TOMS723
Fresnel Integrals
TOMS723
is a FORTRAN77 library which
computes the Fresnel sine and cosine integrals,
by W van Snyder.
C(x) = integral ( 0 < t < x ) cos ( t^2 ) dt
S(x) = integral ( 0 < t < x ) sin ( t^2 ) dt
An alternate definition, used in Abramowitz and Stegun and
the NIST Mathematical Handbook, is:
C*(x) = integral ( 0 < t < x ) cos ( pi/2 * t^2 ) dt
S*(x) = integral ( 0 < t < x ) sin ( pi/2 * t^2 ) dt
Languages:
TOMS723 is available in
a FORTRAN77 version.
Related Data and Programs:
Reference:
-
W van Snyder,
Algorithm 723: Fresnel Integrals,
ACM Transactions on Mathematical Software,
Volume 19, Number 4, December 1993, pages 452-456.
Source Code:
Examples and Tests:
List of Routines:
-
AMACH provides machine constants.
-
I1MACH provides integer machine constants.
-
R1MACH provides single precision machine constants.
-
D1MACH provides double precision machine constants.
-
AMTEST ???
-
AMSUB1 returns the value of TEST1 - 1.
-
DCOSPX evaluates cos(pi*x).
-
DCSPXX carefully evaluates cos(pi*x*x/2).
-
DERM1 ???
-
DERV1 ???
-
DFRENC evaluates the Fresnel cosine integral.
-
DFRENF evaluates the auxilliary f function.
-
DFRENG evaluates the auxilliary g function.
-
DFRENS evaluates the Fresnel sine integral.
-
DFREN1 computes a Fresnel integral or auxilliary function.
-
DSINPX evaluates sin(pi*x).
-
DSNPXX carefully evaluates sin(pi*x*x/2).
-
ERFIN is the final function called when an error is encountered.
-
ERMSG prints an error message.
-
ERMSET ???
-
ERLSET ???
-
ERLGET ???
You can go up one level to
the FORTRAN77 source codes.
Last revised on 15 November 2015.