Assume that we have a system of equations represented as a matrix equation
\begin{equation*}
\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}.
\end{equation*}
Next, assume that we find an elimination matrix, \(\boldsymbol{E} \) such that,
\begin{equation*}
\boldsymbol{E} \cdot \boldsymbol{A} = \boldsymbol{I}.
\end{equation*}
Now, if we multiply both sides of the matrix equation by \(\boldsymbol{E} \) we obtain,
\begin{equation*}
\begin{array}{ccc}
\boldsymbol{A} \boldsymbol{x} \amp = \amp \boldsymbol{b}\\
\boldsymbol{E} \boldsymbol{A} \boldsymbol{x} \amp = \amp \boldsymbol{E}\boldsymbol{b}\\
\boldsymbol{I}\boldsymbol{x} \amp = \amp \boldsymbol{E}\boldsymbol{b}\\
\boldsymbol{x} \amp = \amp \boldsymbol{E}\boldsymbol{b}.\\
\end{array}
\end{equation*}
This implies that for this system of equations the solution can be found by multiplying the elimination matrix to the right-hand-side vector.
Consider the following system of equations,
\begin{equation*}
\begin{array}{lll}
\color{white}{2} \color{black} x_1 + 2x_2 - \color{white}{2} \color{black}x_3 \amp = \amp 4\\
\color{white}{1} \color{black} x_1 + 3x_2 \color{white}{- 2x_3} \color{black} \amp = \amp 5\\
2x_1 + 7x_2 + 2x_3 \amp = \amp 9\\
\end{array}
\end{equation*}
The matrix representation of the system is
\begin{equation*}
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \\
1 \amp 3 \amp 0 \\
2 \amp 7 \amp 2
\end{array}\right] \,
\left[ \begin{array}{c}
x_1 \\ x_2 \\x_3
\end{array}\right]
=\left[ \begin{array}{c}
4 \\ 5 \\ 9
\end{array}\right],
\end{equation*}
and augmented matrix,
\begin{equation*}
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
1 \amp 3 \amp 0 \amp 5\\
2 \amp 7 \amp 2 \amp 9
\end{array}\right]
\end{equation*}
We can find the elimination matrix for the augmented matrix as follows,
\begin{equation*}
\begin{array}{ccccc}
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
1 \amp 3 \amp 0 \amp 5\\
2 \amp 7 \amp 2 \amp 9
\end{array}\right]
\amp \hspace{0.5cm} R_2 \rightarrow R_2 - R_1 \hspace{0.5cm} \amp
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
0 \amp 1 \amp 1 \amp 1\\
2 \amp 7 \amp 2 \amp 9
\end{array}\right] \amp
\hspace{1cm} \boldsymbol{E}_1 \amp =
\left[ \begin{array}{rrr}
1 \amp 0 \amp 0\\
-1 \amp 1 \amp 0 \\
0 \amp 0 \amp 1
\end{array}\right] \\
\amp \amp \\
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{ccccc}
\color{white}{\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
1 \amp 3 \amp 0 \amp 5\\
2 \amp 7 \amp 2 \amp 9
\end{array}\right] }
\amp \hspace{0.5cm} R_3 \rightarrow R_3 - 2R_1 \hspace{0.5cm} \amp
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
0 \amp 1 \amp 1 \amp 1\\
0 \amp 3 \amp 4 \amp 1
\end{array}\right] \amp
\hspace{1cm} \boldsymbol{E}_2 \amp =
\left[ \begin{array}{rrr}
1 \amp 0 \amp 0\\
0 \amp 1 \amp 0 \\
-2 \amp 0 \amp 1
\end{array}\right] \\
\amp \amp \\
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{ccccc}
\color{white}{
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
1 \amp 3 \amp 0 \amp 5\\
2 \amp 7 \amp 2 \amp 9
\end{array}\right] }
\amp \hspace{0.5cm} R_3 \rightarrow R_1 - 2R_2 \hspace{0.5cm} \amp
\left[ \begin{array}{rrrr}
1 \amp 0 \amp -3 \amp 2\\
0 \amp 1 \amp 1 \amp 1\\
0 \amp 3 \amp 4 \amp 1
\end{array}\right] \amp
\hspace{1cm} \boldsymbol{E}_3 \amp =
\left[ \begin{array}{rrr}
1 \amp -2 \amp 0\\
0 \amp 1 \amp 0 \\
0 \amp 0\amp 1
\end{array}\right] \\
\amp \amp \\
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{ccccc}
\color{white}{
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
1 \amp 3 \amp 0 \amp 5\\
2 \amp 7 \amp 2 \amp 9
\end{array}\right] }
\amp \hspace{0.5cm} R_3 \rightarrow R_3 - 3R_2 \hspace{0.5cm} \amp
\left[ \begin{array}{rrrr}
1 \amp 0 \amp -3 \amp 2\\
0 \amp 1 \amp 1 \amp 1\\
0 \amp 0 \amp 1 \amp -2
\end{array}\right] \amp
\hspace{1cm} \boldsymbol{E}_4 \amp =
\left[ \begin{array}{rrr}
1 \amp 0 \amp 0\\
0 \amp 1 \amp 0 \\
0 \amp -3 \amp 1
\end{array}\right] \\
\amp \amp \\
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{ccccc}
\color{white}{
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
1 \amp 3 \amp 0 \amp 5\\
2 \amp 7 \amp 2 \amp 9
\end{array}\right] }
\amp \hspace{0.5cm} R_1 \rightarrow R_1 + 3R_3 \hspace{0.5cm} \amp
\left[ \begin{array}{rrrr}
1 \amp 0 \amp 0 \amp -4\\
0 \amp 1 \amp 1 \amp 1\\
0 \amp 0 \amp 1 \amp -2
\end{array}\right] \amp
\hspace{1cm} \boldsymbol{E}_5 \amp =
\left[ \begin{array}{rrr}
1 \amp 0 \amp 3\\
0 \amp 1 \amp 0 \\
0 \amp 0 \amp 1
\end{array}\right] \\
\amp \amp \\
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{ccccc}
\color{white}{
\left[ \begin{array}{rrrr}
1 \amp 2 \amp -1 \amp 4\\
1 \amp 3 \amp 0 \amp 5\\
2 \amp 7 \amp 2 \amp 9
\end{array}\right] }
\amp \hspace{0.5cm} R_2 \rightarrow R_2 - R_3 \hspace{0.5cm} \amp
\left[ \begin{array}{rrrr}
1 \amp 0 \amp 0 \amp -4\\
0 \amp 1 \amp 0 \amp 3\\
0 \amp 0 \amp 1 \amp -2
\end{array}\right] \amp
\hspace{1cm} \boldsymbol{E}_6 \amp =
\left[ \begin{array}{rrr}
1 \amp 0 \amp 0\\
0 \amp 1 \amp -1 \\
0 \amp 0 \amp 1
\end{array}\right] \\
\amp \amp \\
\end{array}
\end{equation*}
The resulting elimination matrix is
\begin{equation*}
\begin{array}{ccc}
\boldsymbol{E} \amp = \amp \boldsymbol{E}_6 \cdot \boldsymbol{E}_5 \cdot \boldsymbol{E}_4 \cdot \boldsymbol{E}_3 \cdot \boldsymbol{E}_2 \cdot \boldsymbol{E}_1\\
\amp \amp\\
\amp = \amp\left[ \begin{array}{rrr}
6 \amp -11 \amp 3\\
-2 \amp 4 \amp -1 \\
1 \amp -3 \amp 1
\end{array}\right]
\end{array}
\end{equation*}