FD1D_BURGERS_LEAP
Finite Difference Non-viscous Burgers Equation, Leapfrog Method


FD1D_BURGERS_LEAP, a MATLAB program which solves the nonviscous time-dependent Burgers equation using finite differences and the leapfrog method.

The function u(x,t) is to be solved for in the equation:

du/dt + u * du/dx = 0
for a <= x <= b and t_init <= t <= t_last.

Problem data includes an initial condition for u(x,t_init), and the boundary value functions u(a,t) and u(b,t).

The non-viscous Burgers equation can develop shock waves or discontinuities.

Usage:

fd1d_burgers_leap
runs the program.

Licensing:

The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.

Languages:

FD1D_BURGERS_LEAP is available in a C version and a C++ version and a FORTRAN90 version and a MATLAB version.

Related Data and Programs:

BURGERS, a dataset directory which contains some solutions to the viscous Burgers equation.

BURGERS_CHARACTERISTICS, a MATHEMATICA program which solves the time dependent inviscid Burgers equation using the method of characteristics, by Mikel Landajuela.

BURGERS_SOLUTION, a MATLAB library which evaluates an exact solution of the time-dependent 1D viscous Burgers equation.

BURGERS_STEADY_VISCOUS, a MATLAB library which solves the steady (time-independent) viscous Burgers equation using a finite difference discretization of the conservative form of the equation, and then applying Newton's method to solve the resulting nonlinear system.

BURGERS_TIME_VISCOUS, a MATLAB library which solves the time-dependent viscous Burgers equation using a finite difference discretization of the conservative form of the equation.

FD1D_ADVECTION_FTCS, a MATLAB program which applies the finite difference method to solve the time-dependent advection equation ut = - c * ux in one spatial dimension, with a constant velocity, using the FTCS method, forward time difference, centered space difference.

FD1D_BURGERS_LAX, a MATLAB program which applies the finite difference method and the Lax-Wendroff method to solve the non-viscous time-dependent Burgers equation in one spatial dimension.

fd1d_burgers_leap_test

FD1D_BVP, a MATLAB program which applies the finite difference method to a two point boundary value problem in one spatial dimension.

FD1D_HEAT_EXPLICIT, a MATLAB program which uses the finite difference method and explicit time stepping to solve the time dependent heat equation in 1D.

FD1D_HEAT_IMPLICIT, a MATLAB program which uses the finite difference method and implicit time stepping to solve the time dependent heat equation in 1D.

FD1D_HEAT_STEADY, a MATLAB program which uses the finite difference method to solve the steady (time independent) heat equation in 1D.

FD1D_PREDATOR_PREY, a MATLAB program which implements a finite difference algorithm for predator-prey system with spatial variation in 1D.

FD1D_WAVE, a MATLAB program which applies the finite difference method to solve the time-dependent wave equation in one spatial dimension.

PCE_BURGERS, a MATLAB program which defines and solves a version of the time-dependent viscous Burgers equation, with uncertain viscosity, using a polynomial chaos expansion in terms of Hermite polynomials, by Gianluca Iaccarino.

Reference:

  1. Daniel Zwillinger,
    Handbook of Differential Equations,
    Academic Press, 1997,
    ISBN: 0127843965,
    LC: QA371.Z88.

Source Code:


Last revised on 13 January 2019.