BLAS2_S
Single Precision Real Matrix-Vector Basic Linear Algebra Subprograms
BLAS2_S
a FORTRAN77 library which
constitutes the Level 2 Basic Linear Algebra Subprograms (BLAS),
for matrix-vector operations
using single precision real arithmetic.
The BLAS are a small core library of linear algebra utilities,
which can be highly optimized for various architectures.
Licensing:
The computer code and data files described and made available on this web page
are distributed under
the GNU LGPL license.
Languages:
BLAS2_S is available in
a C version and
a C++ version and
a FORTRAN77 version and
a FORTRAN90 version and
a MATLAB version.
Related Data and Programs:
BLAS,
a FORTRAN77 library which
contains the Basic Linear Algebra Subprograms (BLAS)
for level 1 (vector-vector operations),
level 2 (matrix-vector operations) and
level 3 (matrix-matrix operations),
for single precision real arithmetic,
double precision real arithmetic,
single precision complex arithmetic, and
double precision complex arithmetic.
BLAS0,
a FORTRAN77 library which
contains auxilliary functions for the Basic Linear Algebra Subprograms
(BLAS).
LAPACK_EXAMPLES,
a FORTRAN77 program which
demonstrates the use of the LAPACK linear algebra library.
Reference:
-
Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford,
James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
Sven Hammarling, Alan McKenney, Danny Sorensen,
LAPACK User's Guide,
Third Edition,
SIAM, 1999,
ISBN: 0898714478,
LC: QA76.73.F25L36.
-
Thomas Coleman, Charles vanLoan,
Handbook for Matrix Computations,
SIAM, 1988,
ISBN13: 978-0-898712-27-8,
LC: QA188.C65.
-
Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,
LINPACK User's Guide,
SIAM, 1979,
ISBN13: 978-0-898711-72-1,
LC: QA214.L56.
-
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
Algorithm 539:
Basic Linear Algebra Subprograms for Fortran Usage,
ACM Transactions on Mathematical Software,
Volume 5, Number 3, September 1979, pages 308-323.
Source Code:
Examples and Tests:
List of Routines:
-
SGBMV SY:=alpha*A*SX+beta*SY, A a band matrix.
-
SGEMV SY:=alpha*A*SX+beta*SY, A a rectangular matrix.
-
SGER A:=A+alpha*SX*TRANSPOSE(SY), rank 1 update, A a rectangular matrix.
-
SMXPY SY:=SY+A*SX
-
SSBMV SY:=alpha*A*SX+beta*SY, A a symmetric band matrix.
-
SSPMV SY:=alpha*A*SX+beta*SY, A a packed symmetric matrix.
-
SSPR A:=A+alpha*SX*TRANSPOSE(SX), A a packed symmetric matrix.
-
SSPR2 A:=A+alpha*SX*TRANSPOSE(SY)+alpha*SY*TRANSPOSE(SX), A packed symmetric.
-
SSYMV SY:=alpha*A*SX+beta*SY, A a symmetric matrix.
-
SSYR A:=A+alpha*SX*TRANSPOSE(SX), A a symmetric matrix.
-
SSYR2 A:=A+alpha*SX*TRANSPOSE(SY)+alpha*SY*TRANSPOSE(SX), A a symmetric matrix.
-
STBMV SX:=A*SX, A a triangular band matrix.
-
STBSV SX:=INVERSE(A)*SX, A a triangular band matrix.
-
STPMV SX:=A*SX, A a packed symmetric matrix.
-
STPSV SX:=INVERSE(A)*SX, A a packed symmetric matrix.
-
STRMV SX:=A*SX, A a triangular matrix.
-
STRSV SX:=INVERSE(A)*SX, A a triangular matrix.
-
SXMPY SY:=SY+SX*A
You can go up one level to
the FORTRAN77 source codes.
Last revised on 18 January 2014.