ELLIPTIC_INTEGRAL 
 Elliptic Integrals
    
    
    
      ELLIPTIC_INTEGRAL,
      a C++ library which
      evaluates elliptic integral functions using Carlson's elliptic
      functions.
    
    
      The complete and incomplete elliptic integrals of the first, second and 
      third kind can be evaluated, with parameters A (angle in degrees), 
      K (sine of A) or M (the modulus, K^2).
    
    
      Routines are also supplied to evaluate Jacobi's elliptic functions CN,
      DN and SN.
    
    
      Languages:
    
    
      ELLIPTIC_INTEGRAL is available in
      a C version and
      a C++ version and
      a FORTRAN77 version and
      a FORTRAN90 version and
      a MATLAB version and
      a Python version.
    
    
      Related Data and Programs:
    
    
      
      TEST_VALUES,
      a C++ library which
      supplies test values of various mathematical functions.
    
    
      
      TOMS577,
      a C++ library which
      evaluates Carlson's elliptic integral functions RC, RD, RF and RJ.
      This is a version of ACM TOMS algorithm 577;
    
    
      Reference:
    
    
      
        - 
          Bille Carlson,
          Computing Elliptic Integrals by Duplication,
          Numerische Mathematik,
          Volume 33, 1979, pages 1-16.
         
        - 
          Bille Carlson, Elaine Notis,
          Algorithm 577, Algorithms for Incomplete Elliptic Integrals,
          ACM Transactions on Mathematical Software,
          Volume 7, Number 3, pages 398-403, September 1981.
         
      
    
    
      Source Code:
    
    
      
    
    
      Examples and Tests:
    
    
      
    
    
      List of Routines:
    
    
      
        - 
          ELLIPTIC_EA evaluates the complete elliptic integral E(A).
        
 
        - 
          ELLIPTIC_EA_VALUES: values of the complete elliptic integral E(ALPHA).
        
 
        - 
          ELLIPTIC_EK evaluates the complete elliptic integral E(K).
        
 
        - 
          ELLIPTIC_EK_VALUES returns values of the complete elliptic integral E(K).
        
 
        - 
          ELLIPTIC_EM evaluates the complete elliptic integral E(M).
        
 
        - 
          ELLIPTIC_EM_VALUES returns values of the complete elliptic integral E(M).
        
 
        - 
          ELLIPTIC_FA evaluates the complete elliptic integral F(A).
        
 
        - 
          ELLIPTIC_FA_VALUES: values of the complete elliptic integral F(ALPHA).
        
 
        - 
          ELLIPTIC_FK evaluates the complete elliptic integral F(K).
        
 
        - 
          ELLIPTIC_FK_VALUES returns values of the complete elliptic integral F(K).
        
 
        - 
          ELLIPTIC_FM evaluates the complete elliptic integral F(M).
        
 
        - 
          ELLIPTIC_FM_VALUES returns values of the complete elliptic integral F(M).
        
 
        - 
          ELLIPTIC_PIA evaluates the complete elliptic integral Pi(N,A).
        
 
        - 
          ELLIPTIC_PIA_VALUES returns values of the complete elliptic integral Pi(N,A).
        
 
        - 
          ELLIPTIC_PIK evaluates the complete elliptic integral Pi(N,K).
        
 
        - 
          ELLIPTIC_PIK_VALUES returns values of the complete elliptic integral Pi(N,K).
        
 
        - 
          ELLIPTIC_PIM evaluates the complete elliptic integral Pi(N,M).
        
 
        - 
          ELLIPTIC_PIM_VALUES returns values of the complete elliptic integral Pi(N,M).
        
 
        - 
          RC computes the elementary integral RC(X,Y).
        
 
        - 
          RD computes an incomplete elliptic integral of the second kind, RD(X,Y,Z).
        
 
        - 
          RF computes an incomplete elliptic integral of the first kind, RF(X,Y,Z).
        
 
        - 
          RJ computes an incomplete elliptic integral of the third kind, RJ(X,Y,Z,P).
        
 
        - 
          TIMESTAMP prints out the current YMDHMS date as a timestamp.
        
 
      
    
    
      You can go up one level to 
      the C++ source codes.
    
    
    
      Last revised on 03 June 2018.