Skip to main content

Subsection 1.4 Non-properties of matrices

Insight 1.4.24. Equal product of two matrices.

\begin{equation*} \boldsymbol{A}\,\boldsymbol{B} = \boldsymbol{A}\,\boldsymbol{C} \text{ does not imply } \boldsymbol{B} = \boldsymbol{C}. \end{equation*}
Consider the following three matrices,
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{ccc} 1 \amp -1 \amp 1\\ 1 \amp 0 \amp 1\\ 2 \amp 1 \amp 2\\ \end{array} \right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{ccc} 1 \amp 2 \amp -1\\ 0 \amp 1 \amp 2\\ 1 \amp 1 \amp 1\\ \end{array} \right], \hspace{1cm} \boldsymbol{C} = \left[ \begin{array}{ccc} -1 \amp 3 \amp 1\\ 0 \amp 1 \amp 2\\ 3 \amp 0 \amp -1\\ \end{array} \right]. \end{equation*}
\begin{equation*} \boldsymbol{A} \cdot \boldsymbol{B} = \left[ \begin{array}{ccc} 2 \amp 2 \amp -2\\ 2 \amp 3 \amp 0\\ 4 \amp 7 \amp 2\\ \end{array} \right], \end{equation*}
and
\begin{equation*} \boldsymbol{A} \cdot \boldsymbol{C} = \left[ \begin{array}{ccc} 2 \amp 2 \amp -2\\ 2 \amp 3 \amp 0\\ 4 \amp 7 \amp 2\\ \end{array} \right]. \end{equation*}
However, \(\boldsymbol{B} \ne \boldsymbol{C}. \)

Insight 1.4.26. Product of two matrices equal to zero.

\begin{equation*} \boldsymbol{A}\,\boldsymbol{B} = \boldsymbol{0} \text{ does not imply } \boldsymbol{A} = \boldsymbol{0} \text{ or } \boldsymbol{B} = \boldsymbol{0}. \end{equation*}
Consider the following two matrices,
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{ccc} 0 \amp 0 \amp 0\\ 1 \amp 2 \amp -\frac{1}{2}\\ -2 \amp -4 \amp 1\\ \end{array} \right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{ccc} \frac{1}{2} \amp 1 \amp 0\\ 0 \amp 0 \amp \frac{1}{4}\\ 1 \amp 2 \amp 1\\ \end{array} \right]. \end{equation*}
\begin{equation*} \boldsymbol{A} \cdot \boldsymbol{B} = \left[ \begin{array}{ccc} 0 \amp 0 \amp 0\\ 0 \amp 0 \amp 0\\ 0 \amp 0 \amp 0\\ \end{array} \right]. \end{equation*}
However, neither \(\boldsymbol{A} \) nor \(\boldsymbol{B} \) are the zero matrix.