Section 1.1 Eigenvalues and Eigenvectors
Objectives
- Define eigenvalues and eigenvectors of a matrix.
- Find the characteristic polynomial of a matrix.
- Find eigenvalues and eigenvectors of a matrix.
- Understand properties of eigenvalues, their connection to other metrics and the eigenvalues of special matrices.
\(\, \)
\(\Large{\textbf{Section Content}} \)
\(\, \)
Subsection 1.1.1 Definition of eigenvalues and eigenvectors
Subsubsection 1.1.1.1 Geometrical meaning
Consider the following matrix,
Take the following vectors and find the product of each with \(\bA{A}\text{,}\)
Definition 1.1.1. Eigenvector.
If the product \(\bA{A} \bA{u}\) points in the same direction as the vector \(\bA{u}\text{,}\) we say that \(\bA{u}\) is an eigenvector of \(\bA{A}\text{.}\)
Definition 1.1.2. Eigenvalue.
If \(\bA{u}\) is an eigenvector of \(\bA{A}\) then the following is true.
where \(\lambda\) is a real or complex number. We call \(\lambda\) the eigenvalue of \(\bA{A}\) associated with the eigenvector \(\bA{u}\text{.}\)
Subsubsection 1.1.1.2 Singular matrices and homogeneous systems
If \(\bA{A}\) is singular matrix, i.e., \(\detA{\bA{A}} = 0,\) we know that this means the system does not have a unique solution. However the system might still have multiple solution.
Example 1.1.3. Solution of system with singular coefficient matrix.
Consider the system of equations,
In this case \(\detA{\bA{A}} = 0,\) which implies we cannot use Cramer's or matrix inverse to find its solution. However, we can still reduce the matrix using Gauss-Jordan:
This means the system has infinitely many solutions:
where \(t\) is any real number.
Insight 1.1.4. Homogeneous systems.
Consider a homogeneous system of linear equations,
If \(\detA{\bA{A}} \ne 0\) then we know that the system has unique solution. However, \(\bA{x} = \bA{0}\) is always a solution to a homogeneous system. This implies that having \(\detA{\bA{A}} \ne 0\) for a homogeneous system means that the only solution is \(\bA{x} = \bA{0}\text{.}\)
Alternatively, if \(\detA{\bA{A}} = 0\) then the system might have infinitely many solutions, meaning a \(\bA{x} \ne \bA{0}\) is also a solution.
Subsection 1.1.2 Finding eigenvalues and eigenvectors
Coming back to the eigenvalue equation,
we can rearrange it as,
- If \(\detA{ \bA{A} - \lambda \bA{I}} \ne 0\text{,}\) then the only solution will be \(\bA{u} = \bA{0}.\)
- On the other hand, if \(\detA{\bA{A} - \lambda \bA{I}} = 0,\) there exists a vector \(\bA{u} \ne \bA{0}\) which satisfies the equation. This vector is an eigenvector of \(\bA{A}\) with associated eigenvalue \(\lambda. \)
Theorem 1.1.5.
The number \(\lambda\) is an eigenvalue of \(\bA{A}\) if and only if \(\bA{A}- \lambda \bA{I}\) is singular:
Subsubsection 1.1.2.1 Characteristic polynomial
Assume that \(\bA{A}\) is an \(n\times n\) matrix. The characteristic polynomial of \(\bA{A}\) is defined as the function \(f(\lambda)\) given by:
where \(\bA{I}\) is the Identity matrix.
Example 1.1.6. Find characteristic polynomial of a matrix.
Find the characteristic polynomial of \(\displaystyle \bA{A} = \left[\begin{array}{cc} 2 \amp 2\\ 2\amp 2 \end{array}\right].\)
We first find the matrix \(\bA{A} - \lambda \bA{I}_2\text{,}\)
Next we find its determinant,
The characteristic polynomial of \(\bA{A}\) is
Subsubsection 1.1.2.2 Finding eigenvalues
The eigenvalues of a matrix are the roots of the characteristic polynomial.
Example 1.1.7. Finding eigenvalues.
Find the eigenvalues of \(\displaystyle \bA{A} = \left[\begin{array}{cc} 2 \amp 2\\ 2\amp 2 \end{array}\right].\)
From example Example 1.1.6 we have the characteristic polynomial of \(\bA{A}\text{,}\)
To find the roots we solve the equation,
The roots, and hence eigenvalues, are
Subsubsection 1.1.2.3 Finding eigenvectors
Given an eigenvalue \(\lambda_i\text{,}\) the corresponding eigenvector \(\bA{u}_i \) is found by solving the following system of equations,
Example 1.1.8. Finding eigenvectors.
Find the eigenvectors of \(\displaystyle \bA{A} = \left[\begin{array}{cc} 2 \amp 2\\ 2\amp 2 \end{array}\right].\)
From example Example 1.1.7, the eigenvalues of \(\bA{A}\) are \(\lambda_1 =0\) and \(\lambda_2 = 4\text{.}\)
-
To find the eigenvector associated to \(\lambda_1\) we solve the following system,
\begin{equation*} \begin{array}{ccc} \left( \bA{A} - 0 \bA{I}_2 \right) \bA{u} \amp=\amp 0\\ \amp\amp\\ \left[\begin{array}{cc} 2 \amp 2\\ 2\amp 2 \end{array}\right] \left[\begin{array}{c} u_1\\ u_2 \end{array}\right] \amp=\amp \left[\begin{array}{c} 0\\ 0 \end{array}\right] \\ \amp\amp\\ 2u_1 + 2u_2 \amp=\amp 0\\ 2u_1 + 2u_2 \amp=\amp 0 \end{array} \end{equation*}A solution to this system is
\begin{equation*} \bA{u} = \left[\begin{array}{c} 1 \\ -1 \end{array}\right]. \end{equation*} -
To find the eigenvector associated to \(\lambda_2\) we solve the following system,
\begin{equation*} \begin{array}{ccc} \left( \bA{A} - 4 \bA{I}_2 \right) \bA{v} \amp=\amp 0\\ \amp\amp\\ \left[\begin{array}{cc} 2 - 4 \amp 2\\ 2\amp 2- 4 \end{array}\right] \left[\begin{array}{c} v_1\\ v_2 \end{array}\right] \amp=\amp \left[\begin{array}{c} 0\\ 0 \end{array}\right] \\ \amp\amp\\ \left[\begin{array}{cc} -2 \amp 2\\ 2\amp -2 \end{array}\right] \left[\begin{array}{c} v_1\\ v_2 \end{array}\right] \amp=\amp \left[\begin{array}{c} 0\\ 0 \end{array}\right] \\ \amp\amp\\ -2v_1 + 2v_2 \amp=\amp 0\\ 2v_1 - 2v_2 \amp=\amp 0 \end{array} \end{equation*}A solution to this system is
\begin{equation*} \bA{u} = \left[\begin{array}{c} 1 \\ 1 \end{array}\right]. \end{equation*}
Subsubsection 1.1.2.4 Examples \(2\times 2\) matrices
Suppose
The characteristic polynomial is
This equation can be rewritten as,
We can solve this equation using the quadratic formula as,
Example 1.1.9. Two different real eigenvalues.
Find the eigenvalues and eigenvectors of \(\displaystyle \bA{A} = \left[\begin{array}{cc} 5 \amp -1\\ -4\amp 2 \end{array}\right].\)
- Find \(\bA{A} - \lambda \bA{I}_2\)
\begin{equation*} \bA{A}- \lambda \bA{I}_2 = \left[\begin{array}{cc} 5- \lambda \amp -1\\ -4\amp 2- \lambda \end{array}\right]. \end{equation*}
- Find characteristic polynomial
\begin{equation*} f(\lambda) = (5-\lambda)(2-\lambda) - 4 = \lambda^2 - 7 \lambda + 6 \end{equation*}
- Find the roots of the
characteristic polynomial
\begin{equation*} \begin{array}{ccc} \lambda^2 - 7 \lambda + 6 \amp=\amp 0\\ (\lambda-6) (\lambda-1) \amp=\amp 0 \end{array} \end{equation*}\begin{equation*} \begin{array}{ccc} \lambda_1 = 1, \hspace{2cm} \lambda_2 = 6. \end{array} \end{equation*}
- Find eigenvector for
\(\lambda_1\text{,}\)
\begin{equation*} \left(\bA{A}- \bA{I}_2\right) \bA{u}= \left[\begin{array}{cc} 5- 1 \amp -1\\ -4\amp 2- 1 \end{array}\right] \left[\begin{array}{c} u_1\\u_2 \end{array}\right] = \left[\begin{array}{cc} 4 \amp -1\\ -4\amp 1 \end{array}\right] \left[\begin{array}{c} u_1\\u_2 \end{array}\right] = \left[\begin{array}{c} 4u_1 - u_2\\ -4u_1 + u_2 \end{array}\right] \end{equation*}\begin{equation*} \left(\bA{A}- \bA{I}_2\right) \bA{u} = \bA{0 } \hspace{1cm} \Rightarrow \hspace{1cm} \left[\begin{array}{c} 4u_1 - u_2\\ -4u_1 + u_2 \end{array}\right] = \left[\begin{array}{c} 0\\0 \end{array}\right] \end{equation*}The solution implies \(u_2 = 4 u_1\text{,}\) so that an eigenvector for \(\lambda_1 \) is\begin{equation*} \bA{u} = \left[ \begin{array}{c} 1\\4 \end{array}\right]. \end{equation*}
- Find eigenvector for
\(\lambda_2\text{,}\)
\begin{equation*} \left(\bA{A}- 6 \bA{I}_2\right) \bA{v}= \left[\begin{array}{cc} 5- 6 \amp -1\\ -4\amp 2- 6 \end{array}\right] \left[\begin{array}{c} v_1\\v_2 \end{array}\right] = \left[\begin{array}{cc} -1 \amp -1\\ -4\amp -4 \end{array}\right] \left[\begin{array}{c} v_1\\v_2 \end{array}\right] = \left[\begin{array}{c} -v_1 - v_2\\ -4v_1 - 4v_2 \end{array}\right] \end{equation*}\begin{equation*} \left(\bA{A}- 6 \bA{I}_2\right) \bA{v} = \bA{0 } \hspace{1cm} \Rightarrow \hspace{1cm} \left[\begin{array}{c} -v_1 - v_2\\ -4v_1 - 4v_2 \end{array}\right] = \left[\begin{array}{c} 0\\0 \end{array}\right] \end{equation*}The solution implies \(v_2 = - v_1\text{,}\) so that an eigenvector for \(\lambda_2 \) is\begin{equation*} \bA{v} = \left[ \begin{array}{c} 1\\ -1 \end{array}\right]. \end{equation*}
Example 1.1.10. Complex eigenvalues.
Find the eigenvalues and eigenvectors of \(\displaystyle \bA{A} = \left[\begin{array}{cc} -2 \amp 4\\ -4\amp 2 \end{array}\right].\)
- Find \(\bA{A} - \lambda \bA{I}_2\)
\begin{equation*} \bA{A}- \lambda \bA{I}_2 = \left[\begin{array}{cc} -2 -\lambda \amp 4\\ -4\amp 2- \lambda \end{array}\right]. \end{equation*}
- Find characteristic polynomial
\begin{equation*} f(\lambda) = (-2-\lambda)(2-\lambda) +16 = \lambda^2 + 12 \end{equation*}
- Find the roots of the
characteristic polynomial
\begin{equation*} \begin{array}{ccc} \lambda^2 + 12 \amp=\amp 0\\ \lambda^2 \amp=\amp -12 \end{array} \end{equation*}\begin{equation*} \lambda_1 = 2\sqrt{3} i, \hspace{2cm} \lambda_2 = -2\sqrt{3}i. \end{equation*}
- Find eigenvector for
\(\lambda_1\text{,}\)
\begin{equation*} \left(\bA{A}- 2\sqrt{3} i \bA{I}_2\right) \bA{u}= \left[\begin{array}{cc} -2 -2\sqrt{3} i \amp 4\\ -4\amp 2- 2\sqrt{3} i \end{array}\right] \left[\begin{array}{c} u_1\\u_2 \end{array}\right] = \left[\begin{array}{c} -2u_1 - 2\sqrt{3}i\, u_1 + 4u_2\\ -4u_1 + 2u_2 - 2\sqrt{3}i\,u_2 \end{array}\right] \end{equation*}Using the first equation we get,\begin{equation*} -2u_1 - 2\sqrt{3}i\, u_1 + 4u_2 = 0 \hspace{1cm} \Rightarrow \hspace{1cm} u_2 = \frac{1}{2} u_1 + \frac{\sqrt{3} i}{2} u_1 = \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right) u_1 \end{equation*}An eigenvector is then,\begin{equation*} \bA{u} = \left[ \begin{array}{c} 2\\ 1 + \sqrt{3} i\ \end{array}\right]. \end{equation*}
- Find eigenvector for
\(\lambda_2\text{,}\)
\begin{equation*} \left(\bA{A} + 2\sqrt{3} i \bA{I}_2\right) \bA{v}= \left[\begin{array}{cc} -2 +2\sqrt{3} i \amp 4\\ -4\amp 2+ 2\sqrt{3} i \end{array}\right] \left[\begin{array}{c} v_1\\v_2 \end{array}\right] = \left[\begin{array}{c} -2v_1 + 2\sqrt{3}i\, v_1 + 4v_2\\ -4v_1 + 2v_2 + 2\sqrt{3}i\,v_2 \end{array}\right] \end{equation*}Using the first equation we get,\begin{equation*} -2v_1 + 2\sqrt{3}i\, v_1 + 4v_2 \hspace{1cm} \Rightarrow \hspace{1cm} v_2 = \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) v_1 \end{equation*}An eigenvector is then,\begin{equation*} \bA{v} = \left[ \begin{array}{c} 2\\ 1 -\sqrt{3} i\ \end{array}\right]. \end{equation*}
Example 1.1.11. Repeated eigenvalues.
Find the eigenvalues and eigenvectors of \(\displaystyle \bA{A} = \left[\begin{array}{cc} 7 \amp 1\\ -4\amp 3 \end{array}\right].\)
- Find \(\bA{A} - \lambda \bA{I}_2\)
\begin{equation*} \bA{A}- \lambda \bA{I}_2 = \left[\begin{array}{cc} 7-\lambda \amp 1\\ -4\amp 3-\lambda \end{array}\right]. \end{equation*}
- Find characteristic polynomial
\begin{equation*} f(\lambda) = (7-\lambda )(3-\lambda) +4 = \lambda^2 - 10 \lambda + 25 = \left(\lambda - 5\right)^2 \end{equation*}
- Find the roots of the
characteristic polynomial
\begin{equation*} \begin{array}{ccc} \left(\lambda - 5\right)^2 \amp=\amp 0 \end{array} \end{equation*}\begin{equation*} \lambda_{1,2} = 5 \end{equation*}
Insight 1.1.12.
A repeated eigenvalue is called a defective eigenvalue. - Find eigenvector for
\(\lambda_1\text{,}\)
\begin{equation*} \left(\bA{A}- 5 \bA{I}_2\right) \bA{u}= \left[\begin{array}{cc} 7-5 \amp 1\\ -4\amp 3-5 \end{array}\right] \left[\begin{array}{c} u_1\\u_2 \end{array}\right] = \left[\begin{array}{cc} 2 \amp 1\\ -4\amp -2 \end{array}\right] \left[\begin{array}{c} u_1\\u_2 \end{array}\right]= \left[\begin{array}{c} -2u_1 - u_2\\ -4u_1 - 2u_2 \end{array}\right] \end{equation*}\begin{equation*} \left(\bA{A}- 5\bA{I}_2\right) \bA{u} = \bA{0 } \hspace{1cm} \Rightarrow \hspace{1cm} \left[\begin{array}{c} -2u_1 - u_2\\ -4u_1 - 2u_2 \end{array}\right] = \left[\begin{array}{c} 0\\0 \end{array}\right] \end{equation*}Using the first equation we get, \(u_2 = -2 u_1\text{,}\) so that an eigenvector is\begin{equation*} \bA{u} = \left[ \begin{array}{c} 1\\-2 \end{array}\right]. \end{equation*}We can only obtain one eigenvector associated to the repeated eigenvalue, this means that only \(\bA{u}\) or multiples of it can satisfy,\begin{equation*} \bA{A} \bA{u} = 5 \bA{u} \hspace{1cm} \Rightarrow \hspace{1cm} (\bA{A} - 5 \bA{I}) \bA{u} = \bA{0}. \end{equation*}The next best thing we can get is a vector that satisfies the following relation,\begin{equation*} (\bA{A} - 5 \bA{I}) \bA{v} = \bA{u}. \end{equation*}We call the vector \(\bA{v}\) a generalized eigenvector.
- Find the generalized eigenvector
for \(\lambda = 5\)
\begin{equation*} \begin{array}{ccc} (\bA{A} - 5 \bA{I}) \bA{v} \amp=\amp \bA{u}\\ \amp\amp\\ \left[\begin{array}{cc} 2 \amp 1\\ -4\amp -2 \end{array}\right] \left[\begin{array}{c} v_1\\v_2 \end{array}\right] \amp=\amp \left[ \begin{array}{c} 1\\-2 \end{array}\right]\\ \amp\amp\\ \left[\begin{array}{c} 2v_1 + v_2\\ -4v_1 -2v_2 \end{array}\right] \amp=\amp \left[ \begin{array}{c} 1\\-2 \end{array}\right] \end{array} \end{equation*}Using the first equation we get,\begin{equation*} 2v_1 + v_2 = 1 \hspace{1cm} \Rightarrow \hspace{1cm} v_2 = 1 - 2v_1. \end{equation*}A generalized eigenvectors is then,\begin{equation*} \bA{v} = \left[ \begin{array}{c} 0\\ 1 \end{array}\right]. \end{equation*}
Subsubsection 1.1.2.5 Example \(3\times 3\) matrices
Example 1.1.13. Finding eigenvalues and eigenvectors of a \(3 \times 3 \) matrix.
Find the eigenvalues and eigenvectors of \(\displaystyle \bA{A} = \left[\begin{array}{ccc} 13\amp0 \amp-15\\ -3\amp 4 \amp 9\\ 5 \amp0\amp-7 \end{array}\right]\)
- Find \(\bA{A} - \lambda \bA{I}_3\)
\begin{equation*} \bA{A} - \lambda \bA{I}_3 = \left[\begin{array}{ccc} 13\amp0 \amp-15\\ -3\amp 4 \amp 9\\ 5 \amp0\amp-7 \end{array}\right] - \left[\begin{array}{ccc} \lambda \amp 0 \amp 0\\ 0 \amp \lambda \amp 0\\ 0\amp 0 \amp \lambda \end{array}\right] = \left[\begin{array}{ccc} 13-\lambda\amp0 \amp-15\\ -3\amp 4-\lambda \amp 9\\ 5 \amp0\amp-7-\lambda \end{array}\right] \end{equation*}
- Find characteristic polynomial
\begin{equation*} \begin{array}{ccc} f(\lambda) = \left|\begin{array}{ccc} 13-\lambda\amp0 \amp-15\\ -3\amp 4-\lambda \amp 9\\ 5 \amp0\amp-7-\lambda \end{array}\right| \amp=\amp (4-\lambda) \left|\begin{array}{cc} 13-\lambda \amp-15\\ 5 \amp-7-\lambda \end{array}\right|\\ \amp=\amp (4-\lambda) \left( (13-\lambda)(-7-\lambda) + 75\right)\\ \amp=\amp (4-\lambda) \left( \lambda^2 - 6\lambda -16 \right)\\ \amp=\amp (4-\lambda) ( \lambda- 8) (\lambda +2 )\\ \end{array} \end{equation*}
- Find the roots of the
characteristic polynomial
\begin{equation*} (4-\lambda) ( \lambda- 8) (\lambda +2 ) = 0 \end{equation*}\begin{equation*} \lambda_1 = 8, \hspace{0.5cm} \lambda_2 = 4, \hspace{0.5cm} \lambda_3 = -2 \end{equation*}
- Find eigenvector for \(\lambda_1 =
8\text{,}\)
\begin{equation*} \begin{array}{ccc} ( \bA{A} - 8 \bA{I}_3) \bA{u} = \left[\begin{array}{ccc} 13-8\amp0 \amp-15\\ -3\amp 4-8 \amp 9\\ 5 \amp0\amp-7-8 \end{array}\right] \left[ \begin{array}{c} u_1\\u_2\\u_3 \end{array}\right] \amp=\amp \left[\begin{array}{ccc} 5\amp0 \amp-15\\ -3\amp -4 \amp 9\\ 5 \amp0\amp-15 \end{array}\right] \left[ \begin{array}{c} u_1\\u_2\\u_3 \end{array}\right]\\ \amp\amp\\ \amp=\amp\left[ \begin{array}{c} 5u_1 - 15u_3\\ -3u_1 -4u_2 + 9u_3\\ 5u_1 - 15u_3 \end{array}\right] \end{array} \end{equation*}From the first equation we have,\begin{equation*} 5u_1 - 15u_3 = 0 \hspace{1cm} \Rightarrow u_1 = 3u_3 \end{equation*}Combining this with the second equation gives,\begin{equation*} \begin{array}{ccc} -3u_1 -4u_2 + 9u_3 \amp=\amp 0\\ -9u_3 - 4u_2 + 9u_3 \amp=\amp0\\ -4u_2 \amp=\amp 0. \end{array} \end{equation*}Then, an eigenvector for \(\bA{A}\) associated with \(\lambda_1 =8\) is\begin{equation*} \left[ \begin{array}{c} 3\\0\\1 \end{array}\right]. \end{equation*}
-
Find eigenvector for \(\lambda_2 = 4\text{,}\)
\begin{equation*} \begin{array}{ccc} (\bA{A} - 4 \bA{I}_3) \bA{u} = \left[\begin{array}{ccc} 13-4\amp0 \amp-15\\ -3\amp 4-4 \amp 9\\ 5 \amp0\amp-7-4 \end{array}\right] \left[ \begin{array}{c} u_1\\u_2\\u_3 \end{array}\right] \amp=\amp \left[\begin{array}{ccc} 9\amp0 \amp-15\\ -3\amp 0 \amp 9\\ 5 \amp0\amp-11 \end{array}\right] \left[ \begin{array}{c} u_1\\u_2\\u_3 \end{array}\right]\\ \amp\amp\\ \amp=\amp\left[ \begin{array}{c} 9u_1 - 15u_3\\ -3u_1 + 9u_3\\ 5u_1 - 11u_3 \end{array}\right]. \end{array} \end{equation*}The only way in which the three equations can be satisfied simultaneously is if \(u_1 = u_3 = 0\text{.}\)
Then, an eigenvector for \(\bA{A}\) associated with \(\lambda_2 =4\) is
\begin{equation*} \left[ \begin{array}{c} 0\\1\\0 \end{array}\right]. \end{equation*} - Find eigenvector for \(\lambda_3 =
-2\text{,}\)
\begin{equation*} \begin{array}{ccc} (\bA{A} +2 \bA{I}_3) \bA{u} = \left[\begin{array}{ccc} 13+2\amp0 \amp-15\\ -3\amp 4+2 \amp 9\\ 5 \amp0\amp-7+2 \end{array}\right] \left[ \begin{array}{c} u_1\\u_2\\u_3 \end{array}\right] \amp=\amp \left[\begin{array}{ccc} 15\amp0 \amp-15\\ -3\amp 6 \amp 9\\ 5 \amp0\amp-5 \end{array}\right] \left[ \begin{array}{c} u_1\\u_2\\u_3 \end{array}\right]\\ \amp\amp\\ \amp=\amp\left[ \begin{array}{c} 15u_1 - 15u_3\\ -3u_1 +6u_2 + 9u_3\\ 5u_1 - 5u_3 \end{array}\right] \end{array} \end{equation*}From the first equation we have,\begin{equation*} 15u_1 - 15u_3 = 0 \hspace{1cm} \Rightarrow u_1 = u_3 \end{equation*}Combining this with the second equation gives,\begin{equation*} \begin{array}{ccc} -3u_1 +6u_2 + 9u_3\\ -3u_3 +6u_2 + 9u_3 \amp=\amp0\\ 6u_3 + 6u_2 \amp=\amp 0 \hspace{1cm} \Rightarrow u_2 = - u_3. \end{array} \end{equation*}Then, an eigenvector for \(\bA{A}\) associated with \(\lambda_3 =-2\) is\begin{equation*} \left[ \begin{array}{c} 1\\-1\\1 \end{array}\right]. \end{equation*}
Subsection 1.1.3 Properties of eigenvalues and eigenvectors
Subsubsection 1.1.3.1 Determinant and eigenvalues product
The product of the eigenvectors of a matrix is equal to the determinant of the matrix
Example 1.1.14. Determinant of matrix in Example 1.1.9.
For \(\displaystyle \bA{A} = \left[\begin{array}{cc} 5 \amp-1\\ -4 \amp2 \end{array}\right]\) in Example 1.1.9 with eigenvectors \(\lambda_1 = 1\) and \(\lambda_2 = 6\) we have,
Example 1.1.15. Determinant of matrix in Example 1.1.10.
For \(\displaystyle \bA{A} = \left[\begin{array}{cc} -2 \amp 4\\ -4 \amp 2 \end{array}\right]\) in Example 1.1.10 with eigenvectors \(\lambda_1 = 2\sqrt{3}\,i\) and \(\lambda_2 = -2\sqrt{3}\,i\) we have,
Example 1.1.16. Determinant of matrix in Example 1.1.11.
For \(\displaystyle \bA{A} = \left[\begin{array}{cc} 7\amp1 \\ -4 \amp 3 \end{array}\right]\) in Example 1.1.11 with eigenvectors \(\lambda_1 = 5\) and \(\lambda_2 = 5\) we have,
Subsubsection 1.1.3.2 Trace and eigenvalues sum
The sum of the eigenvectors of a matrix is equal to the trace of the matrix
Example 1.1.17. Trace of matrix in Example 1.1.9.
For \(\displaystyle \bA{A} = \left[\begin{array}{cc} 5 \amp-1\\ -4 \amp2 \end{array}\right]\) in Example 1.1.9 with eigenvectors \(\lambda_1 = 1\) and \(\lambda_2 = 6\) we have,
Example 1.1.18. Trace of matrix in Example 1.1.10.
For \(\displaystyle \bA{A} = \left[\begin{array}{cc} -2 \amp 4\\ -4 \amp 2 \end{array}\right]\) in Example 1.1.10 with eigenvectors \(\lambda_1 = 2\sqrt{3}\,i\) and \(\lambda_2 = -2\sqrt{3}\,i\) we have,
Example 1.1.19. Trace of matrix in Example 1.1.11.
For \(\displaystyle \bA{A} = \left[\begin{array}{cc} 7\amp1 \\ -4 \amp 3 \end{array}\right]\) in Example 1.1.11 with eigenvectors \(\lambda_1 = 5\) and \(\lambda_2 = 5\) we have,
Subsubsection 1.1.3.3 Eigenvalues and matrix singularity
If \(\bA{A}\) is a singular matrix, then \(\lambda = 0\) is an eigenvalue of \(\bA{A}\text{.}\)
Example 1.1.20. Eigenvalues of a singular matrix.
The eigenvalues of \(\bA{A}\) are \(\lambda_1 = 0\) and \(\lambda_2 = 3\text{.}\)
Subsubsection 1.1.3.4 Eigenvalues and eigenvectors of matrix powers
- The eigenvectors of \(\bA{A}^p\text{,}\) for any integer \(p\text{,}\) are the same as the eigenvectors of \(\bA{A}\text{.}\)
- If \(\lambda_i\) is an eigenvalue of \(\bA{A}\) then \(\lambda_i^p\) is an eigenvalue of \(\bA{A}^p\text{.}\)
Example 1.1.21. Powers of matrix in Example 1.1.9.
For \(\displaystyle \bA{A} = \left[\begin{array}{cc} 5 \amp-1\\ -4 \amp2 \end{array}\right]\) in Example 1.1.9 with eigenvalue \(\lambda_1 = 1\) and eigenvector \(\displaystyle \bA{u} = \left[\begin{array}{c} 1\\4\end{array}\right]\text{,}\) we have,
\(\, \)
For eigenvalue \(\lambda_2 = 6\) and eigenvector \(\displaystyle \bA{u} = \left[\begin{array}{c} 1\\-1\end{array}\right]\text{,}\) we have,
Subsubsection 1.1.3.5 Eigenvalues of triangular matrices
If \(\bA{A}\) is a \(n \times n\) triangular matrix, the eigenvalues of \(\bA{A}\) are the diagonal entries of \(\bA{A}\text{.}\)
Example 1.1.22. Eigenvalues of an upper triangular matrix.
Find the eigenvalues of \(\displaystyle \bA{A} = \left[\begin{array}{ccc} 1 \amp 2\\ 0 \amp 3 \end{array}\right]\text{.}\)
The eigenvalues of \(\bA{A}\) are \(\lambda_1 = 1\) and \(\lambda_2 = 3\text{.}\)
Example 1.1.23. Eigenvalues of a lower triangular matrix.
Find the eigenvalues of \(\displaystyle \bA{A} = \left[\begin{array}{ccc} -2 \amp 0\\ 1 \amp 3 \end{array}\right]\text{.}\)
The eigenvalues of \(\bA{A}\) are \(\lambda_1 = -2\) and \(\lambda_2 = 3\text{.}\)
Example 1.1.24. Eigenvalues of a diagonal matrix.
Find the eigenvalues of \(\displaystyle \bA{A} = \left[\begin{array}{ccc} 5 \amp 0\\ 0\amp 20 \end{array}\right]\text{.}\)
The eigenvalues of \(\bA{A}\) are \(\lambda_1 = 5\) and \(\lambda_2 = 20\text{.}\)
Subsubsection 1.1.3.6 Eigenvalues of a transpose
Eigenvalues are invariant under transpose
Example 1.1.25. Eigenvalues of a transpose.
Given \(\displaystyle \bA{A} = \left[\begin{array}{ccc} 5 \amp 4\\ 2\amp 3 \end{array}\right]\text{,}\) find the eigenvalues of \(\bA{A}\) and \(\bA{A}^{\mathsf{T}}\text{.}\)
The eigenvalues of \(\bA{A}\) are \(\lambda_1 = 7\) and \(\lambda_2 = 1 \)
The eigenvalues of \(\bA{A}^{\mathsf{T}}\) are \(\lambda_1 = 7\) and \(\lambda_2 = 1 \)
Subsubsection 1.1.3.7 Eigenvalues of symmetric matrices
The eigenvalues of a symmetric matrix are real.