GEGENBAUER_CC
Gegenbauer Integral of a Function
GEGENBAUER_CC,
a MATLAB library which
uses a Clenshaw-Curtis approach to approximate the integral of a
function f(x) with a Gegenbauer weight.
The Gegenbauer integral of a function f(x) is:
value = integral ( -1 <= x <= + 1 ) ( 1 - x^2 )^(lambda-1/2) * f(x) dx
where -0.5 < lambda.
Licensing:
The computer code and data files made available on this web page
are distributed under
the GNU LGPL license.
Languages:
GEGENBAUER_CC is available in
a FORTRAN90 version and
a MATLAB version and
a Python version.
Related Data and Programs:
gegenbauer_cc_test
GEGENBAUER_EXACTNESS,
a MATLAB program which
tests the monomial exactness of Gauss-Gegenbauer quadrature rules.
GEGENBAUER_POLYNOMIAL,
a MATLAB library which
evaluates the Gegenbauer polynomial and associated functions.
GEGENBAUER_RULE,
a MATLAB program which
can compute and print a Gauss-Gegenbauer quadrature rule.
Reference:
-
D B Hunter, H V Smith,
A quadrature formula of Clenshaw-Curtis type for the Gegenbauer weight function,
Journal of Computational and Applied Mathematics,
Volume 177, 2005, pages 389-400.
Source Code:
-
chebyshev_even1.m,
returns the even Chebyshev coefficients of F,
using the extreme points of Tn(x).
-
chebyshev_even2.m,
returns the even Chebyshev coefficients of F,
using the zeros of Tn(x).
-
gegenbauer_cc1.m,
estimates the Gegenbauer integral of a function.
-
gegenbauer_cc2.m,
estimates the Gegenbauer integral of a function.
-
i4_uniform_ab.m,
returns a scaled pseudorandom I4.
-
r8_mop.m,
returns the I-th power of -1 as an R8 value.
-
r8vec_print.m,
prints an R8VEC.
-
r8vec2_print.m,
prints a pair of R8VEC's.
-
timestamp.m,
prints the YMDHMS date as a timestamp.
Last modified on 23 January 2019.