DUEL_SIMULATION
Simulation of a Duel


DUEL_SIMULATION is a MATLAB program which simulates N instances of a duel between two players.

Player 1 fires at player 2, and hits with a probability of P(1). If Player 1 misses, then Player 2 fires at Player 1, hitting with a probability of P(2).

The duel continues with alternating shots until only one player survives.

The simulation is intended to estimate the probabilities that a player will survive, and the number of turns required.

The exact probability that player 1 will survive is

P(1) / ( P(1) + P(2) - P(1) * P(2) )
while player 2's chance is
P(2) * ( 1 - P(1) ) / ( P(1) + P(2) - P(1) * P(2) ).

Usage:

[ s, turn_average ] = duel_simulation ( p, duel_num )
where

Licensing:

The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.

Languages:

DUEL_SIMULATION is available in a C version and a C++ version and a FORTRAN90 version and a MATLAB version and a Python version.

Related Data and Programs:

BROWNIAN_MOTION_SIMULATION, a MATLAB program which simulates Brownian motion in an M-dimensional region.

COIN_SIMULATION, a MATLAB library which looks at ways of simulating or visualizing the results of many tosses of a fair or biased coin.

DICE_SIMULATION, a MATLAB program which simulates N tosses of M dice, making a histogram of the results.

duel_simulation_test

FAIR_DICE_SIMULATION, a MATLAB program which simulates N tosses of 2 dice, making a histogram of the results.

GAMBLERS_RUIN_SIMULATION, a MATLAB program which simulates the game of gambler's ruin.

HIGH_CARD_SIMULATION, a MATLAB program which simulates a situation in which you see the cards in a deck one by one, and must select the one you think is the highest and stop.

ISING_2D_SIMULATION, a MATLAB program which carries out a Monte Carlo simulation of an Ising model, a 2D array of positive and negative charges, each of which is likely to "flip" to be in agreement with neighbors.

LIGHTS_OUT, a MATLAB program which sets up the "Lights Out" game and allows a user to try to solve it.

LORENZ_SIMULATION, a MATLAB program which solves the Lorenz equations and displays the solution, for various starting conditions.

POISSON_SIMULATION, a MATLAB library which simulates a Poisson process in which events randomly occur with an average waiting time of Lambda.

RANDOM_WALK_1D_SIMULATION, a MATLAB program which simulates a random walk in a 1-dimensional region.

RANDOM_WALK_2D_AVOID_SIMULATION, a MATLAB program which simulates a self-avoiding random walk in a 2-dimensional region.

RANDOM_WALK_2D_SIMULATION, a MATLAB program which simulates a random walk in a 2-dimensional region.

RANDOM_WALK_3D_SIMULATION, a MATLAB program which simulates a random walk in a 3-dimensional region.

REACTOR_SIMULATION, a MATLAB program which a simple Monte Carlo simulation of the shielding effect of a slab of a certain thickness in front of a neutron source. This program was provided as an example with the book "Numerical Methods and Software."

ROULETTE_SIMULATION, a MATLAB program which simulates the spinning of a roulette wheel and the evaluation of certain common roulette bets.

SIR_SIMULATION, a MATLAB program which simulates the spread of a disease through a hospital room of M by N beds, using the SIR (Susceptible/Infected/Recovered) model.

SNAKES_AND_LADDERS, MATLAB programs which simulate the game of Snakes and Ladders.

THREE_BODY_SIMULATION, a MATLAB program which simulates the behavior of three planets, constrained to lie in a plane, and moving under the influence of gravity, by Walter Gander and Jiri Hrebicek.

TRAFFIC_SIMULATION, a MATLAB program which simulates the cars waiting to get through a traffic light.

TRUEL_SIMULATION, a MATLAB program which simulates N repetitions of a duel between three players, each of whom has a known firing accuracy.

XISING, a C program which models the variations in ferromagnetism in a material, displaying the results using X Windows.

XWAVES, a C program which simulates the behavior of solutions of certain forms of the wave equation, displaying the results using X Windows.

Reference:

  1. Paul Nahin,
    Duelling Idiots and Other Probability Puzzlers,
    Princeton University Press, 2000,
    ISBN13: 978-0691009797,
    LC: QA273.N29.
  2. Martin Shubik,
    "Does the Fittest Necessarily Survive?",
    in Readings in Game Theory and Political Behavior,
    edited by Martin Shubik,
    Doubleday, 1954,
    LC: H61.S53.

Source Code:


Last revised on 08 January 2019.