Table1SC.mw

> restart;
 

> with( plots ):
 

> with( LinearAlgebra ):
 

> interface( rtablesize=20 ):
 

Warning, the name changecoords has been redefined 

>
 

Shrinking Circle Problem 

 

Numerical Evaluation of Analytic Formula for R 

in the Original Shrinking Circle Problem 

 

Douglas B. Meade 

9 February 2007 

 

>
 

Derivation of Formula for Location of R 

Auxiliary Procedure (MakeTable) 

>
 

> rlist := [ 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001 ]:
 

> rlist2 := [ seq( 10.^(-j), j=0..15 ) ]:
 

> dlist := [12,10,8,6,4]:
 

>
 

Here is Table 1. 

> MakeTable( 1,0, rlist, dlist );
 

(Typesetting:-mprintslash)([Matrix([[r, `d=12`, `d=10`, `d=8`, `d=6`, `d=4`], [1, 3.73205080758, 3.732050814, 3.7320507, 3.73204, 3.731], [.5, 3.93649167287, 3.936491667, 3.9364933, 3.93639, 3.906], [... 

>
 

The effect of a vertical offset in the center of the fixed circle (b<>0) can be explored: 

> MakeTable( 1, -1, rlist, dlist );
 

> MakeTable( 1, -0.1, rlist, dlist );
 

> MakeTable( 1, -0.01, rlist, dlist );
 

>
 

And, here is a single table of values allows us to see now even a very small vertical offset in the fixed circle changes the value of the limit 

> blist := [0, seq( -10.^(-j), j=[1,2,4,6,8,10] ) ]:
 

> <
 

>  Matrix( 1, 1+3, [ nprintf(""), seq( nprintf("b=%07.1e",b), b=blist[1..3] ) ] ),
 

>  Matrix( [ MakeTable( 1, blist[1], rlist2, [20] ), seq( Column( MakeTable( 1, b, rlist2, [20] ), 2 ), b=blist[2..3] ) ] )
 

> >;
 

 

>
 

> <
 

>  Matrix( 1, 1+1+2, [ nprintf(""), seq( nprintf("b=%07.1e",b), b=[blist[1],blist[4..5][]] ) ] ),
 

>  Matrix( [ MakeTable( 1, blist[1], rlist2, [20] ), seq( Column( MakeTable( 1, b, rlist2, [20] ), 2 ), b=blist[4..5] ) ] )
 

> >;
 

 

>
 

> <
 

>  Matrix( 1, 1+1+2, [ nprintf(""), seq( nprintf("b=%07.1e",b), b=[blist[1],blist[6..7][]] ) ] ),
 

>  Matrix( [ MakeTable( 1, blist[1], rlist2, [20] ), seq( Column( MakeTable( 1, b, rlist2, [20] ), 2 ), b=blist[6..7] ) ] )
 

> >;
 

 

>