ELLIPTIC_INTEGRAL
Elliptic Integrals
ELLIPTIC_INTEGRAL,
a MATLAB library which
evaluates elliptic integral functions using Carlson's elliptic
functions.
The complete and incomplete elliptic functions of the first, second and
third kind can be evaluated, with parameters A (angle in degrees),
K (sine of A) or M (the modulus, K^2).
The Jacobi elliptic functions CN(U,M), DN(U,M) and SN(U,M) can be
evaluated.
Licensing:
The computer code and data files made available on this web page
are distributed under
the GNU LGPL license.
Languages:
ELLIPTIC_INTEGRAL is available in
a C version and
a C++ version and
a FORTRAN77 version and
a FORTRAN90 version and
a MATLAB version and
a Python version.
Related Data and Programs:
elliptic_integral_test
TEST_VALUES,
a MATLAB library which
supplies test values of various mathematical functions.
TOMS577,
a MATLAB library which
evaluates Carlson's elliptic integral functions RC, RD, RF and RJ.
This is a version of ACM TOMS algorithm 577;
Reference:
-
Roland Bulirsch,,
Numerical calculation of elliptic integrals and elliptic functions,,
Numerische Mathematik,,
Volume 7, Number 1, 1965, pages 78-90.
-
Bille Carlson,
Computing Elliptic Integrals by Duplication,
Numerische Mathematik,
Volume 33, 1979, pages 1-16.
-
Bille Carlson, Elaine Notis,
Algorithm 577, Algorithms for Incomplete Elliptic Integrals,
ACM Transactions on Mathematical Software,
Volume 7, Number 3, pages 398-403, September 1981.
Source Code:
-
elliptic_ea.m
evaluates the complete elliptic integral E(A).
-
elliptic_ea_values.m
returns values of the complete elliptic integral E(A).
-
elliptic_ek.m
evaluates the complete elliptic integral E(K).
-
elliptic_ek_values.m
returns values of the complete elliptic integral E(K).
-
elliptic_em.m
evaluates the complete elliptic integral E(M).
-
elliptic_em_values.m
returns values of the complete elliptic integral E(M).
-
elliptic_fa.m
evaluates the complete elliptic integral F(A).
-
elliptic_fa_values.m
returns values of the complete elliptic integral F(A).
-
elliptic_fk.m
evaluates the complete elliptic integral F(K).
-
elliptic_fk_values.m
returns values of the complete elliptic integral F(K).
-
elliptic_fm.m
evaluates the complete elliptic integral F(M).
-
elliptic_fm_values.m
returns values of the complete elliptic integral F(M).
-
elliptic_inc_ea.m
evaluates the incomplete elliptic integral E(PHI,A).
-
elliptic_inc_ek.m
evaluates the incomplete elliptic integral E(PHI,K).
-
elliptic_inc_em.m
evaluates the incomplete elliptic integral E(PHI,M).
-
elliptic_inc_fa.m
evaluates the incomplete elliptic integral F(PHI,A).
-
elliptic_inc_fk.m
evaluates the incomplete elliptic integral F(PHI,K).
-
elliptic_inc_fm.m
evaluates the incomplete elliptic integral F(PHI,M).
-
elliptic_inc_pia.m
evaluates the incomplete elliptic integral Pi(PHI,N,A).
-
elliptic_inc_pik.m
evaluates the incomplete elliptic integral Pi(PHI,N,K).
-
elliptic_inc_pim.m
evaluates the incomplete elliptic integral Pi(PHI,N,M).
-
elliptic_pia.m
evaluates the complete elliptic integral Pi(N,A).
-
elliptic_pia_values.m
returns values of the complete elliptic integral Pi(N,A).
-
elliptic_pik.m
evaluates the complete elliptic integral Pi(N,K).
-
elliptic_pik_values.m
returns values of the complete elliptic integral Pi(N,K).
-
elliptic_pim.m
evaluates the complete elliptic integral Pi(N,M).
-
elliptic_pim_values.m
returns values of the complete elliptic integral Pi(N,M).
-
jacobi_cn.m
evaluates the Jacobi elliptic function CN(U,M).
-
jacobi_cn_values.m
returns some values of the Jacobi elliptic function CN(U,M).
-
jacobi_dn.m
evaluates the Jacobi elliptic function DN(U,M).
-
jacobi_dn_values.m
returns some values of the Jacobi elliptic function DN(U,M).
-
jacobi_sn.m
evaluates the Jacobi elliptic function SN(U,M).
-
jacobi_sn_values.m
returns some values of the Jacobi elliptic function SN(U,M).
-
rc.m
computes the elementary integral RC(X,Y).
-
rd.m
computes an incomplete elliptic integral of the second kind, RD(X,Y,Z).
-
rf.m
computes an incomplete elliptic integral of the first kind, RF(X,Y,Z).
-
rj.m
computes an incomplete elliptic integral of the third kind, RJ(X,Y,Z,P).
-
sncndn.m
evaluates the Jacobi elliptic functions SN(U,M), CN(U,M) and DN(U,M).
-
timestamp.m,
prints the YMDHMS date as a timestamp.
Last revised on 09 January 2019.