Skip to main content\(\newcommand{\R}{\mathbb R}
\newcommand{\T}{\mathsf{T}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection 3.1 Permutation matrices
Definition 3.1.53. Permutation matrix.
A permutation matrix has the rows of the identity matrix, \(\boldsymbol{I}_n\) in any order.
Example 3.1.54. Some permutation matrices.
-
The simplest permutation matrix is the identity itself:
\begin{equation*}
\boldsymbol{I}_4 = \left[\begin{array}{rrrr}
1 \amp 0 \amp 0 \amp 0\\
0 \amp 1 \amp 0 \amp 0\\
0 \amp 0 \amp 1 \amp 0\\
0 \amp 0 \amp 0 \amp 1
\end{array}\right] =
\left[\begin{array}{rrrr}
1 \amp \amp \amp \\
\amp 1 \amp \amp \\
\amp \amp 1 \amp \\
\amp \amp \amp 1
\end{array}\right]
\end{equation*}
-
The permutation matrix obtained by interchanging rows 3 and 2 is,
\begin{equation*}
\boldsymbol{P}_{32} =
\left[\begin{array}{rrrr}
1 \amp \amp \amp \\
\amp \amp 1 \amp \\
\amp 1 \amp \amp \\
\amp \amp \amp 1
\end{array}\right]
\end{equation*}
-
Other permutation matrices are,
\begin{equation*}
\boldsymbol{P}_{12} =
\left[\begin{array}{rrrr}
\amp 1 \amp \amp \\
1\amp \amp \amp \\
\amp \amp 1\amp \\
\amp \amp \amp 1
\end{array}\right], \hspace{1cm}
\boldsymbol{P}_{43} = \left[\begin{array}{rrrr}
1 \amp \amp \amp \\
\amp 1\amp \amp \\
\amp \amp \amp1 \\
\amp \amp 1 \amp
\end{array}\right].
\end{equation*}