{array}{rr} 1 \amp -1\\ 2 \amp 1\\ \end{array}\right] \right) \amp = \left( 2\,\left[ \begin{array}{rr} 3 \amp 2\\ 1 \amp 0\\ \end{array}\right] \right)\, \left[ \begin{array}{rr} 1 \amp -1\\ 2 \amp 1\\ \end{array}\right] \amp = \left[ \begin{array}{rr} 3 \amp 2\\ 1 \amp 0\\ \end{array}\right]\, \left( 2\,\left[ \begin{array}{rr} 1 \amp -1\\ 2 \amp 1\\ \end{array}\right] \right)\\ \amp \amp \\ 2\, \left[ \begin{array}{rr} 7 \amp -1\\ 1 \amp -1\\ \end{array}\right] \amp = \left[ \begin{array}{rr} 6 \amp 4\\ 3 \amp 0\\ \end{array}\right]\, \left[ \begin{array}{rr} 1 \amp -1\\ 2 \amp 1\\ \end{array}\right] \amp = \left[ \begin{array}{rr} 3 \amp 2\\ 1 \amp 0\\ \end{array}\right]\, \left[ \begin{array}{rr} 2 \amp -2\\ 4 \amp 2\\ \end{array}\right]\\ \end{array} \end{equation*}\begin{equation*} \begin{array}{lll} \amp \amp \\ \left[ \begin{array}{rr} 14 \amp -2\\ 2 \amp -2\\ \end{array}\right] \hspace{0.5cm} \amp = \hspace{1cm}\left[ \begin{array}{rr} 14 \amp -2\\ 2 \amp -2\\ \end{array}\right]\hspace{1cm} \amp = \hspace{1cm}\left[ \begin{array}{rr} 14 \amp -2\\ 2 \amp -2\\ \end{array}\right] \end{array} \end{equation*}