π Definition 3.2.56. Elementary matrices. π πA elementary matrix, denoted by ,Ei, derives from applying one elementary row operation to the identity matrix of the same size.
Below is a list of elementary row operations and their corresponding elementary matrix. R1β12R1E=[1200010001]. R2βR2βR1E=[100β110001]. R3βR3+2R2E=[1000010002100001]. R2βR4E=P24=[1000000100100100].
Let A=[25102β5121105],B=[11052β5122510],C=[11050β1022510]. Find the elementary matrix E1 such that E1A=B. B results from interchanging rows 1 and 3 on ,A, then the elementary matrix is E1=[001010100]. so that E1A=[001010100][25102β5121105]=[11052β5122510]. Find the elementary matrix E2 such that E2B=C. C results from the row operation R2βR2βR3 applied to ,B, then the elementary matrix is E2=[10001β1001]. so that E2B=[10001β1001][11052β5122510]=[11050β1022510].
Let A=[25102β5121105],B=[11052β5122510],C=[11050β1022510]. Find the elementary matrix E3 such that E3A=C. From the previous example we have withB=E1A,withE1=[001010100]. And C from B as, withC=E2B,withE2=[10001β1001]. This implies that one can obtain C from A as C=E2B=E2(E1A)=E2E1A=[10001β1001][001010100][25102β5121105]=[001β110100][25102β5121105]=[11050β1022510]
Find RREFARREF where A=[25102β5121105]. We will take matrices E1 and E2 from the previous example, so that, so far, our elimination matrix is E=E2E1=[001β110100], and the current matrix to be reduced is [11050β1022510], we continue with the reduction: [11050β1022510]R3βR3β2R1[11050β1020β150],E3=[100010β201]E=E3E2E1=[100010β201][001β110100]=[001β11010β2] [11050β10224β1]R1βR1+R2[1070β1020β150],E4=[110010001]E=E4E3E2E1=[110010001][001β11010β2]=[β111β11010β2] [1850β10224β1]R2ββ110R2[10701β150β150],E5=[1000β1100001]E=E5β―E1=[1000β1100001][β111β11010β2]=[β111110β110010β2] [11050β10224β1]R3βR3+15R2[10701β1500β3],E6=[1000100151]E=E6β―E1=[1000100151][β111110β110010β2]=[β111110β110052β32β2] [11050β10224β1]R3ββ13R3[10701β15001],E7=[10001000β13]E=E7β―E1=[10001000β13][β111110β110052β32β2]=[β111110β1100β561223] [11050β10224β1]R1βR1β7R3[10001β15001],E8=[10β7010001]E=E8β―E1=[10β7010001][β111110β1100β561223]=[296β52β113110β1100β561223] [11050β10224β1]R2βR2+15R3[100010001],E9=[1000115001]E=E9β―E1=[1000115001][296β52β113110β1100β561223]=[296β52β113β1150215β561223] We can verify the elimination matrix by performing the following operation Eβ A=[296β52β113β1150215β561223][25102β5121105]=[296β 2+β52β 2+β113β 1296β 5+β52β (β5)+β113β 10296β 10+β52β 12+β113β 5β115β 2+0β 2+215β 1β115β 5+0β (β5)+215β 10β115β 10+0β 12+215β 5β52β 2+12β 2+23β 1β52β 5+12β (β5)+23β 10β52β 10+12β 12+23β 5]=[100010001]