Skip to main content

Section 1.1 Matrix Operations

Subsection 1.1.1 Matrix basics

In the previous chapter we defined matrices () as arrays of rows and columns, in this section we introduce a convenient notation to work with matrices.

Subsubsection 1.1.1.1 Matrix size

The size of a matrix is given by the number of its rows and its columns. A \(m \times n \) matrix has \(m\) rows and \(n \) columns. In general, we place the size as a subscript of the name of the matrix, \(\boldsymbol{A}_{m\times n}.\)

\begin{equation*} \boldsymbol{A}_{2\times3} = \left[ \begin{array}{ccc} 3 \amp 0 \amp -3 \\ 2 \amp -4 \amp 5 \\ \end{array} \right] \hspace{2cm} \boldsymbol{B}_{3\times1} = \left[ \begin{array}{c} 3 \\ 2 \\-4 \\ \end{array} \right] \hspace{2cm} \boldsymbol{C}_{2\times2} = \left[ \begin{array}{cc} 1 \amp -2 \\ 0 \amp 3 \\ \end{array} \right] \end{equation*}
Give the size for each matrix.
\begin{equation*} \boldsymbol{A} = \begin{array}{lrrr} \lceil \amp 3 \amp 2 \amp \rceil\\ \vert \amp 5 \amp 0 \amp \vert\\ \lfloor \amp 1 \amp -3 \amp \rfloor\\ \end{array} \end{equation*}

The size of \(\boldsymbol{A}\) is \(\times\)

\begin{equation*} \boldsymbol{B} = \begin{array}{lrrrr} \lceil \amp -1 \amp 4 \amp 0 \amp \rceil \\ \lfloor \amp 2 \amp 1 \amp 9 \amp \rfloor \\ \end{array} \end{equation*}

The size of \(\boldsymbol{B}\) is \(\times\)

\begin{equation*} \boldsymbol{C} = \begin{array}{lrr} \lceil \amp -1 \amp \rceil\\ \vert \amp 2 \amp \vert \\ \vert \amp 4 \amp \vert\\ \lfloor \amp 8 \amp \rfloor \\ \end{array} \end{equation*}

The size of \(\boldsymbol{C}\) is \(\times\)

Answer 1

\(3\)

Answer 2

\(2\)

Answer 3

\(2\)

Answer 4

\(3\)

Answer 5

\(4\)

Answer 6

\(1\)

Subsubsection 1.1.1.2 Matrix elements

We identify the elements in a matrix based on their location with respect to the rows and columns of the matrix,

For

\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rrr} 1 \amp 0 \amp -2 \\ 3 \amp -1 \amp 0 \\ 6 \amp 7 \amp 1 \\ \end{array} \right] \end{equation*}

we have

\begin{equation*} \begin{array}{ccc} a_{1 2} \amp = \amp 0\\ a_{2 1} \amp = \amp 3\\ a_{3 1} \amp = \amp 6\\ a_{3 2} \amp = \amp 7\\ \end{array} \end{equation*}
Find the given elements for the matrix.
\begin{equation*} \boldsymbol{A} = \begin{array}{lrrrr} \lceil \amp {-5} \amp {-2} \amp {2} \amp \rceil\\ \vert \amp{2} \amp {7} \amp {7} \amp \vert \\ \vert \amp {1} \amp {-4} \amp {-8} \amp \vert\\ \lfloor \amp {8} \amp {-5} \amp {-9} \amp \rfloor\\ \end{array} \end{equation*}
  1. \(a_{3 1} =\)

  2. \(a_{4 3} =\)

  3. \(a_{1 2} =\)

  4. \(a_{2 2} =\)

  5. \(a_{4 1} =\)

Answer 1

\(1\)

Answer 2

\(-9\)

Answer 3

\(-2\)

Answer 4

\(7\)

Answer 5

\(8\)

Solution
  1. \(a_{3 1}:\) row 3 - column 1 = 1

  2. \(a_{4 3}:\) row 4 - column 3 = -9

  3. \(a_{1 2}:\) row 1 - column 2 = -2

  4. \(a_{2 2}:\) row 2 - column 2 = 7

  5. \(a_{4 1}:\) row 4 - column 1 = 8

Subsubsection 1.1.1.3 Matrix equality

Two matrices are equal when they have the same numbers in corresponding entries.

\begin{equation*} \boldsymbol{A} = \boldsymbol{B} \hspace{1cm} \text{If and only if} \hspace{1cm} a_{ij}=b_{ij} \hspace{0.5cm} \text{for ALL } i \text{ and } j's. \end{equation*}

Subsubsection 1.1.1.4 Square matrix

A square matrix has the same number of rows and columns, \(m=n. \) The elements of a square matrix \(\boldsymbol{A}_{n\times n} \) where the subscripts are equal \(\left( a_{11}, a_{22}, \cdots, a_{nn}\right) \) are called the matrix main diagonal.

Subsubsection 1.1.1.5 Identity matrix

An identity matrix is a square matrix with ones in its main diagonal and zeros everywhere else. We use the notation \(\boldsymbol{I}_n \) to indicate an identity matrix that is \(n \times n. \)

Subsubsection 1.1.1.6 Zero matrix

A zero matrix is a matrix filled with all zeros and denoted by \(\boldsymbol{0}_{m\times n}. \)

Subsection 1.1.2 Matrix operations

Subsubsection 1.1.2.1 Matrix addition

Let \(\boldsymbol{A}_{m\times n} \) and \(\boldsymbol{B}_{m\times n} \) be two matrices of the same size. The sum \(\boldsymbol{C}_{m\times n} = \boldsymbol{A} + \boldsymbol{B} \) is obtained by adding the corresponding elements of \(\boldsymbol{A} \) and \(\boldsymbol{B}: \) \(c_{ij} = a_{ij} + b_{ij}. \) If \(\boldsymbol{A} \) and \(\boldsymbol{B} \) are not the same size the sum does not exists.

Let

\begin{equation*} \boldsymbol{A} = \left[\begin{array}{cccc} 3 \amp -2 \amp 1 \amp 0\\ 4 \amp 0 \amp 3 \amp -5\\ \end{array}\right], \hspace{2.5cm} \boldsymbol{B} = \left[\begin{array}{cccc} 0 \amp 7 \amp -2 \amp 1\\ 1 \amp 4 \amp -1 \amp 3\\ \end{array}\right]. \end{equation*}

Find \(\boldsymbol{A}+\boldsymbol{B} \text{.}\)

\begin{equation*} \boldsymbol{A} + \boldsymbol{B} = \left[\begin{array}{cccc} 3 \amp -2 \amp 1 \amp 0\\ 4 \amp 0 \amp 3 \amp -5\\ \end{array}\right] \hspace{.5cm} + \hspace{.5cm} \left[\begin{array}{cccc} 0 \amp 7 \amp -2 \amp 1\\ 1 \amp 4 \amp -1 \amp 3\\ \end{array}\right] \hspace{.5cm} = \hspace{.5cm} \left[\begin{array}{cccc} 3 \amp 5 \amp -1 \amp 1\\ 5 \amp 4 \amp 2 \amp 2\\ \end{array}\right]. \end{equation*}

Consider the matrices \(\boldsymbol{A}_{{3}\times {4}}\text{,}\) \(\boldsymbol{B}_{{4}\times {3}}\text{,}\) \(\boldsymbol{C}_{{3}\times {4}}\text{,}\) and \(\boldsymbol{D}_{{6}\times {4}}\text{.}\)

Determine if the following operations exist

  1. \(\boldsymbol{A} + \boldsymbol{B}\)

    • Yes

    • No

  2. \(\boldsymbol{A} + \boldsymbol{C}\)

    • Yes

    • No

  3. \(\boldsymbol{B} + \boldsymbol{C}\)

    • Yes

    • No

  4. \(\boldsymbol{C} + \boldsymbol{D}\)

    • Yes

    • No

Answer 1

\(\text{No}\)

Answer 2

\(\text{Yes}\)

Answer 3

\(\text{No}\)

Answer 4

\(\text{No}\)

Solution

The only one that exists is \(\boldsymbol{A} + \boldsymbol{C}\) since addition requires both matrices to have the same size.

Find \(\boldsymbol{A} + \boldsymbol{B}\) where

\begin{equation*} \boldsymbol{A} = \begin{array}{lrrrr} \lceil \amp{-1} \amp {4} \amp {-1} \amp \rceil \\ \lfloor \amp {-8} \amp {7} \amp {7} \amp \rfloor \end{array}\hspace{1cm} \text{ and } \hspace{1cm} \boldsymbol{B} = \begin{array}{ccc} \lceil \amp{5} \amp {-8} \amp {-8} \amp \rceil \\ \lfloor \amp{9} \amp {-6} \amp {-6} \amp \rfloor \end{array}. \end{equation*}
\(\,\) \(\lceil\)


\(\rceil\)
\(\boldsymbol{A} + \boldsymbol{B} =\) \(\lfloor\)


\(\rfloor\)
\(\,\) \(\,\) \(\,\)

\(\,\)
Answer 1

\(4\)

Answer 2

\(-4\)

Answer 3

\(-9\)

Answer 4

\(1\)

Answer 5

\(1\)

Answer 6

\(1\)

Solution
\begin{equation*} \boldsymbol{A} + \boldsymbol{B} =\left[ \begin{array}{ccc} {-1}+ ({5}) \amp {4}+ ({-8}) \amp {-1}+ ({-8}) \\ {-8} + ({9}) \amp {7}+({-6}) \amp {7} + ({-6}) \end{array}\right] = \left[ \begin{array}{ccc} {4} \amp {-4} \amp {-9} \\ {1} \amp {1} \amp {1} \end{array}\right] \end{equation*}

\(\,\)

Subsubsection 1.1.2.2 Matrix-scalar multiplication

Let \(\boldsymbol{A}_{m \times n} \) be a matrix and \(c\) a scalar. The scalar multiple of \(\boldsymbol{A}\) by \(c\text{,}\) denoted \(c\boldsymbol{A}\text{,}\) is the \(m \times n\) matrix obtained by multiplying every element of \(\boldsymbol{A}\) by \(c\text{,}\) \(\boldsymbol{B} = c\boldsymbol{A} \Rightarrow b_{ij} = c \cdot a_{ij}.\)

Let

\begin{equation*} \boldsymbol{A} = \left[\begin{array}{cccc} 4 \amp -1 \amp -1 \amp 3\\ 1 \amp 2 \amp -4 \amp -5\\ \end{array}\right], \end{equation*}

find \(3 \, \boldsymbol{A}.\)

\begin{equation*} 3 \, \boldsymbol{A} = \left[\begin{array}{cccc} 3 \cdot 4 \amp 3 \cdot (-1) \amp 3 \cdot (-1) \amp 3 \cdot 3\\ 3 \cdot 1 \amp 3 \cdot 2 \amp 3 \cdot (-4) \amp 3 \cdot (-5)\\ \end{array}\right] = \left[\begin{array}{cccc} 12 \amp -3 \amp -3 \amp 9\\ 3 \amp 6 \amp -12 \amp -15\\ \end{array}\right]. \end{equation*}

Find \({3} \boldsymbol{A}\) where

\begin{equation*} \boldsymbol{A} = \begin{array}{lrrr} \lceil \amp {1} \amp {-2} \amp\rceil \\ \vert \amp {7} \amp {6} \amp \vert \\ \lfloor \amp {6} \amp {-2} \amp \rfloor \end{array}. \end{equation*}
\(\,\) \(\lceil\)

\(\rceil\)
\({3} \boldsymbol{A} =\) \(\vert\)

\(\vert\)
\(\,\) \(\lfloor\)

\(\rfloor\)
\(\,\) \(\,\) \(\,\)
\(\,\)
Answer 1

\(3\)

Answer 2

\(-6\)

Answer 3

\(21\)

Answer 4

\(18\)

Answer 5

\(18\)

Answer 6

\(-6\)

Solution
\begin{equation*} {3}\boldsymbol{A} =\left[ \begin{array}{cc} {3} ({1}) \amp {3} ({-2}) \\ {3} ({7}) \amp {3}({6}) \\ {3} ({6}) \amp {3} ({-2}) \end{array}\right] = \left[ \begin{array}{ccc} {3} \amp {-6} \\ {21} \amp {18} \\ {18} \amp {-6} \end{array}\right]. \end{equation*}

Let

\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{cc} {3} \amp {-9} \\ {-4} \amp {6} \end{array}\right] \hspace{1cm} \text{and} \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{cc} {7} \amp {8} \\ {8} \amp {4} \end{array}\right]. \end{equation*}

Find \(\boldsymbol{A} - \boldsymbol{B} \text{.}\)

This is accomplished by combining the addition and scalar multiplication operations introduced in this section.

Finding \(\boldsymbol{A} - \boldsymbol{B}\) is equivalent at finding \(\boldsymbol{A} + ((-1) \cdot \boldsymbol{B}).\) That is, we first multiply \(\boldsymbol{B}\) by \(-1\) and then add this new matrix to \(\boldsymbol{A}.\) Use this procedure to find \(\boldsymbol{A} - \boldsymbol{B} \text{.}\)

\(\,\) \(\lceil\)

\(\rceil\)
\(\boldsymbol{A} - \boldsymbol{B} =\) \(\lfloor\)

\(\rfloor\)
\(\,\) \(\,\) \(\,\)
\(\,\)
Answer 1

\(-4\)

Answer 2

\(-17\)

Answer 3

\(-12\)

Answer 4

\(2\)

Solution
\begin{equation*} \boldsymbol{A} - \boldsymbol{B} =\left[ \begin{array}{cc} {3} - ({7}) \amp {-9} - ({8})\\ {-4} - ({8}) \amp {6} - ({4}) \end{array}\right] = \left[ \begin{array}{ccc} {-4} \amp {-17} \\ {-12} \amp {2} \end{array}\right]. \end{equation*}

\(\,\)

Subsubsection 1.1.2.3 Matrix-matrix multiplication

The matrix product of the matrix \(\boldsymbol{A}_{m \times n} \) and the matrix \(\boldsymbol{B}_{n \times r}, \) is the matrix \(\boldsymbol{C}_{m \times r} = \boldsymbol{A}_{m \times n} \times \boldsymbol{B}_{n \times r},\) where

\begin{equation*} c_{ij} = a_{i1}\, b_{1j} + a_{i2}\, b_{2j} + \cdots + a_{in}\, b_{nj}. \end{equation*}

That is, the \(ij \) element of the product results from multiplying the \(i^{th}\) row of the first matrix with the \(j^{th}\) column of the second matrix and adding the entries.

\begin{equation*} \boldsymbol{C}_{m \times r} = \boldsymbol{A}_{m \times n} \times \boldsymbol{B}_{n \times r} = \left[ \begin{array}{cccc} \amp \vdots \amp \amp \\ a_{i1} \amp a_{i2} \amp \cdots \amp a_{in}\\ \amp \vdots \amp \amp \end{array}\right]\, \left[ \begin{array}{ccc} \amp b_{1j} \amp \\ \cdots\amp b_{2j} \amp \cdots \\ \amp \vdots \amp \\ \amp b_{nj} \amp \end{array}\right] = \left[ \begin{array}{ccc} \amp \vdots\amp \\ \cdots\amp c_{ij} \amp \cdots \\ \amp \vdots \amp \end{array}\right]. \end{equation*}

Let \(\boldsymbol{A} \) and \(\boldsymbol{B} \) be the two matrix given below. Find \(\boldsymbol{C} = \boldsymbol{A} \times \boldsymbol{B}.\)

\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{cccc} 3 \amp -2 \amp 4 \amp 2 \\ 1 \amp 3 \amp -5 \amp -2 \\ \end{array}\right], \hspace{2cm} \boldsymbol{B} = \left[ \begin{array}{ccc} 0 \amp 1 \amp 3 \\ 2 \amp -3 \amp -1 \\ -1 \amp 3 \amp 4 \\ 2 \amp 0 \amp 1 \\ \end{array}\right]. \end{equation*}
\begin{equation*} \boldsymbol{C} = \boldsymbol{A}\times\boldsymbol{B} = \left[ \begin{array}{cccc} 3 \amp -2 \amp 4 \amp 2 \\ 1 \amp 3 \amp -5 \amp -2 \\ \end{array}\right] \times \left[ \begin{array}{ccc} 0 \amp 1 \amp 3 \\ 2 \amp -3 \amp -1 \\ -1 \amp 3 \amp 4 \\ 2 \amp 0 \amp 1 \\ \end{array}\right] = \left[ \begin{array}{ccc} -4 \amp 21 \amp 29 \\ 7 \amp -23 \amp -22 \\ \end{array}\right] \end{equation*}
  • Element \(c_{11} \text{:}\) Row 1 of \(\boldsymbol{A} \) and column 1 of \(\boldsymbol{B}, \)
    \begin{equation*} \begin{array}{ccccccccc} \left[ \begin{array}{cccc} 3 \amp -2 \amp 4 \amp 2 \\ \end{array}\right] \times \left[ \begin{array}{c} 0 \\ 2 \\ -1 \\ 2 \\ \end{array}\right] \amp = \amp (3) \times (0) \amp + \amp (-2) \times (2) \amp + \amp (4) \times (-1) \amp + \amp (2) \times (2)\\ \amp = \amp 0 \amp - \amp 4 \amp - \amp 4 \amp + \amp 4 \\ \amp = \amp -4 \end{array} \end{equation*}
  • Element \(c_{12} \text{:}\) Row 1 of \(\boldsymbol{A} \) and column 2 of \(\boldsymbol{B}, \)
    \begin{equation*} \begin{array}{ccccccccc} \left[ \begin{array}{cccc} 3 \amp -2 \amp 4 \amp 2 \\ \end{array}\right] \times \left[ \begin{array}{c} 1 \\ -3 \\ 3 \\ 0 \\ \end{array}\right] \amp = \amp (3) \times (1) \amp + \amp (-2) \times (-3) \amp + \amp (4) \times (3) \amp + \amp (2) \times (0)\\ \amp = \amp 3 \amp + \amp 6 \amp + \amp 12 \amp + \amp 0 \\ \amp = \amp 21 \end{array} \end{equation*}
  • Element \(c_{13} \text{:}\) Row 1 of \(\boldsymbol{A} \) and column 3 of \(\boldsymbol{B}, \)
    \begin{equation*} \begin{array}{ccccccccc} \left[ \begin{array}{cccc} 3 \amp -2 \amp 4 \amp 2 \\ \end{array}\right] \times \left[ \begin{array}{c} 3 \\ -1 \\ 4 \\ 1 \\ \end{array}\right] \amp = \amp (3) \times (3) \amp + \amp (-2) \times (-1) \amp + \amp (4) \times (4) \amp + \amp (2) \times (1)\\ \amp = \amp 9 \amp + \amp 2 \amp + \amp 16 \amp + \amp 2 \\ \amp = \amp 29 \end{array} \end{equation*}
  • Element \(c_{21} \text{:}\) Row 2 of \(\boldsymbol{A} \) and column 1 of \(\boldsymbol{B}, \)
    \begin{equation*} \begin{array}{ccccccccc} \left[ \begin{array}{cccc} 1 \amp 3 \amp -5 \amp -2 \\ \end{array}\right] \times \left[ \begin{array}{c} 0 \\ 2 \\ -1 \\ 2 \\ \end{array}\right] \amp = \amp (1) \times (0) \amp + \amp (3) \times (2) \amp + \amp (-5) \times (-1) \amp + \amp (-2) \times (2)\\ \amp = \amp 0 \amp + \amp 6 \amp + \amp 5 \amp - \amp 4 \\ \amp = \amp 7 \end{array} \end{equation*}
  • Element \(c_{22} \text{:}\) Row 2 of \(\boldsymbol{A} \) and column 2 of \(\boldsymbol{B}, \)
    \begin{equation*} \begin{array}{ccccccccc} \left[ \begin{array}{cccc} 1 \amp 3 \amp -5 \amp -2 \\ \end{array}\right] \times \left[ \begin{array}{c} 1 \\ -3 \\ 3 \\ 0 \\ \end{array}\right] \amp = \amp (1) \times (1) \amp + \amp (3) \times (-3) \amp + \amp (-5) \times (3) \amp + \amp (-2) \times (0)\\ \amp = \amp 1 \amp - \amp 9 \amp - \amp 15 \amp + \amp 0 \\ \amp = \amp -23 \end{array} \end{equation*}
  • Element \(c_{23} \text{:}\) Row 2 of \(\boldsymbol{A} \) and column 3 of \(\boldsymbol{B}, \)
    \begin{equation*} \begin{array}{ccccccccc} \left[ \begin{array}{cccc} 1 \amp 3 \amp -5 \amp -2 \\ \end{array}\right] \times \left[ \begin{array}{c} 3 \\ -1 \\ 4 \\ 1 \\ \end{array}\right] \amp = \amp (1) \times (3) \amp + \amp (3) \times (-1) \amp + \amp (-5) \times (4) \amp + \amp (-2) \times (1)\\ \amp = \amp 3 \amp - \amp 3 \amp - \amp 20 \amp - \amp 2 \\ \amp = \amp -22 \end{array} \end{equation*}

Find the product of the two given matrices

\begin{equation*} \boldsymbol{A}= \begin{array}{cc} \lceil \amp{3} \amp {1} \amp \rceil\\ \vert \amp{2} \amp {-3} \amp \vert\\ \vert \amp{2} \amp {-1} \amp \vert\\ \lfloor \amp{-3} \amp {-1} \amp \rfloor\\ \end{array}, \hspace{1cm} \boldsymbol{B}= \begin{array}{lrrrr} \lceil \amp{-3} \amp {-1} \amp {-3} \amp \rceil\\ \lfloor \amp{-4} \amp {-1} \amp {0} \amp \rfloor\\ \end{array}. \end{equation*}
\(\,\) \(\lceil\)


\(\rceil\)
\(C =\) \(\vert\)


\(\vert\)
\(\,\) \(\vert\)


\(\vert\)
\(\,\) \(\lfloor\)


\(\rfloor\)
\(\,\) \(\,\) \(\,\)

\(\,\)
Answer 1

\(-13\)

Answer 2

\(-4\)

Answer 3

\(-9\)

Answer 4

\(6\)

Answer 5

\(1\)

Answer 6

\(-6\)

Answer 7

\(-2\)

Answer 8

\(-1\)

Answer 9

\(-6\)

Answer 10

\(13\)

Answer 11

\(4\)

Answer 12

\(9\)

Solution
\begin{equation*} \left[ \begin{array}{cc} {3} \amp {1} \\ {2} \amp {-3} \\ {2} \amp {-1} \\ {-3} \amp {-1} \\ \end{array}\right] \times \left[ \begin{array}{ccc} {-3} \amp {-1} \amp {-3} \\ {-4} \amp {-1} \amp {0} \\ \end{array}\right] = \left[ \begin{array}{ccc} {-13} \amp {-4} \amp {-9} \\ {6} \amp {1} \amp {-6} \\ {-2} \amp {-1} \amp {-6} \\ {13} \amp {4} \amp {9} \\ \end{array}\right] \end{equation*}
Insight 1.1.13. Size matters.

In general, not every matrix can be multiplied to any other matrix. Consider the example depicted in the figure below,

In order to carry out this operation, we need to multiply the three elements of the row in the first matrix with the three elements of the column in the second matrix.

If, for instance, the second matrix had 2 rows instead of 3, the operation will be incomplete.

For this reason, we can only multiply matrices that have the "right dimensions." The number of columns in the first matrix has to be the same as the number of rows in the second matrix.

Determine determine whether the given multiplication is possible. If possible, give the size of the resulting matrix, if not possible write NA.

  1. \(\boldsymbol{A}_{{3} \times {3}} \cdot \boldsymbol{B}_{{8} \times {8}}\)

    • Yes

    • No

    \(\times\)

  2. \(\boldsymbol{A}_{{8} \times {1}} \cdot \boldsymbol{B}_{{1} \times {9}}\)

    • Yes

    • No

    \(\times\)

  3. \(\boldsymbol{A}_{{9} \times {3}} \cdot \boldsymbol{B}_{{3} \times {8}}\)

    • Yes

    • No

    \(\times\)

  4. \(\boldsymbol{A}_{{1} \times {9}} \cdot \boldsymbol{B}_{{8} \times {3}}\)

    • Yes

    • No

    \(\times\)

  5. \(\boldsymbol{A}_{{3} \times {8}} \cdot \boldsymbol{B}_{{1} \times {8}}\)

    • Yes

    • No

    \(\times\)

  6. \(\boldsymbol{A}_{{8} \times {1}} \cdot \boldsymbol{B}_{{1} \times {8}}\)

    • Yes

    • No

    \(\times\)

Answer 1

\(\text{No}\)

Answer 2

\(\text{NA}\)

Answer 3

\(\text{NA}\)

Answer 4

\(\text{Yes}\)

Answer 5

\(8\)

Answer 6

\(9\)

Answer 7

\(\text{Yes}\)

Answer 8

\(9\)

Answer 9

\(8\)

Answer 10

\(\text{No}\)

Answer 11

\(\text{NA}\)

Answer 12

\(\text{NA}\)

Answer 13

\(\text{No}\)

Answer 14

\(\text{NA}\)

Answer 15

\(\text{NA}\)

Answer 16

\(\text{Yes}\)

Answer 17

\(8\)

Answer 18

\(8\)

Subsection 1.1.3 Algebraic properties of matrix operations

Subsubsection 1.1.3.1 Properties of matrix sum

For the properties shown below, \(\boldsymbol{A}_{m\times n}, \boldsymbol{B}_{m\times n}, \text{ and } \boldsymbol{C}_{m\times n} \) are matrices and \(r \text{ and } s \) are scalars.

  • Commutative property.

    The sum of two matrices is commutative:
    \begin{equation*} \boldsymbol{A}_{m\times n} + \boldsymbol{B}_{m\times n} = \boldsymbol{B}_{m\times n} + \boldsymbol{A}_{m\times n} \end{equation*}
    \begin{equation*} \boldsymbol{A} = \left[ \begin{array}{ccc} 4 \amp 3 \amp 1\\ -1 \amp 0 \amp -2\\ \end{array} \right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{ccc} 2 \amp 0 \amp -1\\ 3 \amp 5 \amp -1\\ \end{array} \right]. \end{equation*}
    \begin{equation*} \boldsymbol{A}+ \boldsymbol{B} = \left[ \begin{array}{ccc} 4 \amp 3 \amp 1\\ -1 \amp 0 \amp -2\\ \end{array} \right] \hspace{0.2cm} + \hspace{0.2cm} \left[ \begin{array}{ccc} 2 \amp 0 \amp -1\\ 3 \amp 5 \amp -1\\ \end{array} \right] \hspace{0.5cm} = \hspace{0.5cm} \left[ \begin{array}{ccc} 6 \amp 3 \amp 0\\ 2 \amp 5 \amp -3\\ \end{array} \right]. \end{equation*}
    \begin{equation*} \boldsymbol{B}+ \boldsymbol{A} = \left[ \begin{array}{ccc} 2 \amp 0 \amp -1\\ 3 \amp 5 \amp -1\\ \end{array} \right] \hspace{0.2cm} + \hspace{0.2cm} \left[ \begin{array}{ccc} 4 \amp 3 \amp 1\\ -1 \amp 0 \amp -2\\ \end{array} \right] \hspace{0.5cm} = \hspace{0.5cm} \left[ \begin{array}{ccc} 6 \amp 3 \amp 0\\ 2 \amp 5 \amp -3\\ \end{array} \right]. \end{equation*}
  • Associative property.

    Matrix addition is associative :
    \begin{equation*} \boldsymbol{A}_{m\times n} + \left( \boldsymbol{B}_{m\times n} + \boldsymbol{C}_{m\times n} \right) = \left(\boldsymbol{A}_{m\times n} + \boldsymbol{B}_{m\times n}\right) + \boldsymbol{C}_{m\times n}. \end{equation*}

    If we have more than two matrices to add, we can first sum two of them and then add the third matrix to this result. This property tell us that the order in which we choose the first two matrices does not matter.

    Consider the following three matrices

    \begin{equation*} \boldsymbol{A} = \left[ \begin{array}{cc} 2 \amp 1 \\ 0 \amp 3\\ \end{array}\right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{cc} -1 \amp 0 \\ 1 \amp 2\\ \end{array}\right], \hspace{1cm} \boldsymbol{C} = \left[ \begin{array}{cc} 0 \amp -4 \\ 1 \amp -2\\ \end{array}\right]. \end{equation*}
    • Note that \(\boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} \) can be obtained by first adding \(\boldsymbol{A} \) and \(\boldsymbol{B}\) and then adding the resulting matrix to \(\boldsymbol{C}: \)

      \begin{equation*} \boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} = \left(\boldsymbol{A} + \boldsymbol{B}\right) + \boldsymbol{C}. \end{equation*}
      \begin{equation*} \left(\boldsymbol{A} + \boldsymbol{B}\right) = \left[ \begin{array}{cc} 2 \amp 1 \\ 0 \amp 3\\ \end{array}\right] + \left[ \begin{array}{cc} -1 \amp 0 \\ 1 \amp 2\\ \end{array}\right] = \left[ \begin{array}{cc} 1 \amp 1 \\ 1 \amp 5\\ \end{array}\right] \end{equation*}
      \begin{equation*} \left(\boldsymbol{A} + \boldsymbol{B}\right) + \boldsymbol{C} = \left[ \begin{array}{cc} 1 \amp 1 \\ 1 \amp 5\\ \end{array}\right] + \left[ \begin{array}{cc} 0 \amp -4 \\ 1 \amp -2\\ \end{array}\right]= \left[ \begin{array}{cc} 1 \amp -3 \\ 2 \amp 3\\ \end{array}\right]. \end{equation*}
    • Alternatively, \(\boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} \) can be obtained by first adding \(\boldsymbol{B} \) and \(\boldsymbol{C}\) and then adding the resulting matrix to \(\boldsymbol{A}: \)

      \begin{equation*} \boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} = \boldsymbol{A} + \left(\boldsymbol{B} + \boldsymbol{C}\right). \end{equation*}
      \begin{equation*} \left(\boldsymbol{B} + \boldsymbol{C}\right) = \left[ \begin{array}{cc} -1 \amp 0 \\ 1 \amp 2\\ \end{array}\right] + \left[ \begin{array}{cc} 0 \amp -4 \\ 1 \amp -2\\ \end{array}\right] = \left[ \begin{array}{cc} -1 \amp -4 \\ 2 \amp 0\\ \end{array}\right] \end{equation*}
      \begin{equation*} \boldsymbol{A} + \left(\boldsymbol{B}+ \boldsymbol{C} \right) = \left[ \begin{array}{cc} 2 \amp 1 \\ 0 \amp 3\\ \end{array}\right] + \left[ \begin{array}{cc} -1 \amp -4 \\ 2 \amp 0\\ \end{array}\right]= \left[ \begin{array}{cc} 1 \amp -3 \\ 2 \amp 3\\ \end{array}\right]. \end{equation*}
    • Another alternative is to find \(\boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} \) by first adding \(\boldsymbol{A} \) and \(\boldsymbol{C}\) and then adding the resulting matrix to \(\boldsymbol{B}: \)

      \begin{equation*} \boldsymbol{A} + \boldsymbol{B} + \boldsymbol{C} = \left( \boldsymbol{A} + \boldsymbol{C}\right) + \boldsymbol{B}. \end{equation*}
      \begin{equation*} \left(\boldsymbol{A} + \boldsymbol{C}\right) = \left[ \begin{array}{cc} 2 \amp 1 \\ 0 \amp 3\\ \end{array}\right] + \left[ \begin{array}{cc} 0 \amp -4 \\ 1 \amp -2\\ \end{array}\right] = \left[ \begin{array}{cc} 2 \amp -3 \\ 1 \amp 1\\ \end{array}\right] \end{equation*}
      \begin{equation*} \left(\boldsymbol{A} + \boldsymbol{C} \right)+ \boldsymbol{B} = \left[ \begin{array}{cc} 2 \amp -3 \\ 1 \amp 1\\ \end{array}\right] + \left[ \begin{array}{cc} -1 \amp 0 \\ 1 \amp 2\\ \end{array}\right]= \left[ \begin{array}{cc} 1 \amp -3 \\ 2 \amp 3\\ \end{array}\right]. \end{equation*}

Subsubsection 1.1.3.2 Properties of matrix-scalar multiplication

For the properties shown below, \(\boldsymbol{A}_{m\times n}, \boldsymbol{B}_{m\times n}, \text{ and } \boldsymbol{C}_{m\times n} \) are matrices and \(r \text{ and } s \) are scalars.

  • Distributive property 1.

    Multiplication of a matrix by a scalar is distributive with respect to matrix addition:
    \begin{equation*} r \left( \boldsymbol{A}_{m\times n} + \boldsymbol{B}_{m\times n}\right) = r\, \boldsymbol{A}_{m\times n} + r\, \boldsymbol{B}_{m\times n}. \end{equation*}
    \begin{equation*} \begin{array}{ccc} 4 \times \left( \left[ \begin{array}{rr} -1 \amp 2 \\ 0 \amp 4 \\ 1 \amp 3 \\ -2 \amp 1 \\ \end{array}\right] + \left[ \begin{array}{rr} 3 \amp -1 \\ 1 \amp 1 \\ 2 \amp -4 \\ -2 \amp 2 \\ \end{array}\right] \right) \amp = \amp 4 \times \left[ \begin{array}{rr} -1 \amp 2 \\ 0 \amp 4 \\ 1 \amp 3 \\ -2 \amp 1 \\ \end{array}\right] + 4 \times \left[ \begin{array}{rr} 3 \amp -1 \\ 1 \amp 1 \\ 2 \amp -4 \\ -2 \amp 2 \\ \end{array}\right] \\ \end{array} \end{equation*}
    \begin{equation*} \hspace{1.5cm} \begin{array}{ccc} 4 \times \left( \left[ \begin{array}{rr} 2 \amp 1 \\ 1 \amp 5 \\ 3 \amp -1 \\ -4 \amp 3 \\ \end{array}\right] \right) \amp \hspace{0.9cm} = \hspace{0.9cm} \amp \left[ \begin{array}{rr} -4 \amp 8 \\ 0 \amp 16 \\ 4 \amp 12 \\ -8 \amp 4 \\ \end{array}\right] + \left[ \begin{array}{rr} 12 \amp -4 \\ 4 \amp 4 \\ 8 \amp -16 \\ -8 \amp 8 \\ \end{array}\right] \\ \amp \amp\\ \left[ \begin{array}{rr} 8 \amp 4 \\ 4 \amp 20 \\ 12 \amp -4 \\ -16 \amp 12 \\ \end{array}\right] \amp \hspace{0.9cm} = \hspace{0.9cm} \amp \left[ \begin{array}{rr} 8 \amp 4 \\ 4 \amp 20 \\ 12 \amp -4 \\ -16 \amp 12 \\ \end{array}\right] \\ \end{array} \end{equation*}
  • Distributive property 2.

    Multiplication of a matrix by a scalar is distributive with respect to the scalar addition:
    \begin{equation*} \left(r+s \right) \boldsymbol{C}_{m\times n} = r\, \boldsymbol{C}_{m\times n} + s\, \boldsymbol{C}_{m\times n}. \end{equation*}
    \begin{equation*} \begin{array}{l} (2 + 4) \times \left[\begin{array}{rr} -2 \amp 1 \\ 0 \amp 1 \\ \end{array}\right] = 2 \times \left[\begin{array}{rr} -2 \amp 1 \\ 0 \amp 1 \\ \end{array}\right] + 4 \times \left[\begin{array}{rr} -2 \amp 1 \\ 0 \amp 1 \\ \end{array}\right]\\ \amp \amp \\ \hspace{0.7cm} 6 \times \left[\begin{array}{rr} -2 \amp 1 \\ 0 \amp 1 \\ \end{array}\right] \hspace{0.5cm} = \hspace{0.5cm} \left[\begin{array}{rr} -4 \amp 2 \\ 0 \amp 2 \\ \end{array}\right] \hspace{0.3cm} + \hspace{0.3cm} \left[\begin{array}{rr} -8 \amp 4 \\ 0 \amp 4 \\ \end{array}\right]\\ \amp \amp \\ \hspace{0.7cm}\left[\begin{array}{rr} -12 \amp 6 \\ 0 \amp 6 \\ \end{array}\right] \hspace{1.1cm} = \hspace{1.5cm} \left[\begin{array}{rr} -12 \amp 6 \\ 0 \amp 6 \\ \end{array}\right] \\ \end{array} \end{equation*}
  • Associative property.

    Multiplication of a matrix by a scalar is associative with respect to the scalar multiplication:
    \begin{equation*} r \left(s \times \boldsymbol{C}_{m\times n} \right) = (r\, s) \boldsymbol{C}_{m\times n}. \end{equation*}
    \begin{equation*} \begin{array}{l} -1 \times \left( 2\times \left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 2 \amp 0 \amp -1 \\ 3 \amp 0 \amp 0\\ \end{array}\right] \right) = (-1 \times 2 ) \times \left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 2 \amp 0 \amp -1 \\ 3 \amp 0 \amp 0\\ \end{array}\right] \\ \amp \amp \\ \hspace{0.7cm} -1 \times \left[\begin{array}{rrr} 2 \amp -2 \amp 6 \\ 4 \amp 0 \amp -2 \\ 6 \amp 0 \amp 0\\ \end{array}\right] \hspace{0.9cm} = \hspace{0.9cm} -2 \times \left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 2 \amp 0 \amp -1 \\ 3 \amp 0 \amp 0\\ \end{array}\right]\\ \amp \amp \\ \hspace{1.1cm}\left[\begin{array}{rrr} -2 \amp 2 \amp -6 \\ -4 \amp 0 \amp 2 \\ -6 \amp 0 \amp 0\\ \end{array}\right] \hspace{1.6cm} = \hspace{1cm} \left[\begin{array}{rrr} -2 \amp 2 \amp -6 \\ -4 \amp 0 \amp 2 \\ -6 \amp 0 \amp 0\\ \end{array}\right] \\ \end{array} \end{equation*}

Subsubsection 1.1.3.3 Properties of matrix-matrix multiplication

For the properties shown below, \(\boldsymbol{A}, \boldsymbol{B}, \text{ and } \boldsymbol{C} \) are matrices and \(r \) is a scalar. The sizes for the matrices will be given for each property.

  • Associative property.

    Matrix-matrix multiplication is associative:
    \begin{equation*} \begin{array}{ccc} \boldsymbol{A} \left(\boldsymbol{B}\,\boldsymbol{C}\right) \amp = \amp \left(\boldsymbol{A}\,\boldsymbol{B}\right)\,\boldsymbol{C}\\ \amp \amp \\ \boldsymbol{A}_{m\times n} \left(\boldsymbol{B}_{n\times p} \boldsymbol{C}_{p\times q}\right) \amp = \amp \left(\boldsymbol{A}_{m\times n} \boldsymbol{B}_{n\times p}\right) \boldsymbol{C}_{p\times q}.\\ \end{array} \end{equation*}
    \begin{equation*} \begin{array}{ccc} \boldsymbol{A}_{3\times 2} \left(\boldsymbol{B}_{2\times 4} \boldsymbol{C}_{4\times 3}\right) \amp = \amp \left(\boldsymbol{A}_{3\times 2} \boldsymbol{B}_{2\times 4}\right) \boldsymbol{C}_{4\times 3}\\ \amp \amp \\ \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left( \left[ \begin{array}{rrrr} 0 \amp 1 \amp -1 \amp 3\\ 2 \amp -1 \amp 1 \amp -2\\ \end{array}\right]\, \left[ \begin{array}{rrr} 1 \amp -1 \amp -3\\ 2 \amp 3 \amp 1 \\ 4 \amp 1 \amp 0 \\ 0 \amp -2 \amp 1 \\ \end{array}\right] \right) \amp = \amp \left( \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right] \, \left[ \begin{array}{rrrr} 0 \amp 1 \amp -1 \amp 3\\ 2 \amp -1 \amp 1 \amp -2\\ \end{array}\right] \right)\, \left[ \begin{array}{rrr} 1 \amp -1 \amp -3\\ 2 \amp 3 \amp 1 \\ 4 \amp 1 \amp 0 \\ 0 \amp -2 \amp 1 \\ \end{array}\right] \end{array} \end{equation*}
    \begin{equation*} \begin{array}{lll} \hspace{2cm} \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left[ \begin{array}{rrr} -6 \amp -5 \amp 4 \\ 4 \amp 0 \amp -9 \\ \end{array}\right] \hspace{2.8cm} \amp = \amp \hspace{1.7cm} \left[ \begin{array}{rrrr} 2 \amp 0 \amp -1 \amp 1 \\ 0 \amp -2 \amp 4 \amp -6 \\ 2 \amp 2 \amp -5 \amp 7 \\ \end{array}\right]\, \left[ \begin{array}{rrr} 1 \amp -1 \amp -3\\ 2 \amp 3 \amp 1 \\ 4 \amp 1 \amp 0 \\ 0 \amp -2 \amp 1 \\ \end{array}\right]\\ \amp \amp \\ \hspace{2.2cm} \left[ \begin{array}{rrr} -2 \amp -5 \amp -5 \\ 12 \amp 10 \amp -8 \\ -14 \amp -15 \amp 3 \\ \end{array}\right]_{3 \times 3} \amp = \amp \hspace{2.2cm} \left[ \begin{array}{rrr} -2 \amp -5 \amp -5 \\ 12 \amp 10 \amp -8 \\ -14 \amp -15 \amp 3 \\ \end{array}\right]_{3 \times 3} \end{array} \end{equation*}
  • Distributive property.

    Matrix-matrix multiplication is distributive with respect to matrix addition:

    • Case 1:

      \begin{equation*} \begin{array}{ccc} \boldsymbol{A}\,\left(\boldsymbol{B} + \boldsymbol{C} \right) \amp = \amp \boldsymbol{A}\,\boldsymbol{B} + \boldsymbol{A}\,\boldsymbol{C} \amp \amp\\ \boldsymbol{A}_{m\times n}\,\left(\boldsymbol{B}_{n\times p} + \boldsymbol{C}_{n\times p} \right) \amp = \amp \boldsymbol{A}_{m\times n}\,\boldsymbol{B}_{n\times p} + \boldsymbol{A}_{m\times n}\,\boldsymbol{C}_{n\times p} \end{array} \end{equation*}
      \begin{equation*} \begin{array}{ccc} \boldsymbol{A}_{3\times 2}\,\left(\boldsymbol{B}_{2\times 4} + \boldsymbol{C}_{2\times 4}\right) \amp = \amp \boldsymbol{A}_{3\times 2}\,\boldsymbol{B}_{2\times 4} + \boldsymbol{A}_{3\times 2}\,\boldsymbol{C}_{2\times 4}\\ \amp \amp \\ \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left( \left[ \begin{array}{rrrr} 0 \amp 1 \amp -1 \amp 3\\ 2 \amp -1 \amp 1 \amp -2\\ \end{array}\right] + \left[ \begin{array}{rrrr} 1 \amp -1 \amp -3 \amp 1\\ 2 \amp 3 \amp 1 \amp 0 \\ \end{array}\right] \right) \amp = \amp \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left[ \begin{array}{rrrr} 0 \amp 1 \amp -1 \amp 3\\ 2 \amp -1 \amp 1 \amp -2\\ \end{array}\right] + \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \left[ \begin{array}{rrrr} 1 \amp -1 \amp -3 \amp 1\\ 2 \amp 3 \amp 1 \amp 0 \\ \end{array}\right] \end{array} \end{equation*}
      \begin{equation*} \begin{array}{lll} \left[ \begin{array}{rr} 1 \amp 1\\ -2 \amp 0 \\ 3 \amp 1\\ \end{array}\right]\, \hspace{1cm} \left[ \begin{array}{rrrr} 1 \amp 0 \amp-4 \amp 4\\ 4 \amp 2 \amp 2 \amp -2\\ \end{array}\right] \hspace{4.3cm} \amp = \amp \hspace{1cm}\left[ \begin{array}{rrrr} 2 \amp 0 \amp 0 \amp 1\\ 0 \amp -2 \amp 2 \amp -6\\ 2 \amp 2 \amp -2 \amp 7\\ \end{array}\right] \hspace{1cm} + \hspace{0.4cm} \left[ \begin{array}{rrrr} 3 \amp 2 \amp -2 \amp 1\\ -2 \amp 2 \amp 6 \amp -2\\ 5 \amp 0 \amp -8 \amp 3\\ \end{array}\right]\\ \amp \amp\\ \hspace{5cm}\left[ \begin{array}{rrrr} 5 \amp 2 \amp -2 \amp 2\\ -2 \amp 0 \amp 8 \amp -8\\ 7 \amp 2 \amp -10 \amp 10\\ \end{array}\right] \amp = \amp \hspace{2cm}\left[ \begin{array}{rrrr} 5 \amp 2 \amp -2 \amp 2\\ -2 \amp 0 \amp 8 \amp -8\\ 7 \amp 2 \amp -10 \amp 10\\ \end{array}\right] \end{array} \end{equation*}
    • Case 2:

      \begin{equation*} \begin{array}{ccc} \left( \boldsymbol{A} + \boldsymbol{B}\right)\,\boldsymbol{C} \amp = \amp \boldsymbol{A}\,\boldsymbol{C} + \boldsymbol{B}\,\boldsymbol{C} \amp \amp\\ \left( \boldsymbol{A}_{m\times n} + \boldsymbol{B}_{m\times n}\right)\,\boldsymbol{C}_{n\times p} \amp = \amp \boldsymbol{A}_{m\times n}\,\boldsymbol{C}_{n\times p} + \boldsymbol{B}_{m\times n}\,\boldsymbol{C}_{n\times p} \end{array} \end{equation*}
      \begin{equation*} \begin{array}{ccc} \left( \boldsymbol{A}_{2\times 2} + \boldsymbol{B}_{2\times 2}\right)\,\boldsymbol{C}_{2\times 3} \amp = \amp \boldsymbol{A}_{2\times 2}\,\boldsymbol{C}_{2\times 3} + \boldsymbol{B}_{2\times 2}\,\boldsymbol{C}_{2\times 3}\\ \amp \amp \\ \left( \left[ \begin{array}{rr} 1 \amp 0\\ 0 \amp 1 \\ \end{array}\right] + \left[ \begin{array}{rr} 3 \amp -2\\ 1 \amp 4 \\ \end{array}\right] \right)\, \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right] \amp = \amp \left[ \begin{array}{rr} 1 \amp 0\\ 0 \amp 1 \\ \end{array}\right]\, \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right] + \left[ \begin{array}{rr} 3 \amp -2\\ 1 \amp 4 \\ \end{array}\right]\, \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right] \end{array} \end{equation*}
      \begin{equation*} \begin{array}{lll} \hspace{1cm}\left[ \begin{array}{rr} 4 \amp -2\\ 1 \amp 5 \\ \end{array}\right]\, \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right]\hspace{1.5cm} \amp = \amp \hspace{1cm} \left[ \begin{array}{rrr} 2 \amp 1 \amp 0\\ 1 \amp 3 \amp -1 \end{array}\right] + \left[ \begin{array}{rrr} 4 \amp -3 \amp 2\\ 6 \amp 13 \amp -4 \end{array}\right]\\ \amp \amp\\ \hspace{2cm}\left[ \begin{array}{rrr} 6 \amp -2 \amp 2\\ 7 \amp 16 \amp -5 \end{array}\right] \amp = \amp \hspace{2cm}\left[ \begin{array}{rrr} 6 \amp -2 \amp 2\\ 7 \amp 16 \amp -5 \end{array}\right] \end{array} \end{equation*}
  • Associative property with scalar multiplication.

    Matrix multiplication is associative with respect to scalar multiplication:

    \begin{equation*} \begin{array}{cll} r \left(\boldsymbol{A}\,\boldsymbol{B}\right) \amp = \left(r\,\boldsymbol{A}\right)\,\boldsymbol{B} \amp = \boldsymbol{A}\,\left(r\,\boldsymbol{B} \right)\\ \amp \amp\\ r \left(\boldsymbol{A}_{m\times n}\,\boldsymbol{B}_{n\times p}\right) \amp = \left(r\,\boldsymbol{A}\right)_{m\times n}\,\boldsymbol{B}_{n\times p} \amp = \boldsymbol{A}_{m\times n}\,\left(r\,\boldsymbol{B} \right)_{n\times p} \end{array} \end{equation*}
    \begin{equation*} \begin{array}{cll} 2 \left(\boldsymbol{A}_{2\times 2}\,\boldsymbol{B}_{2\times 2}\right) \amp = \left(2\,\boldsymbol{A}\right)_{2\times 2}\,\boldsymbol{B}_{2\times 2} \amp = \boldsymbol{A}_{2\times 2}\,\left(2\,\boldsymbol{B} \right)_{2\times 2} \amp \amp \\ \amp \amp \\ 2 \left( \left[ \begin{array}{rr} 3 \amp 2\\ 1 \amp 0\\ \end{array}\right]\, \left[ \begin{array}{rr} 1 \amp -1\\ 2 \amp 1\\ \end{array}\right] \right) \amp = \left( 2\,\left[ \begin{array}{rr} 3 \amp 2\\ 1 \amp 0\\ \end{array}\right] \right)\, \left[ \begin{array}{rr} 1 \amp -1\\ 2 \amp 1\\ \end{array}\right] \amp = \left[ \begin{array}{rr} 3 \amp 2\\ 1 \amp 0\\ \end{array}\right]\, \left( 2\,\left[ \begin{array}{rr} 1 \amp -1\\ 2 \amp 1\\ \end{array}\right] \right)\\ \amp \amp \\ 2\, \left[ \begin{array}{rr} 7 \amp -1\\ 1 \amp -1\\ \end{array}\right] \amp = \left[ \begin{array}{rr} 6 \amp 4\\ 3 \amp 0\\ \end{array}\right]\, \left[ \begin{array}{rr} 1 \amp -1\\ 2 \amp 1\\ \end{array}\right] \amp = \left[ \begin{array}{rr} 3 \amp 2\\ 1 \amp 0\\ \end{array}\right]\, \left[ \begin{array}{rr} 2 \amp -2\\ 4 \amp 2\\ \end{array}\right]\\ \end{array} \end{equation*}
    \begin{equation*} \begin{array}{lll} \amp \amp \\ \left[ \begin{array}{rr} 14 \amp -2\\ 2 \amp -2\\ \end{array}\right] \hspace{0.5cm} \amp = \hspace{1cm}\left[ \begin{array}{rr} 14 \amp -2\\ 2 \amp -2\\ \end{array}\right]\hspace{1cm} \amp = \hspace{1cm}\left[ \begin{array}{rr} 14 \amp -2\\ 2 \amp -2\\ \end{array}\right] \end{array} \end{equation*}

Subsection 1.1.4 Non-properties of matrices

Insight 1.1.24. Equal product of two matirices.
\begin{equation*} \boldsymbol{A}\,\boldsymbol{B} = \boldsymbol{A}\,\boldsymbol{C} \text{ does not imply } \boldsymbol{B} = \boldsymbol{C}. \end{equation*}

Consider the following three matrices,

\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{ccc} 1 \amp -1 \amp 1\\ 1 \amp 0 \amp 1\\ 2 \amp 1 \amp 2\\ \end{array} \right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{ccc} 1 \amp 2 \amp -1\\ 0 \amp 1 \amp 2\\ 1 \amp 1 \amp 1\\ \end{array} \right], \hspace{1cm} \boldsymbol{C} = \left[ \begin{array}{ccc} -1 \amp 3 \amp 1\\ 0 \amp 1 \amp 2\\ 3 \amp 0 \amp -1\\ \end{array} \right]. \end{equation*}
\begin{equation*} \boldsymbol{A} \cdot \boldsymbol{B} = \left[ \begin{array}{ccc} 2 \amp 2 \amp -2\\ 2 \amp 3 \amp 0\\ 4 \amp 7 \amp 2\\ \end{array} \right], \end{equation*}

and

\begin{equation*} \boldsymbol{A} \cdot \boldsymbol{C} = \left[ \begin{array}{ccc} 2 \amp 2 \amp -2\\ 2 \amp 3 \amp 0\\ 4 \amp 7 \amp 2\\ \end{array} \right]. \end{equation*}

However, \(\boldsymbol{B} \ne \boldsymbol{C}. \)

Insight 1.1.26. Product of two matrices equal to zero.
\begin{equation*} \boldsymbol{A}\,\boldsymbol{B} = \boldsymbol{0} \text{ does not imply } \boldsymbol{A} = \boldsymbol{0} \text{ or } \boldsymbol{B} = \boldsymbol{0}. \end{equation*}

Consider the following two matrices,

\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{ccc} 0 \amp 0 \amp 0\\ 1 \amp 2 \amp -\frac{1}{2}\\ -2 \amp -4 \amp 1\\ \end{array} \right], \hspace{1cm} \boldsymbol{B} = \left[ \begin{array}{ccc} \frac{1}{2} \amp 1 \amp 0\\ 0 \amp 0 \amp \frac{1}{4}\\ 1 \amp 2 \amp 1\\ \end{array} \right]. \end{equation*}
\begin{equation*} \boldsymbol{A} \cdot \boldsymbol{B} = \left[ \begin{array}{ccc} 0 \amp 0 \amp 0\\ 0 \amp 0 \amp 0\\ 0 \amp 0 \amp 0\\ \end{array} \right]. \end{equation*}

However, neither \(\boldsymbol{A} \) nor \(\boldsymbol{B} \) are the zero matrix.

Subsection 1.1.5 Powers of matrices

Definition 1.1.28. Power of a matrix.

The \(k\) power of a matrix is defined as

\begin{equation*} \boldsymbol{A}^k = \underbrace{ \boldsymbol{A} \cdot \boldsymbol{A} \cdot \boldsymbol{A} \cdots \boldsymbol{A}}_{\large{k-\text{times}}}. \end{equation*}

By definition,

\begin{equation*} \boldsymbol{A}^0 = \boldsymbol{I}, \end{equation*}

where \(\boldsymbol{I} \) denotes the identity matrix (1.1.1.5).

Subsubsection 1.1.5.1 Product of two powers

The following holds for any square matrix \(\boldsymbol{A}_{n \times n} \) and integers \(p \) and \(q\text{,}\)

\begin{equation*} \boldsymbol{A}^p \cdot \boldsymbol{A}^q = \boldsymbol{A}^{p+q}. \end{equation*}

Consider the matrix,

\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]. \end{equation*}
  1. Calculate \(\boldsymbol{A}^2 \)

    \begin{equation*} \boldsymbol{A}^2 = \boldsymbol{A} \cdot \boldsymbol{A} = \left[ \begin{array}{cc} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] = \left[ \begin{array}{rr} 0 \amp -1 \\ 1 \amp -1 \\ \end{array} \right]. \end{equation*}
  2. Calculate \(\boldsymbol{A}^3 \)

    \begin{equation*} \begin{array}{ccl} \boldsymbol{A}^3 = \boldsymbol{A} \cdot \boldsymbol{A} \cdot \boldsymbol{A} \amp = \amp \underbrace{\left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]} \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] \\ \amp = \amp \hspace{1.cm} \underbrace{\left[ \begin{array}{rr} 0 \amp -1 \\ 1 \amp -1 \\ \end{array} \right] \hspace{1.1cm} \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]} \\ \amp = \amp \hspace{2.2cm} \left[ \begin{array}{rr} -1 \amp 0 \\ 0 \amp -1 \\ \end{array} \right] \end{array} \end{equation*}
  3. Calculate \(\boldsymbol{A}^5 \)

    \begin{equation*} \begin{array}{ccl} \boldsymbol{A}^5 = \boldsymbol{A} \cdot \boldsymbol{A} \cdot \boldsymbol{A}\cdot \boldsymbol{A} \cdot \boldsymbol{A} \amp =\amp \underbrace{\left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]} \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] \\ \amp = \amp \hspace{1.cm} \underbrace{\left[ \begin{array}{rr} 0 \amp -1 \\ 1 \amp -1 \\ \end{array} \right] \hspace{1.1cm} \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]} \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right] \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]\\ \end{array} \end{equation*}
    \begin{equation*} \begin{array}{ccl} \hspace{4.7cm} \amp = \amp \hspace{2.4cm} \underbrace{\left[ \begin{array}{rr} -1 \amp 0 \\ 0 \amp -1 \\ \end{array} \right] \hspace{1.5cm} \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]} \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]\\ \amp = \amp \hspace{4.4cm} \underbrace{\left[ \begin{array}{rr} -1 \amp 1 \\ -1 \amp 0 \\ \end{array} \right]\hspace{2cm} \cdot \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]}\\ \amp = \amp \hspace{6.4cm} \left[ \begin{array}{rr} 0 \amp 1 \\ -1 \amp 1 \\ \end{array} \right] \end{array} \end{equation*}

    Alternatively, instead of multiplying \(\boldsymbol{A} \) 5-times, we can use \(\boldsymbol{A}^2 \) and \(\boldsymbol{A}^3 \) to find \(\boldsymbol{A}^5 \text{,}\)

    \begin{equation*} \begin{array}{ccl} \boldsymbol{A}^5 = \boldsymbol{A}^2 \cdot \boldsymbol{A}^3 \amp = \amp \underbrace{\left[ \begin{array}{rr} 0 \amp -1 \\ 1 \amp -1 \\ \end{array} \right] \cdot \left[ \begin{array}{rr} -1 \amp 0 \\ 0 \amp -1 \\ \end{array} \right]}\\ \amp = \amp \hspace{1.3cm} \left[ \begin{array}{rr} 0 \amp 1 \\ -1 \amp 1 \\ \end{array} \right]. \end{array} \end{equation*}
Insight 1.1.30. Size matters - square matrix.

Consider the matrix,

\begin{equation*} \boldsymbol{A}_{3\times 2} = \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ 2 \amp 1 \\ \end{array} \right]. \end{equation*}

Find \(\boldsymbol{A}^2 \text{.}\)

This is not possible, since we cannot obtain the product,

\begin{equation*} \boldsymbol{A}_{3\times 2} \cdot \boldsymbol{A}_{3\times 2}. \end{equation*}

In general, we cannot obtain powers of a non-square matrix \(\boldsymbol{A} \text{,}\) because we cannot multiply a \(n \times m \) matrix by another \(n \times m \) matrix unless \(n = m \text{.}\)

Subsubsection 1.1.5.2 Power of a power

The following holds for any square matrix \(\boldsymbol{A}_{n \times n} \) and integers \(p \) and \(q\text{,}\)

\begin{equation*} \left(\boldsymbol{A}^p\right)^q = \boldsymbol{A}^{p \cdot q}. \end{equation*}

Consider the matrix,

\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{rr} 1 \amp -1 \\ 1 \amp 0 \\ \end{array} \right]. \end{equation*}

Find \(\boldsymbol{A}^{10}. \)

From the previous example we know that

\begin{equation*} \boldsymbol{A}^5 = \left[ \begin{array}{rr} 0 \amp 1 \\ -1 \amp 1 \\ \end{array} \right]. \end{equation*}

We can use this and \(\boldsymbol{A}^{10} = \left(\boldsymbol{A}^5\right)^2 \) to get our solution:

\begin{equation*} \begin{array}{ccc} \boldsymbol{A}^{10} = \boldsymbol{A}^5 \cdot \boldsymbol{A}^5 \amp = \amp \left[ \begin{array}{rr} 0 \amp 1 \\ -1 \amp 1 \\ \end{array} \right] \cdot \left[ \begin{array}{rr} 0 \amp 1 \\ -1 \amp 1 \\ \end{array} \right]\\ \amp = \amp \left[ \begin{array}{rr} -1 \amp 1 \\ -1 \amp 0 \\ \end{array} \right]. \end{array} \end{equation*}

Find \(\boldsymbol{A}^6\) where

\begin{equation*} \boldsymbol{A} = \left[ \begin{array}{cc} {3} \amp 0 \\ {-1} \amp {1} \end{array}\right]. \end{equation*}
\(\,\) \(\lceil\)

\(\rceil\)
\(\boldsymbol{A}^6 =\) \(\lfloor\)

\(\rfloor\)
\(\,\) \(\,\) \(\,\)

\(\,\)
Answer 1

\(729\)

Answer 2

\(0\)

Answer 3

\(-364\)

Answer 4

\(1\)

Solution
\begin{equation*} \boldsymbol{A}^6 = \boldsymbol{A}^3 \cdot \boldsymbol{A}^3 =\left[ \begin{array}{cc} {27} \amp {0} \\ {-13} \amp {1} \end{array}\right] \cdot \left[ \begin{array}{cc} {27} \amp {0} \\ {-13} \amp {1} \end{array}\right] = \left[ \begin{array}{ccc} {729} \amp {0} \\ {-364} \amp {1} \end{array}\right]. \end{equation*}

Subsection 1.1.6 Homework

Link to webwork: HW 2.1