Section 1.1 Matrix Transpose and Symmetric Matrices
Objectives
- Find the transpose of a matrix and understand the properties of matrix transposes.
- Identify symmetric matrices.
- Find the trace of a squate matrix and understand properties of traces
\(\, \)
\(\Large{\textbf{Section Content}} \)
\(\, \)
Subsection 1.1.1 The Transpose of a matrix
Definition 1.1.1. Transpose.
The transpose of a matrix \(\boldsymbol{A}, \) denoted \(\boldsymbol{A}^{\mathsf{T}}\text{,}\) is the matrix whose columns are the rows of the given matrix \(\boldsymbol{A}.\)
Example 1.1.2. Find the transpose of a matrix.
Find the transpose of the matrix,
The transpose is
Checkpoint 1.1.3. Matrix transpose.
Find the transpose of the given matrix.
\(\lceil\) | \(\rceil\) | |||
\(\boldsymbol{A}^{\mathsf{T}}=\) | \(\vert\) | \(\vert\) | ||
\(\lfloor\) | \(\rfloor\) |
\(-7\)
\(8\)
\(5\)
\(7\)
\(-6\)
\(-2\)
Subsubsection 1.1.1.1 Properties of matrix transposes
-
Transpose of a sum.
The transpose of a sum is equal to the sum of the tranposes.
\begin{equation*} \left(\boldsymbol{A} + \boldsymbol{B}\right)^{\mathsf{T}} = \boldsymbol{A}^{\mathsf{T}} + \boldsymbol{B}^{\mathsf{T}} \end{equation*}\(\,\)
Example 1.1.4. Finding the transpose of a sum of two matrices.
Find \(\left(\boldsymbol{A} + \boldsymbol{B} \right)^{\mathsf{T}} \) both by find the sum first and then the transpose and by finding the individual transposes first.
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rrrr} 1 \amp 3 \amp -1 \amp 0\\ 2 \amp 5 \amp -1 \amp -2 \end{array}\right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{rrrr} 1 \amp 0 \amp -3 \amp 1\\ 0 \amp 3 \amp 2 \amp 0 \end{array}\right]. \end{equation*}\(\)
-
Finding sum first
\begin{equation*} \begin{array}{ccc} \boldsymbol{A} + \boldsymbol{B} \amp =\amp \left[ \begin{array}{rrrr} 1 \amp 3 \amp -1 \amp 0\\ 2 \amp 5 \amp -1 \amp -2 \end{array}\right] + \left[ \begin{array}{rrrr} 1 \amp 0 \amp -3 \amp 1\\ 0 \amp 3 \amp 2 \amp 0 \end{array}\right]\\ \amp = \amp \left[ \begin{array}{rrrr} 2 \amp 3 \amp -4 \amp 1\\ 2 \amp 8 \amp 1 \amp -2 \end{array}\right]\\ \end{array} \end{equation*}\begin{equation*} \begin{array}{ccc} \left( \boldsymbol{A} + \boldsymbol{B}\right)^{\mathsf{T}} \amp = \amp \left(\left[ \begin{array}{rrrr} 2 \amp 3 \amp -4 \amp 1\\ 2 \amp 8 \amp 1 \amp -2 \end{array}\right]\right)^{\mathsf{T}}\\ \amp = \amp \left[ \begin{array}{rr} 2 \amp 2\\ 3 \amp 8\\ -4 \amp 1\\ 1 \amp -2 \end{array}\right].\\ \end{array} \end{equation*} -
Finding transposes first
\begin{equation*} \begin{array}{ccc} \boldsymbol{A}^{\mathsf{T}} \amp =\amp \left(\left[ \begin{array}{rrrr} 1 \amp 3 \amp -1 \amp 0\\ 2 \amp 5 \amp -1 \amp -2 \end{array}\right]\right)^{\mathsf{T}} \\ \amp = \amp \left[ \begin{array}{rr} 1 \amp 2\\ 3 \amp 5\\ -1 \amp -1\\ 0 \amp -2 \end{array}\right]\\ \end{array} \end{equation*}\begin{equation*} \begin{array}{ccc} \boldsymbol{B}^{\mathsf{T}} \amp =\amp \left( \left[ \begin{array}{rrrr} 1 \amp 0 \amp -3 \amp 1\\ 0 \amp 3 \amp 2 \amp 0 \end{array}\right]\right)^{\mathsf{T}} \\ \amp = \amp \left[ \begin{array}{rr} 1 \amp 0\\ 0 \amp 3\\ -3 \amp 2\\ 1 \amp 0 \end{array}\right]\\ \end{array} \end{equation*}\begin{equation*} \begin{array}{ccc} \left( \boldsymbol{A} + \boldsymbol{B}\right)^{\mathsf{T}} \amp = \amp \boldsymbol{A}^{\mathsf{T}} + \boldsymbol{B}^{\mathsf{T}} \\ \amp = \amp \left[ \begin{array}{rr} 1 \amp 2\\ 3 \amp 5\\ -1 \amp -1\\ 0 \amp -2 \end{array}\right] + \left[ \begin{array}{rr} 1 \amp 0\\ 0 \amp 3\\ -3 \amp 2\\ 1 \amp 0 \end{array}\right]\\ \amp = \amp \left[ \begin{array}{rr} 2 \amp 2\\ 3 \amp 8\\ -4 \amp 1\\ 1 \amp -2 \end{array}\right]. \end{array} \end{equation*}
\(\,\)
-
-
Transpose of a matrix - scalar product.
The transpose of the product between a matrix and a scalar is equal to the product between the scalar and the transpose of the matrix.
\begin{equation*} \left(c \boldsymbol{A} \right)^{\mathsf{T}} = c\,\boldsymbol{A}^{\mathsf{T}} \end{equation*}\(\,\)
Example 1.1.5. Finding the transpose of a matrix - scalar product.
Find \(\left(3\, \boldsymbol{A}\right)^{\mathsf{T}} \) both by finding the product first and by finding the transpose first.
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rrr} 1 \amp 3 \amp -1 \\ 0 \amp 2 \amp 1 \\ -3 \amp 1 \amp -2 \end{array}\right] \end{equation*}-
Finding product first
\begin{equation*} \begin{array}{ccc} 3\, \boldsymbol{A} \amp = \amp 3 \cdot\left[ \begin{array}{rrr} 1 \amp 3 \amp -1 \\ 0 \amp 2 \amp 1 \\ -3 \amp 1 \amp -2 \end{array}\right]\\ \amp = \amp \left[ \begin{array}{rrr} 3 \amp 9 \amp -3 \\ 0 \amp 6 \amp 3 \\ -9 \amp 3 \amp -6 \end{array}\right] \end{array} \end{equation*}\begin{equation*} \begin{array}{ccc} \left(3\, \boldsymbol{A}\right)^{\mathsf{T}} \amp = \amp \left(\left[ \begin{array}{rrr} 3 \amp 9 \amp -3 \\ 0 \amp 6 \amp 3 \\ -9 \amp 3 \amp -6 \end{array}\right]\right)^{\mathsf{T}}\\ \amp = \amp \left[ \begin{array}{rrr} 3 \amp 0 \amp -9 \\ 9 \amp 6 \amp 3 \\ -3 \amp 3 \amp -6 \end{array}\right].\\ \end{array} \end{equation*} -
Finding transpose first
\begin{equation*} \begin{array}{ccc} \boldsymbol{A}^{\mathsf{T}} \amp = \amp \left(\left[ \begin{array}{rrr} 1 \amp 3 \amp -1 \\ 0 \amp 2 \amp 1 \\ -3 \amp 1 \amp -2 \end{array}\right]\right)^{\mathsf{T}}\\ \amp = \amp \left[ \begin{array}{rrr} 1 \amp 0 \amp -3 \\ 3 \amp 2 \amp 1 \\ -1 \amp 1 \amp -2 \end{array}\right] \end{array} \end{equation*}\begin{equation*} \begin{array}{ccc} \left(3\, \boldsymbol{A}\right)^{\mathsf{T}} = 3\,\boldsymbol{A}^{\mathsf{T}} \amp = \amp 3 \cdot \left[ \begin{array}{rrr} 1 \amp 0 \amp -3 \\ 3 \amp 2 \amp 1 \\ -1 \amp 1 \amp -2 \end{array}\right]\\ \amp = \amp \left[ \begin{array}{rrr} 3 \amp 0 \amp -9 \\ 9 \amp 6 \amp 3 \\ -3 \amp 3 \amp -6 \end{array}\right].\\ \end{array} \end{equation*}
\(\,\)
-
-
Transpose of a matrtix - matrix product.
The transpose of the product of two matrices is equal to the product between the transpose of each matrix in reverse order.
\begin{equation*} \left( \boldsymbol{A}\, \boldsymbol{B} \right)^{\mathsf{T}} = \boldsymbol{B}^{\mathsf{T}}\,\boldsymbol{A}^{\mathsf{T}} \end{equation*}\(\,\)
Example 1.1.6. Finding the transpose of a matrtix - matrix product.
Find \(\left( \boldsymbol{A}\, \boldsymbol{B} \right)^{\mathsf{T}}\) first by finding the product and then the transpose, and second by finding the transposes and then the product.
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rr} 1 \amp 3 \\ 1 \amp 2 \\ 0 \amp -1 \end{array}\right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{rrr} 1 \amp 0 \amp -2 \\ -1 \amp 1 \amp 2 \end{array}\right]. \end{equation*}-
Finding the product first
\begin{equation*} \begin{array}{ccc} \boldsymbol{A} \cdot \boldsymbol{B} \amp = \amp \left[ \begin{array}{rr} 1 \amp 3 \\ 1 \amp 2 \\ 0 \amp -1 \end{array}\right]\cdot \left[ \begin{array}{rrr} 1 \amp 0 \amp -2 \\ -1 \amp 1 \amp 2 \end{array}\right]\\ \amp = \amp \left[ \begin{array}{rrr} -2 \amp 3 \amp 4\\ -1 \amp 2 \amp 2\\ 1 \amp -1 \amp -2 \end{array}\right]\\ \end{array} \end{equation*}\begin{equation*} \begin{array}{ccc} \left(\boldsymbol{A} \cdot \boldsymbol{B}\right)^{\mathsf{T}} \amp = \amp \left(\left[ \begin{array}{rrr} -2 \amp 3 \amp 4\\ -1 \amp 2 \amp 2\\ 1 \amp -1 \amp -2 \end{array}\right]\right)^{\mathsf{T}} \\ \amp = \amp \left[ \begin{array}{rrr} -2 \amp -1 \amp 1\\ 3 \amp 2 \amp -1\\ 4 \amp 2 \amp -2 \end{array}\right]. \end{array} \end{equation*} -
Finding transposes first
\begin{equation*} \begin{array}{ccc} \boldsymbol{A}^{\mathsf{T}} \amp = \amp \left(\left[ \begin{array}{rr} 1 \amp 3 \\ 1 \amp 2 \\ 0 \amp -1 \end{array}\right]\right)^{\mathsf{T}} = \left[ \begin{array}{rrr} 1 \amp 1 \amp 0\\ 3 \amp 2 \amp -1 \end{array}\right]\\ \boldsymbol{B}^{\mathsf{T}} \amp = \amp \left(\left[ \begin{array}{rrr} 1 \amp 0 \amp -2 \\ -1 \amp 1 \amp 2 \end{array}\right]\right)^{\mathsf{T}}= \left[ \begin{array}{rr} 1 \amp -1\\ 0 \amp 1 \\ -2 \amp 2 \end{array}\right]\\ \end{array} \end{equation*}\begin{equation*} \begin{array}{ccc} \left(\boldsymbol{A} \cdot \boldsymbol{B}\right)^{\mathsf{T}} =\boldsymbol{B}^{\mathsf{T}} \cdot \boldsymbol{A}^{\mathsf{T}} \amp = \amp \left[ \begin{array}{rr} 1 \amp -1\\ 0 \amp 1 \\ -2 \amp 2 \end{array}\right] \cdot \left[ \begin{array}{rrr} 1 \amp 1 \amp 0\\ 3 \amp 2 \amp -1 \end{array}\right]\\ \amp = \amp \left[ \begin{array}{rrr} -2 \amp -1 \amp 1\\ 3 \amp 2 \amp -1\\ 4 \amp 2 \amp -2 \end{array}\right]. \end{array} \end{equation*}
\(\,\)
-
-
Transpose of a transpose.
The transpose of the transpose of a given matrix \(\boldsymbol{A} \) is the original matrix \(\boldsymbol{A} \text{.}\)
\begin{equation*} \left( \boldsymbol{A}^{\mathsf{T}}\right)^{\mathsf{T}} = \boldsymbol{A} \end{equation*}\(\,\)
Example 1.1.7. Finding the transpose of a transpose.
For the given matrix find \(\left(\boldsymbol{A}^{\mathsf{T}}\right)^{\mathsf{T}} \text{.}\)
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 1 \end{array}\right]. \end{equation*}\(\)
\begin{equation*} \begin{array}{ccc} \boldsymbol{A}^{\mathsf{T}} \amp = \amp \left(\left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 1 \end{array}\right]\right)^{\mathsf{T}} = \left[ \begin{array}{rr} 1 \amp 1 \\ -1 \amp 1 \end{array}\right],\\ \amp \amp\\ \left(\boldsymbol{A}^{\mathsf{T}}\right)^{\mathsf{T}} \amp = \amp \left(\left[ \begin{array}{rr} 1 \amp 1 \\ -1 \amp 1 \end{array}\right] \right)^{\mathsf{T}} = \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 1 \end{array}\right]. \end{array} \end{equation*}\(\,\)
Checkpoint 1.1.8. Matrix equations with transposes.
Consider the matrices
\(\) Find \(\boldsymbol{D}^{\mathsf{T}}\) where
\(\,\)
\(\lceil\) | \(\rceil\) | |||
\(\boldsymbol{D}^{\mathsf{T}}=\) | \(\lfloor\) | \(\rfloor\) |
\(-14\)
\(22\)
\(-2\)
\(2\)
Subsection 1.1.2 Symmetric matrices
Definition 1.1.9. Symmetric matrix.
A symmetric matrix is a square matrix that is equal to its transpose.
Example 1.1.10. Symmetric matrices.
The following matrices are symmetric
The following matrices are not symmetric
Checkpoint 1.1.11. Determine if a matrix is symmetric.
Determine whether the given matrix is symmetric or not
-
Symmetric
-
Not Symmetric
-
Symmetric
-
Not Symmetric
-
Symmetric
-
Not Symmetric
Subsection 1.1.3 The trace of a matrix
Definition 1.1.12. Trace.
The trace of a square matrix \(\boldsymbol{A}\text{,}\) denoted \(\text{tr}\left(\boldsymbol{A}\right)\text{,}\) is the sum of the diagonal elements of \(\boldsymbol{A}\text{.}\)
Example 1.1.13. Find the trace of a matrix.
Find the \(\text{tr}\left(\boldsymbol{A}\right)\text{,}\) where
The trace is
Checkpoint 1.1.14. Finding the trace.
Find the trace of the given matrix
Trace =
Subsubsection 1.1.3.1 Properties of the trace
-
Trace of a sum.
The trace of the sum of two matrix is equal to the sum of the traces of each matrix.
\begin{equation*} \text{tr}\left(\boldsymbol{A}+\boldsymbol{B}\right) = \text{tr}\left(\boldsymbol{A}\right) + \text{tr}\left(\boldsymbol{B}\right) \end{equation*}Example 1.1.15.
Let,
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rrr} 1 \amp 2 \amp -3 \\ 1 \amp -3 \amp -2 \\ -2 \amp 0 \amp 1 \end{array}\right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{rrr} 2 \amp -2 \amp 1 \\ 3 \amp -1 \amp 0 \\ 4 \amp 0 \amp 1 \end{array}\right]. \end{equation*}In this case,
\begin{equation*} \begin{array}{ccc} \text{tr}\left(\boldsymbol{A}\right) \amp = \amp 1-3+1 = -1,\\ \text{tr}\left(\boldsymbol{B}\right) \amp = \amp 2-1+1 = 2.\\ \amp \amp\\ \text{tr}\left(\boldsymbol{A}\right)+ \text{tr}\left(\boldsymbol{B}\right) \amp = \amp -1 +2 = 1. \end{array} \end{equation*}For the sum we have,
\begin{equation*} \boldsymbol{A}+ \boldsymbol{B} = \left[ \begin{array}{rrr} 1 \amp 2 \amp -3 \\ 1 \amp -3 \amp -2 \\ -2 \amp 0 \amp 1 \end{array}\right] + \left[ \begin{array}{rrr} 2 \amp -2 \amp 1 \\ 3 \amp -1 \amp 0 \\ 4 \amp 0 \amp 1 \end{array}\right] = \left[ \begin{array}{rrr} 3 \amp 0 \amp -2 \\ 4 \amp -4 \amp -2 \\ 2 \amp 0 \amp 2 \end{array}\right]. \end{equation*}\begin{equation*} \text{tr}\left(\boldsymbol{A}+ \boldsymbol{B}\right) = 3-4+2 = 1. \end{equation*}\(\,\)
-
Trace of a product.
The trace of \(\boldsymbol{A}\,\boldsymbol{B} \) is the same as the trace of \(\boldsymbol{B}\,\boldsymbol{A}. \)
\begin{equation*} \text{tr}\left(\boldsymbol{A}\,\boldsymbol{B}\right) = \text{tr}\left(\boldsymbol{B}\,\boldsymbol{A}\right). \end{equation*}Example 1.1.16.
Let
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rrr} 1 \amp 2 \amp -3 \\ 1 \amp -3 \amp -2 \\ -2 \amp 0 \amp 1 \end{array}\right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{rrr} 2 \amp -2 \amp 1 \\ 3 \amp -1 \amp 0 \\ 4 \amp 0 \amp 1 \end{array}\right]. \end{equation*}Then,
\begin{equation*} \boldsymbol{A}\,\boldsymbol{B} = \left[ \begin{array}{rrr} 1 \amp 2 \amp -3 \\ 1 \amp -3 \amp -2 \\ -2 \amp 0 \amp 1 \end{array}\right]\, \left[ \begin{array}{rrr} 2 \amp -2 \amp 1 \\ 3 \amp -1 \amp 0 \\ 4 \amp 0 \amp 1 \end{array}\right]= \left[ \begin{array}{rrr} -4 \amp -4 \amp -2 \\ -15 \amp 1 \amp -1 \\ 0 \amp 4 \amp -1 \end{array}\right] \end{equation*}Giving,
\begin{equation*} \text{tr}\left(\boldsymbol{A}\,\boldsymbol{B}\right) = -4 + 1 -1 = -4. \end{equation*}Similarly,
\begin{equation*} \boldsymbol{B}\,\boldsymbol{A} = \left[ \begin{array}{rrr} 2 \amp -2 \amp 1 \\ 3 \amp -1 \amp 0 \\ 4 \amp 0 \amp 1 \end{array}\right]\, \left[ \begin{array}{rrr} 1 \amp 2 \amp -3 \\ 1 \amp -3 \amp -2 \\ -2 \amp 0 \amp 1 \end{array}\right] = \left[ \begin{array}{rrr} -2 \amp 10 \amp -1 \\ 2 \amp 9 \amp -7 \\ 2 \amp 8 \amp -11 \end{array}\right] \end{equation*}\begin{equation*} \text{tr}\left(\boldsymbol{B}\,\boldsymbol{A}\right) = -2 + 9 -11 = -4. \end{equation*}\(\,\)
-
Trace of a matrix-scalar product.
The trace of the product of a matrix and a scalar is equal to the scalar times the trace of the matrix.
\begin{equation*} \text{tr}\left(c\,\boldsymbol{A}\right) = c\,\text{tr}\left(\boldsymbol{A}\right). \end{equation*}Example 1.1.17.
Let
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rrr} 1 \amp 2 \amp -3 \\ 1 \amp -3 \amp -2 \\ -2 \amp 0 \amp 1 \end{array}\right]. \end{equation*}Then,
\begin{equation*} \text{tr}\left(\boldsymbol{A}\right) = 1 -3 + 1 = -1. \end{equation*}If we multiply \(\boldsymbol{A}\) by \(4\text{,}\) we get,
\begin{equation*} 4\,\boldsymbol{A} = \left[ \begin{array}{rrr} 4 \amp 8 \amp -12 \\ 4 \amp -12 \amp -8 \\ -8 \amp 0 \amp 4 \end{array}\right], \end{equation*}and,
\begin{equation*} \text{tr}\left(4\boldsymbol{A}\right) = 4 -12 + 4 = -4. \end{equation*}Compare to
\begin{equation*} 4\, \text{tr}\left(\boldsymbol{A}\right) = 4 \times -1 = -4. \end{equation*}\(\,\)
-
Trace of a transpose.
The trace of a transpose is equal to the trace of the original matrix.
\begin{equation*} \text{tr}\left(\boldsymbol{A}\right) = \text{tr}\left(\boldsymbol{A}^{\mathsf{T}}\right). \end{equation*}Example 1.1.18.
Let
\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rrr} 1 \amp 2 \amp -3 \\ 1 \amp -3 \amp -2 \\ -2 \amp 0 \amp 1 \end{array}\right]. \end{equation*}\begin{equation*} \text{tr}\left(\boldsymbol{A}\right) = 1 -3 + 1 = -1. \end{equation*}The transpose of \(\boldsymbol{A} \) is,
\begin{equation*} \boldsymbol{A}^{\mathsf{T}} = \left[ \begin{array}{rrr} 1 \amp 1 \amp -2 \\ 2 \amp -3 \amp 0\\ -3 \amp -2 \amp 1 \end{array}\right]. \end{equation*}and its trace is
\begin{equation*} \text{tr}\left(\boldsymbol{A}^{\mathsf{T}}\right) = 1 -3 + 1 = -1. \end{equation*}\(\, \)
Subsection 1.1.4 Homework
Link to webwork: HW 2.2