Skip to main content

Subsection 3.2 Elementary matrices

Definition 3.2.56. Elementary matrices.

A elementary matrix, denoted by Ei, derives from applying one elementary row operation to the identity matrix of the same size.
Below is a list of elementary row operations and their corresponding elementary matrix.
  • R1β†’12R1E=[1200010001].
  • R2β†’R2βˆ’R1E=[100βˆ’110001].
  • R3β†’R3+2R2E=[1000010002100001].
  • R2↔R4E=P24=[1000000100100100].

Subsubsection 3.2.1 Using elementary matrices

Let A be a mΓ—n matrix and let E be an mΓ—m elementary matrix. The matrix multiplication EA is the matrix that results when the same row operation is performed on A as that performed to produce the elementary matrix E.
Let
A=[25102βˆ’5121105],B=[11052βˆ’5122510],C=[11050βˆ’1022510].
  1. Find the elementary matrix E1 such that E1A=B.
    B results from interchanging rows 1 and 3 on A, then the elementary matrix is
    E1=[001010100].
    so that
    E1A=[001010100][25102βˆ’5121105]=[11052βˆ’5122510].
  2. Find the elementary matrix E2 such that E2B=C.
    C results from the row operation R2β†’R2βˆ’R3 applied to B, then the elementary matrix is
    E2=[10001βˆ’1001].
    so that
    E2B=[10001βˆ’1001][11052βˆ’5122510]=[11050βˆ’1022510].

Subsubsection 3.2.2 Row reduction with elementary matrices

The row reduction of a matrix A to row-echelon form can be obtained by successive multiplication on the left by elementary matrices,
AREF=ErErβˆ’1β‹―E3E2E1A.
We denote the product of all elementary matrices as the elimination matrix, E,
E=ErErβˆ’1β‹―E3E2E1β‡’AREF=EA.
Let
A=[25102βˆ’5121105],B=[11052βˆ’5122510],C=[11050βˆ’1022510].
Find the elementary matrix E3 such that E3A=C.
From the previous example we have
B=E1A,withE1=[001010100].
And C from B as,
C=E2B,withE2=[10001βˆ’1001].
This implies that one can obtain C from A as
C=E2B=E2(E1A)=E2E1A=[10001βˆ’1001][001010100][25102βˆ’5121105]=[001βˆ’110100][25102βˆ’5121105]=[11050βˆ’1022510]
Find ARREF where
A=[25102βˆ’5121105].
We will take matrices E1 and E2 from the previous example, so that, so far, our elimination matrix is
E=E2E1=[001βˆ’110100],
and the current matrix to be reduced is
[11050βˆ’1022510],
we continue with the reduction:
[11050βˆ’1022510]R3β†’R3βˆ’2R1[11050βˆ’1020βˆ’150],E3=[100010βˆ’201]E=E3E2E1=[100010βˆ’201][001βˆ’110100]=[001βˆ’11010βˆ’2]
[11050βˆ’10224βˆ’1]R1β†’R1+R2[1070βˆ’1020βˆ’150],E4=[110010001]E=E4E3E2E1=[110010001][001βˆ’11010βˆ’2]=[βˆ’111βˆ’11010βˆ’2]
[1850βˆ’10224βˆ’1]R2β†’βˆ’110R2[10701βˆ’150βˆ’150],E5=[1000βˆ’1100001]E=E5β‹―E1=[1000βˆ’1100001][βˆ’111βˆ’11010βˆ’2]=[βˆ’111110βˆ’110010βˆ’2]
[11050βˆ’10224βˆ’1]R3β†’R3+15R2[10701βˆ’1500βˆ’3],E6=[1000100151]E=E6β‹―E1=[1000100151][βˆ’111110βˆ’110010βˆ’2]=[βˆ’111110βˆ’110052βˆ’32βˆ’2]
[11050βˆ’10224βˆ’1]R3β†’βˆ’13R3[10701βˆ’15001],E7=[10001000βˆ’13]E=E7β‹―E1=[10001000βˆ’13][βˆ’111110βˆ’110052βˆ’32βˆ’2]=[βˆ’111110βˆ’1100βˆ’561223]
[11050βˆ’10224βˆ’1]R1β†’R1βˆ’7R3[10001βˆ’15001],E8=[10βˆ’7010001]E=E8β‹―E1=[10βˆ’7010001][βˆ’111110βˆ’1100βˆ’561223]=[296βˆ’52βˆ’113110βˆ’1100βˆ’561223]
[11050βˆ’10224βˆ’1]R2β†’R2+15R3[100010001],E9=[1000115001]E=E9β‹―E1=[1000115001][296βˆ’52βˆ’113110βˆ’1100βˆ’561223]=[296βˆ’52βˆ’113βˆ’1150215βˆ’561223]
We can verify the elimination matrix by performing the following operation
Eβ‹…A=[296βˆ’52βˆ’113βˆ’1150215βˆ’561223][25102βˆ’5121105]=[296β‹…2+βˆ’52β‹…2+βˆ’113β‹…1296β‹…5+βˆ’52β‹…(βˆ’5)+βˆ’113β‹…10296β‹…10+βˆ’52β‹…12+βˆ’113β‹…5βˆ’115β‹…2+0β‹…2+215β‹…1βˆ’115β‹…5+0β‹…(βˆ’5)+215β‹…10βˆ’115β‹…10+0β‹…12+215β‹…5βˆ’52β‹…2+12β‹…2+23β‹…1βˆ’52β‹…5+12β‹…(βˆ’5)+23β‹…10βˆ’52β‹…10+12β‹…12+23β‹…5]=[100010001]

Subsubsection 3.2.3 Solving systems of equations with elimination matrices

Assume that we have a system of equations represented as a matrix equation
Ax=b.
Next, assume that we find an elimination matrix, E such that,
Eβ‹…A=I.
Now, if we multiply both sides of the matrix equation by E we obtain,
Ax=bEAx=EbIx=Ebx=Eb.
This implies that for this system of equations the solution can be found by multiplying the elimination matrix to the right-hand-side vector.
Consider the following system of equations,
2x1+2x2βˆ’2x3=41x1+3x2βˆ’2x3=52x1+7x2+2x3=9
The matrix representation of the system is
[12βˆ’1130272][x1x2x3]=[459],
and augmented matrix,
[12βˆ’1413052729]
We can find the elimination matrix for the augmented matrix as follows,
[12βˆ’1413052729]R2β†’R2βˆ’R1[12βˆ’1401112729]E1=[100βˆ’110001]
[12βˆ’1413052729]R3β†’R3βˆ’2R1[12βˆ’1401110341]E2=[100010βˆ’201]
[12βˆ’1413052729]R3β†’R1βˆ’2R2[10βˆ’3201110341]E3=[1βˆ’20010001]
[12βˆ’1413052729]R3β†’R3βˆ’3R2[10βˆ’320111001βˆ’2]E4=[1000100βˆ’31]
[12βˆ’1413052729]R1β†’R1+3R3[100βˆ’40111001βˆ’2]E5=[103010001]
[12βˆ’1413052729]R2β†’R2βˆ’R3[100βˆ’40103001βˆ’2]E6=[10001βˆ’1001]
The resulting elimination matrix is
E=E6β‹…E5β‹…E4β‹…E3β‹…E2β‹…E1=[6βˆ’113βˆ’24βˆ’11βˆ’31]