Skip to main content ☰ Contents You! < Prev ^ Up Next > \(\newcommand{\R}{\mathbb R}
\newcommand{\T}{\mathsf{T}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection 1.5 Powers of matrices
Definition 1.5.28 . Power of a matrix.
The \(k\) power of a matrix is defined as
\begin{equation*}
\boldsymbol{A}^k = \underbrace{ \boldsymbol{A} \cdot \boldsymbol{A} \cdot \boldsymbol{A} \cdots \boldsymbol{A}}_{\large{k-\text{times}}}.
\end{equation*}
By definition,
\begin{equation*}
\boldsymbol{A}^0 = \boldsymbol{I},
\end{equation*}
where
\(\boldsymbol{I} \) denotes the identity matrix (
1.1.5 ).
Subsubsection 1.5.1 Product of two powers
The following holds for any square matrix \(\boldsymbol{A}_{n \times n} \) and integers \(p \) and \(q\text{,}\)
\begin{equation*}
\boldsymbol{A}^p \cdot \boldsymbol{A}^q = \boldsymbol{A}^{p+q}.
\end{equation*}
Example 1.5.29 . Product of two powers of matrices.
Consider the matrix,
\begin{equation*}
\boldsymbol{A} = \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right].
\end{equation*}
Calculate \(\boldsymbol{A}^2 \)
\begin{equation*}
\boldsymbol{A}^2 = \boldsymbol{A} \cdot \boldsymbol{A} = \left[ \begin{array}{cc}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] = \left[ \begin{array}{rr}
0 \amp -1 \\
1 \amp -1 \\
\end{array} \right].
\end{equation*}
Calculate \(\boldsymbol{A}^3 \)
\begin{equation*}
\begin{array}{ccl}
\boldsymbol{A}^3 = \boldsymbol{A} \cdot \boldsymbol{A} \cdot \boldsymbol{A}
\amp = \amp
\underbrace{\left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right]} \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] \\
\amp = \amp
\hspace{1.cm} \underbrace{\left[ \begin{array}{rr}
0 \amp -1 \\
1 \amp -1 \\
\end{array} \right] \hspace{1.1cm} \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right]} \\
\amp = \amp
\hspace{2.2cm} \left[ \begin{array}{rr}
-1 \amp 0 \\
0 \amp -1 \\
\end{array} \right]
\end{array}
\end{equation*}
Calculate \(\boldsymbol{A}^5 \)
\begin{equation*}
\begin{array}{ccl}
\boldsymbol{A}^5 = \boldsymbol{A} \cdot \boldsymbol{A} \cdot \boldsymbol{A}\cdot \boldsymbol{A} \cdot \boldsymbol{A}
\amp =\amp
\underbrace{\left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right]} \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] \\
\amp = \amp
\hspace{1.cm} \underbrace{\left[ \begin{array}{rr}
0 \amp -1 \\
1 \amp -1 \\
\end{array} \right] \hspace{1.1cm} \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right]} \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right] \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right]\\
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{ccl}
\hspace{4.7cm} \amp = \amp
\hspace{2.4cm} \underbrace{\left[ \begin{array}{rr}
-1 \amp 0 \\
0 \amp -1 \\
\end{array} \right]
\hspace{1.5cm} \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right]} \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right]\\
\amp = \amp
\hspace{4.4cm} \underbrace{\left[ \begin{array}{rr}
-1 \amp 1 \\
-1 \amp 0 \\
\end{array} \right]\hspace{2cm} \cdot \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right]}\\
\amp = \amp
\hspace{6.4cm} \left[ \begin{array}{rr}
0 \amp 1 \\
-1 \amp 1 \\
\end{array} \right]
\end{array}
\end{equation*}
Alternatively, instead of multiplying \(\boldsymbol{A} \) 5-times, we can use \(\boldsymbol{A}^2 \) and \(\boldsymbol{A}^3 \) to find \(\boldsymbol{A}^5 \text{,}\)
\begin{equation*}
\begin{array}{ccl}
\boldsymbol{A}^5 = \boldsymbol{A}^2 \cdot \boldsymbol{A}^3
\amp = \amp
\underbrace{\left[ \begin{array}{rr}
0 \amp -1 \\
1 \amp -1 \\
\end{array} \right] \cdot
\left[ \begin{array}{rr}
-1 \amp 0 \\
0 \amp -1 \\
\end{array} \right]}\\
\amp = \amp
\hspace{1.3cm} \left[ \begin{array}{rr}
0 \amp 1 \\
-1 \amp 1 \\
\end{array} \right].
\end{array}
\end{equation*}
Subsubsection 1.5.2 Power of a power
The following holds for any square matrix \(\boldsymbol{A}_{n \times n} \) and integers \(p \) and \(q\text{,}\)
\begin{equation*}
\left(\boldsymbol{A}^p\right)^q = \boldsymbol{A}^{p \cdot q}.
\end{equation*}
Example 1.5.31 . Product of two powers of matrices.
Consider the matrix,
\begin{equation*}
\boldsymbol{A} = \left[ \begin{array}{rr}
1 \amp -1 \\
1 \amp 0 \\
\end{array} \right].
\end{equation*}
Find \(\boldsymbol{A}^{10}. \)
From the previous example we know that
\begin{equation*}
\boldsymbol{A}^5 =
\left[ \begin{array}{rr}
0 \amp 1 \\
-1 \amp 1 \\
\end{array} \right].
\end{equation*}
We can use this and \(\boldsymbol{A}^{10} = \left(\boldsymbol{A}^5\right)^2 \) to get our solution:
\begin{equation*}
\begin{array}{ccc}
\boldsymbol{A}^{10} = \boldsymbol{A}^5 \cdot \boldsymbol{A}^5
\amp = \amp
\left[ \begin{array}{rr}
0 \amp 1 \\
-1 \amp 1 \\
\end{array} \right] \cdot \left[ \begin{array}{rr}
0 \amp 1 \\
-1 \amp 1 \\
\end{array} \right]\\
\amp = \amp
\left[ \begin{array}{rr}
-1 \amp 1 \\
-1 \amp 0 \\
\end{array} \right].
\end{array}
\end{equation*}
Checkpoint 1.5.32 . Find the power of a matrix.
Activate
Find \(\boldsymbol{A}^6\) where
\begin{equation*}
\boldsymbol{A} = \left[ \begin{array}{cc}
{3} \amp 0 \\
{-1} \amp {1}
\end{array}\right].
\end{equation*}
\(\,\)
\(\lceil\)
\(\rceil\)
\(\boldsymbol{A}^6 =\)
\(\lfloor\)
\(\rfloor\)
\(\,\)
\(\,\)
\(\,\)
\(\,\)
Answer 1 .
Answer 2 .
Answer 3 .
Answer 4 .
Solution .
\begin{equation*}
\boldsymbol{A}^6 = \boldsymbol{A}^3 \cdot \boldsymbol{A}^3 =\left[ \begin{array}{cc}
{27} \amp {0} \\
{-13} \amp {1}
\end{array}\right] \cdot \left[ \begin{array}{cc}
{27} \amp {0} \\
{-13} \amp {1}
\end{array}\right] = \left[ \begin{array}{ccc}
{729} \amp {0} \\
{-364} \amp {1}
\end{array}\right].
\end{equation*}