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We model the hydrodynamics of a shear cell experiment with an immiscible nematic liquid crystal
droplet in a viscous fluid using an energetic variational approach and phase-field methods [86]. The
model includes the coupled system for the flow field for each phase, a phase-field function for the diffuse
interface and the orientational director field of the liquid crystal phase. An efficient numerical scheme
is implemented for the two-dimensional evolution of the shear cell experiment for this initial data. The
same model reduces to an immiscible viscous droplet in a viscous fluid, which we simulate first to com-
hase-field
ulti-phase

omplex fluids
iquid crystal

pare with other numerical and experimental behavior. Then we simulate drop deformation by varying
capillary number (independent of liquid crystal physics), liquid crystal interfacial anchoring energy and
Oseen–Frank distortional elastic energy. We show the number of eventual droplets (one to several) and
“beads on a string” behavior are tunable with these three physical parameters. All stable droplets possess
signature quadrupolar shear and normal stress distributions. The liquid crystal droplets always possess a
global surface defect structure, called a boojum, when tangential surface anchoring is imposed. Boojums

+1/2
[79,32] consist of degree

. Introduction

Moving interface problems are ubiquitous in the study of mix-
ures of fluids, solids and gases. Many problems in the biological,
hysical and engineering sciences involve systems of equations
hat need to be solved in evolving domains with complex interfaces.
his paper is motivated by composite material applications where
iquid crystal domains are dispersed in an immiscible polymer
hase and then sheared to create arrays of liquid crystal droplets
46,80]. In the classical sharp interface formulation, the model sys-
em consists of the momentum equations for each fluid region,
upplemented by the kinematic and dynamic boundary conditions
n the free interfaces [5,8,14,33,58].

The available numerical methods for solving free-interface
roblems can roughly be divided into two categories, those of

agrangian formulations and those of Eulerian formulations. Rec-
gnized as an explicit tracking method of the interface, Lagrangian
ethods track the interface either through a separate grid for the

nterface, or a set of interconnected “marker” points. Examples
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and −1/2 surface defects within a bipolar global orientational structure.
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include boundary integral methods (surface mesh [6,27,78,30,9])
and the front-tracking method (a set of connected marker particles
[19,52,75,83,89]). Lagrangian approaches are typically very accu-
rate, but can be relatively complicated to implement, especially
for problems involving drastic topological changes; we refer to [9]
for an adaptive mesh algorithm applied to three-dimensional drop
deformation and breakup.

In Eulerian methods, the interface is implicitly defined through
a “label” function, sometimes referred to as the level set function
or phase field, with an evolution equation for the label function
that is supposed to mimic the physics of the explicit interface. A
particular value (level set) of the label function is defined as the
interface. The numerical solution can be performed independently
of the underlying grid, which greatly simplifies gridding, discretiza-
tion and handling of topological changes. Examples include the
volume-of-fluid (VOF) method [26,31,38,22,47], level-set method
[1,54,65], immersed boundary method [55,39] and the phase-field
method which we use in this study.

The phase-field, or diffuse-interface, method dates back to
Rayleigh and van der Waals in the 19th century [62,77]; we refer

to the monograph by Rowlinson and Widom [64] and review arti-
cle by Anderson et al. [2] for historical developments and diverse
applications of these methods. The diffuse interface, for our pur-
poses here of modeling immiscible drops of one fluid in another,
represents a transition layer where the two fluids mix to a cer-
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ain degree, governed by a mixing energy. The governing equations
rise from a standard energetic variational procedure including
he Hamilton least action principle (for reversible processes) and
he Onsager maximum dissipation principle (for irreversible pro-
esses) [44,40,29]. Phase-field models provide a robust and flexible
reatment for interfacial dynamics of multi-phase flows; we refer
he reader to several examples from the physics and engineering
iterature (cf. [88,92,90,82,13]).

The study of immiscible fluid mixtures dates back to the work
f Plateau [56] and Rayleigh [61], with relatively modern stud-
es of Taylor [74], Hinch and Acrivos [25] and Rallison [59].
dvances in instrumentation and computation have facilitated

urther contributions to understanding a particular two-phase
ow, the falling drop experiment, where there is a free surface
ounding one fluid and a gas that is assumed passive. Studies of
he deformation, formation and pinch-off of a Newtonian drop
ave been reported with experimental [71,24,91,81,30,23], the-
retical [71,24,15,7], and numerical [71,81,23,6,38,43] tools (for
thorough review of the subject see [16,10]). When the fluid is

on-Newtonian, observations are often dramatically altered. In the
ripping faucet, much longer filaments form between the drop
nd the orifice for polymeric liquids [3,4,16]. Many studies, both
xperimental and theoretical, were devoted to study the equilib-
ium shape [28,60,43], the critical conditions for breakup [37,18,76]
nd capillary instability [76] of viscoelastic drops. New features
ue to elasticity of the fluid have been documented, such as fil-
ment stabilization, (elastic) retraction, extraordinary long and
ong-lived filament formation and the development of beads-on-
-string perturbations along the filament [20,53,73,63,72]. The
ynamics during and after filament rupture continue to be explored
or fundamental behavior as well as for applications to ink jet and
elated technologies. A high-resolution simulation of inkjet print-
ng of polymeric liquids can be found in [51], which also contains a
etailed discussion of their numerical methods and polymer mod-
ling.

In this paper we explore an immiscible liquid crystal (LC) droplet
mmersed in a viscous fluid confined between two parallel plates,
nd simulate the fate of the LC droplet and feedback to the sur-
ounding fluid motion as the plates are set into steady motion to
enerate a bulk shear flow. There are various applications which
otivate this modeling study, including polymer-dispersed liquid

rystals mentioned above where the viscous matrix considered
ere has to be generalized to a polymeric fluid. It seems pru-
ent to address the simpler problem first, then replace the viscous
atrix by any polymer model with an energy formulation. The LC

roplet requires, minimally, the computation of the orientation
ithin the liquid crystal phase with some model of the nematic
irector dynamics and elastic fluid properties. Previous studies of

iquid crystal drops have focused on a uniform or varying exter-
al electric field (cf. [17,36] and references therein), magnetic field
57], or external shear flow [48,34,87]. We follow the formalism
or two-phase complex fluids developed in [86]. This work pro-
ides a general framework for complex fluid mixtures where the
icrostructural dynamics has an energy-based variational basis. In

86], the authors illustrated the formalism for the slow retraction of
nematic liquid crystal (LC) drop in a viscous solvent, where both
uids are highly viscous. Here we extend the model and numeri-
al algorithm to the inertial regime where the LC drop undergoes
trong deformation and rupture, and where defects in the LC phase
nd hydrodynamic effects are of interest in their own right.

We draw special attention to the role of defects in the liquid

rystal phase during drop deformation and rupture, the secondary
ow and stress distributions of stable drops, and their correlations
ith defects. Defects are classified according to topological degree
hich is calculated by an integral relation that is performed on a

losed curve surrounding the core of the defect; for half-integer
id Mech. 166 (2011) 487–499

or integer defects, respectively, the director rotates through mul-
tiples of � or 2� radians. The defect topology of a nematic liquid
crystal drop, both in equilibrium and in hydrodynamics, depends
critically on the nature of the orientational boundary conditions
at the drop interface. The standard assumption is that of Dirich-
let conditions at interfaces, so-called hard anchoring conditions.
Within the phase field approach taken here, we restrict this study
to tangential anchoring and then parametrically tune the strength
of the anchoring condition through an anchoring energy, which we
show plays a dominant role in the global orientation field within
LC droplets.

The rest of the paper is arranged as follows. In Section 2, we
describe the basic setting and model equations. In Section 3, the cor-
responding numerical scheme is presented. Numerical simulations
are presented and highlights summarized in Section 4, followed by
concluding remarks.

2. The phase-field model of two-phase complex fluids

Let ˝ be a domain which is filled by two incompressible and
immiscible fluids separated by a free moving interface. In our study,
we initialize a liquid crystal drop within a viscous fluid. To dis-
tinguish these two fluids, a phase field function �(x) with x ∈˝ is
introduced and the level set {x :�(x) = 0}depicts the interface, while
{x :�(x) > 0} represents the interior and {x :�(x) < 0} the exterior.
Since this labeling function is defined on the whole domain with
the Eulerian referenced coordinates, we evolve the full phase field
function � and plot the motion of the zero level set to identify the
fluid–fluid interface.

We now establish a phase field formulation based on an
energetic variational approach [86,40,85]. For the system of an
immiscible blend of a nematic liquid crystal droplet and a viscous
matrix, there are three contributions to the free energy: the mix-
ing energy Fmix of the interface, the bulk distortional energy Fbulk
of the nematic liquid crystal phase, and the anchoring energy Fanch
of the liquid crystal phases on the interface. If we suppress the lat-
ter two free energy contributions, then we reduce to the standard
Cahn–Hilliard or Allen–Cahn models for two-phase immiscible flu-
ids.

An order parameter � is used to represent the thickness of the
thin mixing layer separating the two fluids. The evolution of the
phase field function is governed by a stored mixing energy density
[12] given by

fmix(�,∇�) = 1
2
�|∇�|2 + �

4�2
(�2 − 1)

2
, (2.1)

where � is the strength of the mixing energy. The first gradient term
represents the “philic” interactions between the fluids which prefer
complete mixing. The second term is the Ginzburg–Landau poten-
tial for “phobic” interactions that promotes phase separation of the
two fluids. Notice that � is +1 for the nematic fluid, −1 for the
ambient fluid, with a transitional layer width of order O(�).

For two-phase Newtonian (purely viscous) fluids, the free
energy above yields the Cahn–Hilliard or Allen–Cahn equation
depending on the choice of Banach space to derive the variational
derivative [86,40,85].

The nematic liquid crystal fluid, whose principal axis of orienta-
tion is represented by a unit vector n(x) known as the LC director,
possesses an additional elastic energy given by the Oseen–Frank
distortional energy density
fbulk(n) = 1
2
K1(∇ · n)2 + 1

2
K2(n · ∇ × n)2 + 1

2
K3(n × ∇ × n)2, (2.2)

where K1, K2, K3 are elastic constants for the three canonical ori-
entational distortions: splay, twist and bend. For simplicity, we
assume the elastic energy of the liquid crystal droplet is isotropic,
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.e., K1 = K2 = K3 = K, and the Oseen–Frank energy density reduces to
he Dirichlet functional K/2 ∇ n :(∇ n)T. Furthermore, rather than
mpose a norm 1 constraint directly on n, instead we introduce

penalty term of Ginzburg–Landau type, 1/4ε2(|n|2 − 1)
2
, where

� 1 is a penalization parameter. Then the “regularized” bulk elas-
ic energy density becomes [42]

bulk = 1
2
K∇n : (∇n)T + (|n|2 − 1)

2

4ε2
. (2.3)

This formulation circumvents the incapacity of the Oseen–Frank
heory to describe the core of defects through a transition zone with
idth of order O(ε) [42,41]. This effect will be evident in the simu-

ations below as the director shrinks from norm 1 in the vicinity of a
efect core. The alternative approach is to generalize the LC director
o a tensorial order parameter or the full orientational distribution
unction, which is beyond the scope of this paper.

Liquid crystals tend to prefer a particular orientation along an
nterface, called the easy direction. In sharp interface models this
onstitutes a so-called hard anchoring (Dirichlet) boundary con-
ition for n. In the phase field approach, instead one employs an
nchoring energy which can measure the deviations from the pre-
erred interfacial alignment condition. The two most common types
f anchoring are planar, where all directions in the plane of the
nterface are easy directions, and homeotropic, where the easy
irection is the normal to the interface. The natural energy density
or the planar anchoring case is

anch(n, �) = 1
2
A(n · ∇�)2, (2.4)

here A ≥ 0 is a parameter controlling the strength of the anchoring
otential. For the normal anchoring case, the energy density is

anch(n, �) = 1
2
A(|n|2|∇�|2 − (n · ∇�)2). (2.5)

The total energy density is then a sum,

tot(�,n,∇�,∇n) = fmix + 1
2

(1 + �)fbulk + fanch, (2.6)

here the factor (1 +�)/2 represents the volume fraction of the
ematic liquid crystal component. Note that the last two contri-
utions vanish in the viscous liquid phase (by setting � = − 1 and
= 0). The total free energy is

tot =
∫
˝

ftot(�,n,∇�,∇n)dx. (2.7)

Note that the free energy Ftot is parametrized by the diffuse
nterface mixing parameter � and interfacial width �, and by LC
arameters for bulk elasticity K, director norm constraint ε, and
urface anchoring strength A. We now couple this energy to the
ow equations.

The momentum conservation and continuity equations are(
∂u
∂t

+ u · ∇u

)
= −∇p+ ∇ · 	,∇ · u = 0, (2.8)

here� is the density, u is the velocity, p is the pressure and	 is the
tress. In this paper we assume both fluids are density matched. The
lastic stress tensor is derived from the total elastic energy above
hrough the least action principle [11],

e = −�(∇�⊗ ∇�) − K

2
(1 + �)(∇n) · (∇n)T − G, (2.9)
here G = A(n · ∇ �)n ⊗∇ � for planar anchoring (chosen in this
aper) and G = A((n · n) ∇ �− (n · ∇ �)n] ⊗∇ � for normal anchor-

ng. As in [86], we suppress director torque due to flow in the
iquid crystal director model, and neglect the terms that repre-
ent anisotropic viscous extra stress contributions. These terms and
id Mech. 166 (2011) 487–499 489

effects are considered perturbative to the model we explore here
and will be studied separately. The Newtonian viscous stress for
both fluids is

	v = 
(∇u + (∇u)T ), (2.10)

where 
 is the viscosity of either fluid, which we assume to be
matched for this paper. The total stress tensor is the summation of
the elastic stress 	e and the viscous stress 	�.

Based on the total free energy of the system, the Cahn–Hilliard
equation arises as the evolution equation of the labeling function �
with a particular choice of Banach space norm, which is the choice
we make for this paper. That is, we turn off the liquid crystal con-
tributions in the evolution of the phase field function, which is
standard in the literature; if the model performs poorly with this
assumption, this is one place to look to add new physics. For the
liquid crystal droplet experiments, we focus our simulations on the
phase field (parametrized by �) and LC (parametrized by K and A)
contributions to the elastic stress, which strongly couple to the flow
equations.

The Cahn–Hilliard phase field model (employed in all simula-
tions presented here) is

�t + u · ∇� = ∇ · �1∇
(
ıFmix
ı�

)
= �1�∇2

(
−∇2� + �(�2 − 1)

�2

)
,

(2.11)

where the parameter �1 is the so-called molecular mobility con-
stant, and �1�determines the relaxation time scale of the interface.
We assume a no-flux boundary condition on the full fluid domain
˝,

∂�

∂n
|∂˝ = 0. (2.12)

The second boundary condition comes from the variational prin-
ciple [40,44],

∂∇2�

∂n
|∂˝ = 0. (2.13)

We point out that as an alternative transport equation of the
phase field (2.11), we can use the Allen–Cahn equations:

�t + u · ∇� = −�1

(
ıFmix
ı�

)
= −�1�

(
−∇2� + �(�2 − 1)

�2

)
,

(2.14)

with the no-flux boundary condition (2.12) and the second bound-
ary condition (2.13) is dropped. The Allen–Cahn equation involves
a dissipation of the volume fraction for which one can introduce
a Lagrange multiplier to restore conservation [85,68]. We do not
pursue this model here.

The evolution equation for the director field n is determined by
the variational derivative of the bulk free energy,

nt + u · ∇n = −�2
ı((1 + �)/2 Fbulk)

ın
= �2K

(
∇ ·

(
(1 + �)

2
∇n

)

− (1 + �)
2

n(|n|2 − 1)
ε2

)
+ �2Ag, (2.15)

where g = (n · ∇ �) ∇ � for planar anchoring, and
( ∇ � · ∇ �)n − (n · ∇ �) ∇ � for normal anchoring, and �2 deter-

mines another relaxation time scale of the liquid crystal phase. For
simplicity, we assume a Neumann boundary condition on the LC
director ( ∂ n/∂ n)|∂˝ = 0. In this way, we allow the director field to
freely decay to zero in the exterior region of the drop by the effects
from the volume fraction factor (1 +�)/2.
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Fig. 1. Initial data of a drop of one fluid immersed in another fluid, subjected at
time 0 to an imposed linear shear. The red circle is the zero level set of a phase field
function which will be subsequently tracked for different two-fluid experiments.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)
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ig. 2. Steady state shape of a sheared Newtonian drop in a Newtonian fluid at a
ub-critical capillary number with Ca = 0.0486.

. Numerical method
We start by describing our time discretization scheme. We
dvance time semi-implicitly to enhance stability, with the non-
inear transport terms treated explicitly and the linear terms
mplicitly. The incompressibility constraint is dealt with by using

ig. 3. Snapshots of the deformation of a Newtonian drop that is immersed in a Newt
0,12] × [0,1].
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−15

Fig. 4. The velocity profile of u at t = 0.1, 0.4, 0.7, 0.9, 1, 1.1 corresponding to Fig. 3.

the rotational pressure–correction scheme developed in [21]. More
precisely, assuming (un, pn, �n, nn) are known, we solve (un+1, pn+1,
�n+1, nn+1) as follows:

ũn+1 − un
ıt

−
∇2ũn+1 + ∇pn = gn, ũn+1|∂˝ = 0; (3.1a)

n+1

−∇2 n+1 = 1

ıt
∇ · ũn+1,

∂ 

∂n
|∂˝ = 0; (3.1b)

and

pn+1 = pn + n+1 −
∇ · ũn+1, un+1 = ũn+1 − ıt∇ n+1; (3.1c)

onian fluid, at t = 0.1, 0.4, 0.7, 0.9, 1, 1.1 with shear rate 
 = 15 with domain size
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Fig. 5. Snapshots of the deformation of a viscosity matched, immiscible Newtonian drop immersed in a Newtonian fluid, at t = 0.1, 0.5, 0.7, 0.83, 0.89, 1 with [0,3] × [0,1].
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Fig. 6. Snapshots of the velocity field with phase-field contours of the N

�n+1 − �n
�1�ıt

+ ∇2∇2�n+1 − S�
�2

∇2(�n+1 − �n) = ∇2f (�n),

∂�n+1

∂n
|∂˝ = 0,

∂∇2�n+1

∂n
|∂˝ = 0; (3.2)

nd
nn+1 − nn

�2Kıt
− ∇2(nn+1 − nn) + Sn

ε2
(nn+1 − nn) = ∇

·( 1
2

(1 + �n)∇nn) − 1
2

(1 + �n)
nn(|nn|2 − 1)

ε2
,
∂nn+1

∂n
|∂˝ = 0. (3.3)
2 2.5

nian drop at t = 0.7, 0.83, 1, associated with the drop dynamics of Fig. 5.

In the above, gn inlcudes all the nonlinear terms in (2.9) eval-
uated at time step n; S� , Sn > 0 are two suitable stabilization
parameters. In our numerical simulations, we use S� = Sn = 2 which
appear to provide a good balance between stability and accuracy.
Details of stability and error analysis of this stabilized semi-implicit
scheme can be found in [84,69].
Note that the second order term in (2.15) involves a non-
constant coefficient (1 +�)/2, and since�∼ − 1 in the exterior of the
drop, � + 1 oscillates around zero. Hence, (� + 1) may become neg-
ative at some grid points which can cause an iterative method like
Conjugate Gradient method to diverge. The situation is avoided by
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Fig. 7. The shear stress 	12 associated with the snapshots from Fig. 6 at t = 0.7, 0.83, 1.
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Fig. 8. The first normal stress difference N1 =	11

standard approximation of the second-order operator with vari-
ble coefficients by one with constant coefficients, as evident in
3.3).

To summarize, at each time step, the above scheme leads to
sequence of Poisson-type equations for un+1, pn+1, nn+1 and a

i-harmonic equation for �n+1. Since these equations have con-
tant coefficients and the domain is regular, they can be efficiently
nd accurately solved by using a spectral-Galerkin method (cf.
66]). More precisely, we consider the two-dimensional rectangu-
ar domain˝={(x, y) : x ∈ [0, Hx], y ∈ [0, Hy]}with periodic boundary
onditions along the x-axis. We apply a Fourier spectral method
n the x-direction (i.e., periodicity in the flow direction) and the
egendre–Galerkin method (cf. [66]) in the y-direction, to resolve
he physical boundary conditions at the upper and lower plates.
e note in particular that, in order to reduce the computational
omplexity, we use the basis functions which satisfy exactly the
eumann boundary condition for the director field n, as well as the
oundary conditions (2.12) and (2.13) for the Cahn–Hilliard equa-
ion [66]. For these basis functions, the resultant linear systems
corresponding to the snapshots of Figs. 6 and 7.

from the scheme are all sparse with compact bandwidth so they
can be solved with optimal computational complexity.

4. Numerical simulations

4.1. Problem formulation

We now investigate the drop deformation problem in a shear
cell where the plates will be set into steady motion, imposing a
bulk shear rate on the fluid mixture. In all computations, the initial
geometry is depicted schematically in Fig. 1. The computational
domain is the rectangle with lengths Hx = 3H, Hy = H and H = 1. The
drop sits in the center with a radius of a = (H/4). The plate-controlled
bulk shear rate is 
, and 
−1 defines a characteristic time scale.

We use H as the characteristic length scale. In all simulations, we
fix the following parameters based on trial and error and previous
experience with a drop retraction application [86,40,85]:

• the mobility parameter of the phase field variable, �1 = 2 × 10−5;
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F
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Fig. 11. Shear stress distributions 	12 corresponding to Figs. 9 and 10.
ig. 9. Snapshots of a sheared liquid crystal drop in a viscous ambient fluid with
ulk Frank energy constant of K = 0.05 and zero anchoring energy (A = 0) at t = 0.88,
.97, 1.

the relaxation rate parameter of the LC director, �2 = 0.02;
the phase field mixing energy parameter, �= 0.047;
the diffuse interface capillary width parameter, �= 0.02;

the LC director norm 1 penalty parameter ε= 0.03;
both fluid phases have the same viscosity 
= 1/30 and density
� = 1.

ig. 10. The velocity field superimposed with the level set {x :�(x) = 0} correspond-
ng to Fig. 9.
Fig. 12. First normal stress difference distributions 	11 −	22 corresponding to Figs.
9–11.

The capillary number in this model is defined by Ca =
a
/	st

where the effective surface tension 	st is identified in this dif-
fuse interface model as 	st = (2

√
2�/3�) in [86]. Note that the drop

radius a is only well-defined in the early evolution of each simula-
tion and after convergence to an equilibrium droplet distribution.
The goal now is to compare the fate of the initial drop, the defects
that form in the LC phase, the shear and normal stress distributions
around deforming and stationary drops, and the secondary flow
around the droplets, as we vary capillary number Ca (through the
bulk shear rate 
), the LC bulk energy constant K and LC anchoring

energy constant A.

The initial conditions for velocity and pressure are (u, p) =
(u, v, p) = (
(2y−H)/H,0,0). We prescribe the initial phase func-

tion to be � = − tan h(
√

(x − 3H/2)2 + (y−H/2)2 −H/4/�), which
is the equilibrium energy minimizer for this geometry [70].
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th anchoring energy constant A = 0.5 at t = 0.23, 0.3, 0.35, 0.75.
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Fig. 13. Snapshots of the sheared liquid crystal drop wi

As mentioned in the last section, the advantage of the numerical
lgorithm is that we only need to solve the following Poisson-type
quations,

u− ˛∇2u = f,
u(x, y)|y=0,Hy = 0 or

∂u(x, y)
∂y

|y=0,Hy = 0,
(4.1)

nd the bi-harmonic equation

u+ ˛1∇2∇2u− ˛2∇2u = f,
∂u(x, y)
∂y

|y=0,Hy = 0,

∂2u(x, y)
∂y2

|y=0,Hy = 0.

(4.2)

We assume that the function u(x, y) can be expanded in the
ollowing form, consistent with physical boundary values between
he plates and periodicity in the flow direction,

u(x, y) =
n=N/2∑
n=−N/2

un(y)einx. (4.3)

Insertion of the above form into (4.1) and (4.2), we obtain

(1 + ˛n2)un(y) − ˛�un(y) = fn(y),
un|(y=0,Hy) = 0 or u′

n(y) = |(y=0,Hy) = 0,
(4.4)

(1 + ˛1n4 + ˛2n2)un(y) + ˛1∇2∇2un(y)
−(˛1n2 + ˛2)∇2un(y) = fn(y),

u′
n(y) = u′′

n(y)|(y=0,Hy) = 0.
(4.5)

For any fixed n, we only need to solve the above 1D Poisson and
i-harmonic equations, for which we adopt the spectral-Galerkin
ethod with Legendre polynomial basis [67]. The time step is set

o be 10−5 and the spatial resolution consists of 512 Fourier modes
nd 512 Legendre modes.

.2. The viscous drop in a viscous fluid benchmark

We start by simulating an immiscible viscous drop in another
iscous fluid with the Cahn–Hilliard model. This is a limiting case
f our model and algorithm, achieved by turning off both the bulk
C elastic energy (K = 0) and the LC anchoring energy (A = 0). The

arameter set given above was determined by numerical explo-
ation to recover published experimental and numerical behavior
cf. Ref. [9]), in a qualitative sense. Our model exhibits diverse rup-
ure scenarios, which we do not show because they may be artifacts
f the model in unphysical parameter regimes.
0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.3

Fig. 14. A blow-up of the director field n from Fig. 13 at t = 0.24, 0.28, followed by a
further blow-up of the droplet on the left at t = 0.75.
We note that we performed several tests to make sure that the
drop breakup scenario was not strongly influenced by the effects
of confinement. We reduced the drop area in half while holding
the computational domain fixed, and we increased the size of the
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Fig. 15. Shear stress distrib

omputational domain by a factor of 4 while holding the initial
rop area fixed. The simulations that are presented here have a
eak nonlinear shear at the sidewalls, whereas both reductions in
rop area fraction lead to simple linear shear at the sidewalls but
ith the same drop breakup scenario. We omit these additional

imulations, which are available upon request.

.2.1. Sub-critical capillary number prior to drop breakup
First, for the fixed parameters indicated above, we numerically

etermine the critical capillary number Ca ∼ .0530 corresponding
o 
∼ 12 s−1, where the drop transitions from a steady equilibrium
hape to breakup. Fig. 2 shows the steady drop shape for 
 = 15 s−1

Ca = .0486) (Figs. 3 and 4).

.2.2. Super-critical capillary number and drop breakup
We now raise the shear rate to 
 = 15 s−1 for which the capil-

ary number Ca = .0663. Fig. 5 shows a sequence of snapshots as the
roplet is sheared, elongated, develops a thin thread between two
eparating drops, and finally the thread breaks leaving two stable
aughter droplets similar in shape and orientation to the subcriti-
al capillary number prediction. The detailed hydrodynamics of the
roplet deformation and rupture is given in Fig. 6, which superim-
oses the velocity field around the zero level set of the phase field
unction �. The nonlinear shear and generation of vertical trans-
ort due to the Cahn–Hilliard dynamics are evident. Figs. 7 and 8
how level sets of the shear stress and first normal stress difference
ssociated with the velocity field snapshots in Fig. 6. We define
he shear and normal stress components with respect to the coor-
inates of the shear cell, where the “xy” or “12” component of 	

s the primary shear stress, and the differences between the “xx”
11) and “yy” (22) components of 	 define the first normal stress
ifference N1. These stress features are standard metrics for shear
heology [35,45], so we will focus on the level sets of these stress
eatures across the computational domain. We note that the most
elevant coordinates to define shear and normal stress components
or a viscoelastic fluid domain bounded by an evolving free sur-
ace are not standardized. In a neighborhood of the interface, the
urface tangent and normal are most natural; however, our inter-
aces will rupture, rendering those coordinates problematic. We
ote that stable drops possess a symmetric distribution of positive
nd negative shear stress and first normal stress difference, which
e shall call a quadrupolar stress distribution. Integration of these

tresses over their respective domains leads to a balance of shear
nd normal forces that sustain a stable drop.
.3. A liquid crystal drop immersed in a viscous fluid

We now study the shear-induced dynamics of a liquid crystal
rop. In all computations reported below, we fix the bulk Frank elas-
s corresponding to Fig. 13.

ticity constant K = 0.05 and then vary the strength of the anchoring
energy A. The fixed parameter values imposed above for the viscous
drop simulations are retained. We choose the super-critical shear
rate 
 = 15 s−1 and capillary number Ca = .0663 from the viscous
drop simulation, since for different K and A the critical shear rate
will change. We initialize a uniform director field n = (1, 0) aligned
with the direction of plate motion, and recall that our anchoring
energy potential promotes tangential anchoring along the drop
interface when A > 0. A similar study can be carried out with normal
(homeotropic) anchoring at the drop interface, and with different
Frank elasticity constant K, but those results are not considered
here.

4.3.1. Frank elasticity in the LC phase with zero surface anchoring
energy (A = 0)

Comparing Fig. 9 with Fig. 5, the elastic energy and extra stress
in the LC domain have several consequences. The initial stretching
and elongation of the LC drop is slower than the viscous drop. Next,
the thinning thread of LC fluid does not “thin and break” in a truly
longwave instability mechanism (which drains all fluid back into
the two daughter drops). Instead, the thinning thread develops a
capillary instability with a wavelength that supports the growth of
one drop in the interior filament. The two threads that now con-
nect the 3 emerging droplets follow the longwave rupture scenario
observed in Fig. 5.

The upshot of this simulation is that an elasticity-induced insta-
bility saturates in the formation of an additional smaller satellite
drop between the two daughter drops. Bulk Frank elasticity alone
in the LC phase causes a transition from two to three droplets with
all other material and experimental conditions held constant.

Fig. 10 superimposes the velocity field with the drop shapes at
the same snapshots as in Fig. 9, while Figs. 11 and 12 show the
shear and first normal stress distributions, respectively, for all three
snapshots. Note that the stable daughter droplets each develop the
quadrupolar stress distributions around their interface that were
observed in stable viscous drops.

4.3.2. Frank elasticity in the LC phase with moderate surface
anchoring energy (A = 0.5)

We now couple surface anchoring energy, which leads to a
strong coupling of the phase field function�with the LC orientation
field n in both the flow equations (through the elastic extra stress)
and the director evolution equation. Four snapshots are shown in
Fig. 13. Rather than focus on early stretching dynamics, we focus

instead on the subsequent rippled structure in the interior filament
at t = .23. We observe that bulk elasticity coupled with interfa-
cial anchoring energy contribute to a shorter wavelength capillary
instability of the interior, stretching filament. Here, the wavelength
is one-fourth of the length of the interior thread, which has the
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Fig. 16. (a) First normal stress difference 	11 −	22 corresponding to Figs. 13 and 15; (b) a blow-up of the droplet on the left in Fig. 14 with the director field n superimposed
w n of the references to color in this figure legend, the reader is referred to the web version
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ffect of retaining significantly more mass in the interior thread
han the A = 0 simulation. The instability of the interior thread once
gain does not grow; the perturbations are arrested, smooth out,
nd the interior mass recoils to form a single daughter droplet. The
nterior droplet is larger than the two droplets shed off the tips. The
nal outcomes for A = 0 and A = 0.5 are 3 daughter droplets each,
ut with different size distributions, and a very different transient
ynamics.

We turn attention now to the LC orientation field, since this is
he first simulation with LC physics in the bulk and diffuse inter-
ace. Fig. 14 is a blow-up of the left tip of the sheared droplet as
he daughter droplet ruptures from the tip and then forms a sta-
le small droplet; the LC director field is superimposed in each
napshot. The stable daughter droplet illustrates a numerical obser-
ation: every daughter droplet has the same global bipolar defect
tructure, called a boojum, with two surface point defects of topologi-
al degree +1/2 and −1/2 situated at opposite poles of the equilibrium
rop [32,50,79]. Boojums are typical of tangential anchoring condi-
ions on bounded volumes of LCs in equilibrium, whereas here they

re the canonical orientation structure of steady state droplets in a
teady shear-dominated 2D velocity field.

We turn now to the shear stress distribution (Fig. 15), first nor-
al stress distribution (Fig. 16), and velocity field (Fig. 17) for each

f the above snapshots. Once again, there is a clear shear and normal

Fig. 17. The velocity field superimposed with the level set {x :�(x) = 0} correspond-
ing to Fig. 13.
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Fig. 18. Snapshots of a sheared liquid crystal drop with anchoring energy constant A = 0.7 at t = 0.2, 0.23, 0.3, 0.45.

Fig. 19. Shear stress distributions 	12 corresponding to Fig. 18.
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Fig. 20. First normal stress differences distrib

tress signature, the quadrupolar stress structure seen in all stable
roplets, and the flow feedback due to the LC bulk and interfacial
tress is clearly evident. Finally, we point to Fig. 16b that shows a
emarkable feature. Namely, the two surface defects are located in
he transition zones between positive and negative shear stresses
nd first normal stress differences. This global orientation-stress
tructure appears to characterize all steady LC drops.

The final simulation corresponds to a stronger surface anchor-

ng energy, raising A to 0.7. Fig. 18 shows a similar early evolution,

ith stretching, shedding of droplets off the tips, and a rip-
led interior filament with 5 ripples instead of 4. The anchoring
nergy apparently tunes the wavelength of the elastic capillary
nstability of the interior thinning filament: stronger anchoring
s 	11 −	22 corresponding to Figs. 18 and 19.

energy leads to onset of shorter wavelengths and the potential
for different satellite drop formation scenarios. In this simula-
tion, the interior rippled filament does not recoil as in the A = 0
and A = 0.5 simulations to form a third drop. Rather, the interior
filament behaves similar to the original sheared drop, shedding
drops from the ends, after which the interior ripples coarsen to
form a fifth droplet. The final outcome consists of five daugh-
ter droplets of three different sizes. Figs. 19 and 20 show once

again the shear and first normal stress distributions evolve to
a quadrupolar structure in each steady state droplet, and the
velocity distributions in Fig. 21 show stronger 2D flow feedback
due to enhanced surface anchoring energy. All daughter droplets
possess the global boojum defect structure, where the surface
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Fig. 21. The velocity field superimposed with th

efects reside at opposite poles in the transition regions from
ositive to negative shear stress and first normal stress differ-
nces.

. Conclusion

An energy-based phase field model is presented for the dynam-
cs of liquid crystal drops in an immiscible viscous fluid in

parallel-plate shear cell. A stabilized semi-implicit first-order
ime-marching scheme, coupled with a Fourier–Legendre–Galerkin
pproximation in two space dimensions, is implemented to study
he deformation and rupture of the immersed LC (or viscous)
roplet.

Numerical experiments are presented for the viscous drop prob-
em to identify a critical capillary number for droplet breakup, and
o identify parameter sets which reproduce the qualitative behav-
or of thin fluid threads connecting the two daughter drops when
he drop ruptures. We then retain these parameters and explore the

odified drop evolution at super-critical capillary number for a LC
rop. We first introduce bulk Frank elasticity in the LC drop, while
uppressing the interfacial anchoring energy. While not physically
otivated, this simulation shows that bulk elasticity alone can lead

o a different rupture scenario, in which a third, smaller satellite
roplet forms through a capillary instability of the thread connect-

ng the two emerging drops. We then turn on the anchoring energy
hich promotes tangential anchoring of the LC director along the

nterface, and further introduces an elastic stress contribution. This
imulation leads to a shorter wavelength capillary instability of the
lament connecting the bulging tips of the original sheared LC drop.
he interior filament possesses more mass, so that the first two
rops shed off the tips are smaller. The sheared interior filament
ither recoils to form one larger droplet or breaks up into more
atellite drops, depending on the strength of the anchoring energy.
hus we find the ability to tune the number and size of daughter
roplets by varying capillary number, Frank elasticity constant, and
nchoring energy.

Along with each droplet rupture scenario, we show flow, stress
nd defect features. Frank elasticity and anchoring energy lead to
ignificant 2D flow generation relative to the viscous drop simu-
ations. Furthermore, all stable drops acquire the same symmetric
hear and first normal stress difference distributions around the
rop interface, with four strips of positive and negative stresses

nterlacing one another, which has a quadrupolar structure. Addi-
ionally, all stable LC drops with both Frank elasticity and anchoring
nergy potentials have a global bipolar defect structure called
boojum [49,32,50,79], with two opposite signed, half-integer
egree defects at opposite poles of the stable drop. Remarkably,
hese surface defects reside precisely in the transition regions
etween positive and negative values of shear stress and first nor-
al stress difference distributions. There are four such regions, but

he drops are deformed (“squeezed”) out of an equilibrium circu-

[
[

[

0 0.5 1 1.5 2 2.5 3

l set {x :�(x) = 0} corresponding to Figs. 18–20.

lar shape by the steady shear-dominated flow in the shear cell;
the surface defects always reside in the two regions with greater
curvature.

There are remaining issues which can be investigated using the
current model and code, for example, the extensions of the model
and code to a polymer solvent, adding viscous torques to the direc-
tor equation, changing the anchoring conditions to favor normal
anchoring which will promote internal hedgehog defects instead of
the surface boojums, and generalizing the current Ericksen–Leslie
model to more general liquid crystalline polymer tensor models.
These investigations will be pursued elsewhere.

Acknowledgements

The research of X. Yang is partially supported by ARO W911NF-
09-1-0389. The research of M.G. Forest is partially supported by
NSF DMS-0908423, ARO W911NF-09-1-0389, and the Department
of Energy. The research of C. Liu is partially supported by NSF-
0707594. The research of J. Shen is partially supported in part by
NSF-0915066 and AFOSR FA9550-08-1-0416.

References

[1] D. Adalsteinsson, J.A. Sethian, A fast level set method for propagating interfaces,
J. Comput. Phys 118 (1995) 269–277.

[2] D.M. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse-interface methods in fluid
mechanics, Annu. Rev. Fluid Mech. 30 (1998) 139–165.

[3] P.E. Arratia, J.P. Gollub, D.J. Durian, Polymer drop breakup, Chaos 17 (2007)
041102.

[4] P.E. Arratia, J.P. Gollub, D.J. Durian, Polymer filament thinning & breakup in
microchannels, Phys. Rev. E 77 (2008) 036309.

[5] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press,
1999.

[6] I.B. Bazhlekov, P.D. Anderson, H.E.H. Meijer, Nonsingular boundary integral
method for deformable drops in viscous flows, Phys. Fluids 16 (4) (2004)
1064–1081.

[7] S. Bechtel, M.G. Forest, D. Holm, K Lin, 1-D closure models for 3-d incom-
pressible viscoelastic free jets: von Karman flow geometry and elliptical
cross-section, J. Fluid Mech. 196 (1988) 241–262.

[8] P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge
University Press, Cambridge, 1995.

[9] V. Cristini, J. Blawzdziewicz, M. Loewenberg, An adaptive mesh algorithm for
evolving surfaces: simulations of drop breakup and coalescence, J. Comput.
Phys. 168 (2001) 445–463.

10] V. Cristini, Y.-C. Tan, Theory and numerical simulation of droplet dynamics in
complex flows – a review, Lab chip 4 (2004) 257–264.

11] M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Oxford University Press,
United Kingdom, 1986.

12] P.S. Drzaic, Free energy of a nonuniform system. I. Interfacial free energy, J.
Chem. Phys. 28 (2005) 258–267.

13] Q. Du, C. Liu, X. Wang, Simulating the deformation of vesicle membranes
under elastic bending energy in three dimensions, J. Comput. Phys. 212 (2005)
757–777.

14] D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial Transport Process and Rheol-

ogy, Butter-worths/Heinemann, London, 1999.

15] J. Eggers, Theory of drop formation, Phys. Fluids 7 (1995) 941–953.
16] J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod.

Phys. 69 (1997) 865–930.
17] A. Fernandez-Nieves, D.R. Link, D. Rudhardt, D.A. Weitz, Electro-optics of bipo-

lar nematic liquid crystal droplets, Phys. Rev. Lett. 92 (2004) 105503.



an Flu

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

X. Yang et al. / J. Non-Newtoni

18] R.W. Flumerfelt, Drop breakup in simple shear fields of viscoelastic fluids, Ind.
Eng. Chem. Fundam. 11 (1972) 312–318.

19] J. Glimm, M.J. Graham, J. Grove, X.L. Li, T.M. Smith, D. Tan, F. Tangerman, Q.
Zhang, Front tracking in two and three dimensions, J. Comput. Math. 7 (1998)
1–12.

20] M. Goldin, J. Yerushalmi, R. Pfeffer, R. Shinnar, Breakup of a laminar capillary
jet of a viscoelastic fluid, J. Fluid Mech. 38 (1969) 689–711.

21] J.L. Guermond, J. Shen, On the error estimates of rotational pressure–correction
projection methods, Math. Comput. 73 (2004) 1719–1737.

22] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface
tracking with smoothed surface stress methods for three-dimensional flows, J.
Comput. Phys. 152 (1999) 423–456.

23] S. Guido, M. Villone, Three dimensional shape of a drop under simple shear
flow, J. Rheol. 42 (1998) 395–415.

24] D.M. Henderson, H. Segur, L.B. Smolka, M. Wadati, The motion of a falling liquid
filament, Phys. Fluids 13 (2000) 550–565.

25] E.J. Hinch, A. Acrivos, Long slender drops in simple shear flow, J. Fluid Mech. 98
(1980) 305C328.

26] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free
boundaries, J. Comput. Phys. 39 (1) (1981) 201–225.

27] T.Y. Hou, Numerical study of free interface problems using boundary inte-
gral methods, in: Documenta Mathematica, Extra Volume – Proceedings of the
International Congress of Mathematicians, III, 1998, pp. 601–610.

28] A.S. Hsu, L.G. Leal, Deformation of a viscoelastic drop in planar extensional flows
of a Newtonian fluid, J. Non-Newton. Fluid Mech. 160 (2009) 176–180.

29] Y. Hyon, D. Kwak, C. Liu, Energetic variational approach in complex fluids:
maximum dissipation principle, DCDS-A 26 (4) (2009) 1291–1304.

30] P.J.A. Janssen, A. Vananroye, P. Van Puyvelde, P. Moldenaers, P.D. Anderson,
Generalized behavior of the breakup of viscous drops in confinements, J. Rheol.
54 (2010) 1047–1060.

31] D. Khismatullin, Y. Renardy, M. Renardy, Development and implementation of
VOF-PROST for 3d viscoelastic liquid–liquid simulations, J. Non-Newton. Fluid
Mech. 140 (1992) 120–131.

32] S. Kralj, R. Rosso, E.G. Virga, Fingered core structure of nematic boojums, Phys.
Rev. E 78 (2008) 031701.

33] V.V. Krotov, A.I. Rusanov, Physicochemical Hydrodynamics of Capillary Sys-
tems, Imperial College Press, London, 1999.

34] K. Verhulst, R. Cardinaels, P. Moldenaers, S. Afkhami, Y. Renardy, Influence
of viscoelasticity on drop deformation and orientation in shear flow. Part 2.
Dynamics, J. Non-Newton. Fluid Mech. 156 (2009) 44–57.

35] R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford University
Press, 1999.

36] B.I. Lev, V.G. Nazarenko, A.B. Nych, P.M. Tomchuk, Deformation and instability
of nematic drops in an external electric field, JETP Lett. 71 (2000) 262–265.

37] H. Li, U. Sundararaj, Does drop size affect the mechanism of viscoelastic drop
breakup? Phys. Fluids 20 (2008) 053101.

38] J. Li, Y. Renardy, M. Renardy, Numerical simulation of breakup of a viscous drop
in simple shear flow with a volume-of-fluid method, Phys. Fluids 12 (2000)
269–282.

39] Z. Li, K. Ito, The Immersed Interface Method – Numerical Solutions of PDEs
Involving Interfaces and Irregular Domains, SIAM Frontiers in Applied Mathe-
matics, 2006.

40] C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids
and its approximation by a Fourier-spectral method, Physica D 179 (3–4) (2003)
211–228.

41] C. Liu, J. Shen, X. Yang, Dynamics of defect motion in nematic liquid crystal
flow: modeling and numerical simulation, Commun. Comput. Phys. 2 (2007)
1184–1198.

42] C. Liu, N.J. Walkington, Approximation of liquid crystal flows, SIAM J. Numer.
Anal. 37 (2000) 725–741.

43] M. Loewenberg, E.J. Hinch, Numerical simulation of a concentrated emulsion
in shear flow, J. Fluid Mech. 321 (1996) 395–419.

44] J. Lowengrub, L. Truskinovsky, Quasi-incompressible cahnchilliard fluids and
topological transitions, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998)
2617–2654.

45] C.W. Macosko, Rheology: Principles, Measurements, and Applications, VCH
Publishers, Inc., New York, 1994.

46] F.P. La.Mantia, Thermotropic Liquid Crystal Polymer Blends, Technomic, Lan-
caster, 1993.

47] F. Mashayek, N. Ashgriz, A hybrid finite-element-volume-of-fluid method for
simulating free surface flows and interfaces, Int. J. Numer. Meth. Fluids 12
(2005) 1363–1380.

48] L.J. McWhirter, G.N. Patey, Molecular dynamics simulations of a ferroelectric
nematic liquid under shear flow, J. Chem. Phys. 117 (2002) 8551–8564.

49] N.D. Mermin, Physica (Utrecht) 90 B+C (1977).
50] V.P. Mineev, G.E. Volovik, Planar and linear solitons in superfluid 3He, Phys.

Rev. B 18 (1978) 3197.
51] N.F. Morrison, G.H. Oliver, Viscoelasticity in inkjet printing, Rheol. Acta 49

(2010) 619–632.
52] P.K. Notz, O.A. Basaran, Dynamics and breakup of a contracting liquid filament,
J. Fluid Mech. 512 (2004) 223–256.
53] M.S.N. Oliveira, G.H. McKinley, Iterated stretching and multiple beads-on-a-

string phenomena in dilute solutions of highly extensible flexible polymers,
Phys. Fluids 17 (2005) 071704.

54] S.J. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces,
Springer-Verlag, 2002.

[

[

id Mech. 166 (2011) 487–499 499

55] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 1–39.
56] J. Plateau, Statique experimental et theorique des liquides soumis aux seules

forces moleculaires, Gauthier-Villars II (1873) 319.
57] O.O. Prishchepa, A.V. Shabanov, V.Ya. Zyryanov, A.M. Parshin, V.G. Nazarov,

Friedericksz threshold field in bipolar nematic droplets with strong surface
anchoring, Phys. Fluids 84 (2007) 607–612.

58] R.F. Probstein, Physicochemical Hydrodynamics: An Introduction, Wiley, New
York, 1994.

59] J.M. Rallison, The deformation of small viscous drops in shear flows, Annu. Rev.
Fluid Mech. 16 (1984) 45–66.

60] S. Ramaswamy, L.G. Leal, The deformation of a viscoelastic drop subjected to
steady uniaxial extensional flow of a Newtonian fluid, J. Non-Newton. Fluid
Mech. 85 (1999) 127–163.

61] L. Rayleigh, On the instability of jets, Proc. Lond. Math. Soc. 10 (1878)
4–13.

62] L. Rayleigh, On the theory of surface forces-II. Compressible fluids, Phil. Mag.
33 (1892) 209C220.

63] M. Renardy, Some comments on the surface tension driven break-up (or the
lack of it) of viscoelastic jets, J. Non-Newton. Fluid Mech. 51 (1994) 97–107.

64] J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Clarendon Press,
Oxford, 1989.

65] J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science, Cambridge University Press, 1999.

66] J. Shen, Efficient spectral-Galerkin method. I. direct solvers for second- and
fourth-order equations by using Legendre polynomials, SIAM J. Sci. Comput. 15
(1994) 1489–1505.

67] J. Shen, Remarks on the pressure error estimates for the projection methods,
Numer. Math. 67 (1994) 513–520.

68] J. Shen, X. Yang, An efficient moving mesh spectral method for the phase-field
model of two-phase flows, J. Comput. Phys. 228 (2009) 2978–2992.

69] J. Shen, X. Yang, Numerical approximations of Allen–Cahn and Cahn–Hilliard
equations, Discrete Contin. Dyn. Syst.-A 28 (2010) 1669–1691.

70] J. Shen, X. Yang, A phase-field model for two-phase flows with large den-
sity ratio and its numerical approximation, SIAM J. Sci. Comput. 32 (2010)
1159–1179.

71] X.D. Shi, M.P. Brenner, S.R. Nagel, A cascade of structure in a drop falling from
a faucet, Science 265 (1994) 219–222.

72] L.B. Smolka, A. Belmonte, Charge screening effects on filament dynam-
ics in xanthan gum solutions, J. Non-Newt. Fluid Mech. 137 (137) (2006)
103–109.

73] M.C. Sostarecz, A. Belmonte, Beads-on-string phenomena in wormlike micellar
fluids, Phys. Fluids 17 (2004) L67–L70.

74] G.I. Taylor, The formation of emulsions in definable fields of flow, Proc. R. Soc.
Lond. Ser. A. 146 (1934) 501–523.

75] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han,
S. Nas, Y.-J. Jan., A front-tracking method for the computations of multiphase
flow, J. Comput. Phys. 169 (2) (2001) 708–759.

76] V.T. Tsakalos, P. Navard, E.E. Peuvrel-Disdier, Deformation and breakup mech-
anisms of single drops during shear, J. Rheol. 42 (1998) 1403–1417.

77] J. van der Waals, The thermodynamic theory of capillarity under the hypothesis
of a continuous density variation, J. Stat. Phys. 20 (1893) 197–244.

78] S. Veerapaneni, D. Gueyffier, G. Biros, D. Zorin, A boundary integral method for
simulating the dynamics of inextensible vesicles suspended in a viscous fluid
in 2d, J. Comput. Phys. 228 (7) (2009) 2334–2353.

79] G.E. Volovik, O.D. Lavrentovich, Topological dynamics of defects: boojums in
nematic drops, Zhurn. Eksp. Teor. Fiz. 85 (1983) 1997–2010.

80] J.L. West, Liquid-crystalline polymers, ACS Symp. Ser. (1990).
81] E.D. Wilkes, S.D. Phillips, O.A. Basaran, Computational and experimental anal-

ysis of dynamics of drop formation, Phys. Fluids 11 (1999) 3577–3598.
82] S.M. Wise, J.S. Lowengrub, J.S. Kim, W.C. Johnson, Efficient phase-field simula-

tion of quantum dot formation in a strained heteroepitaxial film, Superlattices
Microstruct. 36 (2004) 293–304.

83] Z.L. Xu, J. Glimm, Y.M. Zhang, X.F. Liu, A multiscale front tracking method for
compressible free surface flows, Chem. Eng. Sci. 62 (13) (2007) 3538–3548.

84] X. Yang, Error analysis of stabilized semi-implicit method of Allen–Cahn equa-
tion, Discrete Contin. Dyn. Syst.-B 11 (2009) 1057–1070.

85] X. Yang, J.J. Feng, C. Liu, J. Shen, Numerical simulations of jet pinching-off and
drop formation using an energetic variational phase-field method, J. Comput.
Phys. 218 (2006) 417–428.

86] P. Yue, J.J. Feng, C. Liu, J. Shen, A diffuse-interface method for simulating two-
phase flows of complex fluids, J. Fluid Mech. 515 (2004) 293–317.

87] P. Yue, J.J. Feng, C. Liu, J. Shen, Transient drop deformation upon startup of shear
in viscoelastic fluids, Phys. Fluids 17 (2005) 123101.

88] P. Yue, C. Zhou, J.J. Feng, Spontaneous shrinkage of drops and mass conservation
in phase-field simulations, J. Comput. Phys. 223 (1) (2007) 1–9.

89] J. Zhang, D.M. Eckmann, P.S. Ayyaswamy, A front tracking method for a
deformable intravascular bubble in a tube with soluble surfactant transport,
J. Comput. Phys. 214 (1) (2006) 366–396.

90] L. Zhang, L.Q. Chen, Q. Du, Morphology of critical nuclei in solid state phase

transformations, Phys. Rev. Lett. 98 (2) (2007) 265703.

91] X. Zhang, O.A. Basaran, An experimental study of the dynamics of drop forma-
tion, Phys. Fluids 7 (1995) 1184–1203.

92] B. Zhou, A.C. Powell, Phase field simulations of early stage structure forma-
tion during immersion precipitation of polymeric membranes in 2d and 3d, J.
Membr. Sci. 268 (2) (2006) 150–164.


	Shear cell rupture of nematic liquid crystal droplets in viscous fluids
	Introduction
	The phase-field model of two-phase complex fluids
	Numerical method
	Numerical simulations
	Problem formulation
	The viscous drop in a viscous fluid benchmark
	Sub-critical capillary number prior to drop breakup
	Super-critical capillary number and drop breakup

	A liquid crystal drop immersed in a viscous fluid
	Frank elasticity in the LC phase with zero surface anchoring energy (A=0)
	Frank elasticity in the LC phase with moderate surface anchoring energy (A=0.5)


	Conclusion
	Acknowledgements
	References


