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Abstract

We study the retraction and pinch-off of a liquid filament and the formation of drops by using an energetic variational
phase field model, which describes the motion of mixtures of two incompressible fluids. An efficient and accurate numerical
scheme is presented and implemented for the coupled nonlinear systems of Navier–Stokes type linear momentum equa-
tions and volume preserving Allen–Cahn type phase equations. Detailed numerical simulations for a Newtonian fluid
filament falling into another ambient Newtonian fluid are carried out. The dynamical scaling behavior and the pinch-
off behavior, as well as the formation of the consequent satellite droplets are investigated.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

There are growing scientific interests in the dynamics of drop formation from a capillary tube because of
applications in many areas such as atomization, inkjet printing, separation process and dynamic surface ten-
sion measurement. As a drop falls under gravitational force into an ambient fluid (such as air or another
liquid), it remains connected with its source for some time by a long straight liquid filament. The filament
then pinches off and satellite droplets may form. The different spatial and temporal scales of this complex
process reflect the specific physical and rheological properties of the filament and those of the ambient
material.

Although filament breakup/pinching-off and drop formation have been studied for more than a century,
there are still many unresolved issues due to its complexity. Most of the experimental work was primarily
focused on determining the number of satellites drops, and was not particularly concerned with the dynamics
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of individual satellite drops [13]. Zhang and Basaran [38] used high-speed visualization to study the effects of
physical properties, flow rate, tube radius, tube wall thickness, etc., on the primary drop volume and the fate
of satellite drops of glycerol/water solutions forming from the capillary tube. Henderson, et al. [14] used highly
viscous liquids to study the pinch-off of primary drops from the main thread and the pinch-off of the main
thread from the fluid in the capillary tube. Robinson and Steen [24] and Chen et al. [5] observed that a fluid
interface can overturn prior to pinch-off even in the presence of moderate viscosity. There have been numerous
theoretical and numerical studies as well. Schulkes [25] used the boundary element method (BEM) to solve for
the potential flow inside a growing drop to predict the dynamics of drop formation. Wilkes et al. [32] studied
the formation and pinch-off of Newtonian liquid drops from a tube using an axisymmetric algorithm based on
a Galerkin finite element method (G/FEM). Zhang [37] used the volume-of-fluid (VOF) method to predict the
formation of a series of liquid drops in air. However, as pointed out in [21], this study, along with that of Gue-
yffier et al. [12], did not capture the fine details in experimental observations since the drop shape prior to
breakup and the subsequent satellite dynamics were not adequately resolved. More recently, Notz and Basa-
ran [21] used a moving finite element method with an elliptic mesh-generation scheme to study the dynamics of
contracting filaments at different Ohnesorge numbers. They showed that as the Ohnesorge number increases,
the shape of the breaking drop changes dramatically, and a series of secondary filament breaking may take
place.

All of the aforementioned simulations treated the problem as a free-surface problem governed by the inter-
actions between bulk properties of the filament fluid and ambient fluid, the surface tension and the gravita-
tional force. The interface represents a jump in properties such as density and viscosity, and its position
evolves in time with the fluid velocity field – the kinematic condition. We take a fundamentally different
approach in this paper. The interface will be viewed as a transition layer where the two fluids mix to a certain
degree. The mixing is determined by molecular interactions between the two species, and can be described by a
stored ‘‘mixing energy’’, which represents the balance between the competing phobic/philic relation between
the filament material and the ambient fluid. In this phase-field framework, the overall hydrodynamics of
the system will be the result of competition between the kinetic energy and this elastic mixing energy. Through
the transport of a phase-field variable /, the elastic energy will be responsible for the appearance of the induced
elastic stress in the momentum equation, by the Least Action Principle. This idea dates back to the work of
Lord Rayleigh and van der Waals in the 19th century (see the survey paper by Anderson et al. [1]). Based
on an energetic variational formulation, Liu and Shen [18] employed a phase field model to describe the
mixture of two incompressible Newtonian fluids. The ‘‘mixing energy’’ studied there is related to the usual
Ginzburg–Landau model for phase evolutions. The strengths and limitations of this type of models have been
summarized by Feng et al. [10] Recently, such a method has been applied to study mixtures of more complex
materials, such as viscoelastic fluids and liquid crystals, together with other surface properties, such as the
Marangoni effects [34,35,19]. Such approaches have also been employed by many other people, see for exam-
ples [18,33,16,2,27,17].

In this paper, we use such an energetic variational phase-field model to simulate the pinch-off and drop for-
mation phenomena in axisymmetric geometries. As demonstrated in the earlier works [18,33,16,2,27], the
phase-field method enjoys the advantages of admitting topological changes and allowing more complex mate-
rial properties such as non-Newtonian rheology, bulk elastic properties and different surface effects. In this
paper, we choose to use an Allen–Cahn type of phase equation with a Lagrangian multiplier to preserve
the overall mass of filaments and drops. This choice represents a special regularization of the kinematic con-
dition for the free interface in the classical sharp-interface approach. The coupled nonlinear system is then
solved by using a stiffly stable spectral-projection method [20] which was also used in our previous studies
[9,18,33].

The rest of the paper is organized as follows. In the next section, we will first describe our phase field
model. In Section 3, we shall present our numerical method for the coupled nonlinear evolution system
in an axisymmetric geometry. We will employ several techniques which are particularly suitable for the
problem at hand. The resultant numerical scheme is stiffly stable, mass conservative, highly efficient and
capable of handling variable density and viscosity. In Section 4, we present numerical results for the
simulation of several scenarios of pinch-off and drop formations. Some concluding remarks are given in
the last section.
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2. A phase field model for the mixture of two incompressible fluids

Let X be a domain filled with two incompressible fluids separated by a free moving interface. In this study,
one fluid is a filament or drop while the other is the ambient fluid. As in [18], we introduce a phase function /
(x), defined on the physical domain X, to label the inside and the outside of the filament/drop. Then, the level
set {x : /(x) = 0} represents the interface, while {x : /(x) > 0} represents the inside of the interface and {x : /
(x) < 0} the outside. Since this function is defined on the Eulerian reference coordinates, we do not need to
follow the motion of the specific level set; instead we derive the corresponding interface motion through
the dynamics of this phase function /. In fact, the phase-field methods, as well as the level set methods
[22,28], the volume of fluid (VOF) methods [23] and the lattice Boltzmann method [31,6,7,36], represent geo-
metric changes, which are naturally parametrized in the Lagrangian (reference) coordinates, in the Eulerian
(observer) framework.

We will established a phase field formulation based on an energetic variational approach [18,33]. As for the
interaction between the fluids, we introduce the following elastic ‘‘mixing energy’’:
W ð/;r/Þ ¼
Z

X

1

2
jr/j2 þ 1

4g2
ð/2 � 1Þ2

� �
dx. ð1Þ
The first part of the energy represents the hydrophilic interaction between the molecules and the second part
the hydrophobic interactions. It is the competition between these two parts of the energy that gives the hydro-
static configuration of the interface (see, for instance, [18]). The constant g can be viewed as the ratio between
these two parts of energies.

With the above energy, it can be shown that the interface is represented by {x : /(x, t) = 0} with a transi-
tion layer of thickness g. The classical sharp interface models will coincide with this approach away from the
interface (g can be viewed as a physical transitional region or simply the resolution parameter). The pure kine-
matic condition of the sharp interface can be translated into:
/t þ u � r/ ¼ 0; ð2Þ

where u is the fluid velocity. This represents the transport of the phase function along the interface. It is another
representation of the immiscibility of the two fluids. In this case, / can also be viewed as the volume fraction
(after an linear transformation), or even the density. On the other hand, the dynamics of / in a phase-field (or
diffuse-interface) approach can be relaxed (approximated) according to either Allen–Cahn or Cahn–Hillard
types of gradient flow, depending on the choice of different dissipative mechanisms. In this paper, we choose
to use the Allen–Cahn dynamics since its numerical treatment is simpler than that of the Cahn–Hilliard type
which involves fourth-order differential operators. For both Allen–Cahn and Cahn–Hilliard dynamics, it can
be shown that transition profile is maintained through the dynamics and the transitional width will not increase
in time (cf. [10]). This is a key factor for the validity of the phase-field method. In fact, both Allen–Cahn and
Cahn–Hilliard dynamics can be viewed as energetic variation based approximations of the transport equation
of / (2) in such a way that the transition layer does not spread into the domain.

Even though the transport equation (2) is relaxed in a phase-field model, in many applications, it is still
desirable that the integral of / – the volume fractions of the two immiscible fluids in the sharp-interface limit
– is conserved. It is well-known that the Cahn–Hilliard type dynamics conserves the volume fractions while the
Allen–Cahn type dynamics does not. Hence, we introduce a Lagrange multiplier n(t) into the Allen–Cahn
model to conserve the volume. More precisely, let F ð/Þ ¼ 1

4g2 ð/2 � 1Þ2 be the usual double-well potential
and f(/) = F 0(/), the modified (fluid transported) Allen–Cahn phase equation reads:
/t þ u � r/ ¼ �c
dW
d/
¼ cðD/� f ð/Þ þ nðtÞÞ;

d

dt

Z
X

/dx ¼ 0;

ð3Þ
where n(t) is the Lagrange multiplier corresponding to the constant volume constraint in the last equation.
The parameter c represents the elastic relaxation time. Again, we want to point out that the dynamics of /
represents an approximation of the original kinematic condition on the interface. We are not interested in
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the validity of the phenomena they represent. This is in contrast to the vast existing work on the related models
for the presence of special dynamics [15,3,4]. It can be regarded as an smoothing at the level of the modelling,
instead of the conventional numerical smoothing such as the upwind scheme, which introduces an artificial
diffusion in the simulations. We can see that when c! 0, we recover the transport equation for / (2), as
the interface moves with the flow, we recover the kinematic boundary condition in the sharp interface model.
Finally, we notice that the volume preservation constraint we introduced above is a global preserving con-
straint, instead of the physical local constraint. Again, the purpose here is just for the numerical/modeling
approximation. In the limit of c approaching zero, such discrepancy will disappear.

We now describe the governing equations for the fluid flow. The momentum equation takes the form, which
can be derived by the least action principle [18,33]:
qðut þ ðu � rÞuÞ ¼ �rp þr � r; ð4Þ

where q is the density, u is the velocity, p is the pressure and r is the deviatoric stress tensor which includes the
viscous tensor and the induced elastic stress tensor. When we take into account the competition between the
kinetic energy and the elastic energy (i.e., the mixing energy), we find:
r ¼ l½ruþ ðruÞt� � kðr/�r/Þ; ð5Þ

where l is the dynamic viscosity coefficient, and the term $/ � $/ is the induced elastic stress due to mixing
energy, and k corresponds to the ratio between the kinetic energy and the elastic energy. In this application, it
is related to the surface tension coefficients.

The final hydrodynamical coupled system will have the following energy identity:
d

dt

Z
1

2
qjuj2 þ kW ð/Þdx ¼ �

Z
mjruj2 þ k

c
j/t þ u � r/j2 dx. ð6Þ
When the two fluids have different viscosities q1 and q2, (assuming that the difference between the two
densities q1 and q2 is relatively small), we shall incorporate the classical Boussinesq approximation into the
momentum equation (4):
q0ðut þ ðu � rÞuÞ ¼ �rp þr � rþ f ; ð7Þ

where q0 = (q1 + q2)/2 and the difference between the actual density q and q0 is modeled by a buoyancy force
f ¼ �½ð1þ /Þðq1 � q0Þ þ ð1� /Þðq2 � q0Þ�g0; ð8Þ

where g0 is the gravity force.

Setting q0 = 1 for the sake of simplicity and writing m = l/q0, the system governing the mixture of two
incompressible fluids can be written as follows:
ut þ ðu � rÞuþrp �r � ½mðruþ ðruÞtÞ� þ kr � ðr/�r/Þ ¼ f ;

r � u ¼ 0;
ð9Þ
and
/t þ ðu � rÞ/ ¼ cðD/� f ð/Þ þ nðtÞÞ;
d

dt

Z
X

/dx ¼ 0:
ð10Þ
The coupled nonlinear system (9) and (10) is supplemented with the initial conditions
ujt¼0 ¼ u0; /jt¼0 ¼ /0 ð11Þ
and appropriate boundary conditions for u and / to be specified below.

3. Filament breakup and drop formation in a cylinder: setup of the problem

We are interested in the dynamics of a filament breakup and a falling drop along the axis of a cylinder filled
with an ambient fluid. Assuming that the flow is axisymmetric, we can rewrite the system using the cylindrical
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coordinates (r, z) in the two-dimensional axisymmetric domain D = {(r,z) : 0 < r < R, 0 < z < H}. For simplic-
ity, we shall assume for the moment that the two fluids have the same viscosity. The case of different viscosities
will be addressed at the end of this section.

Let u = (u,v,w)t, where u, v, w are, respectively, the velocity components in the axial (r), azimuthal (h) and
vertical (z) directions. We denote by
er ¼ ðor; 0; ozÞt; er2 ¼ o
2
r þ

1

r
or þ o

2
z ; ð12Þ
the gradient and Laplace operators in the cylindrical coordinates, respectively. The divergence operator in the
cylindrical coordinates is
er � u :¼ 1

r
ðruÞr þ wz. ð13Þ
Let [f]r and [f]z denote the component of f in the r and z direction. Then, the coupled nonlinear system (9) and
(10) in the axisymmetric cylindrical coordinates reads
ut þ uur þ wuz �
1

r
v2 ¼ �pr þ m er2u� 1

r2
u

� �
� k½ er � ð er/� er/Þ�r;

vt þ uvr þ wvz þ
1

r
uv ¼ m er2v� 1

r2
v

� �
;

wt þ uwr þ wwz ¼ �pz þ m er2w� k½ er � ð er/� er/Þ�z;er � u :¼ 1

r
ðruÞr þ wz ¼ 0

ð14Þ
and
/t þ u/r þ w/z ¼ cð er2/� f ð/Þ þ nÞ;
d

dt

Z
D

r/dr dz ¼ 0:
ð15Þ
Since the enclosed cylinder is filled with fluids, the boundary conditions for u are [20]:
ujoD ¼ vjoD ¼ 0; wjoDnC1
¼ 0;

ow
on
jC1
¼ 0; ð16Þ
where C1 = {(r,z):r = 0,0 < z < H}, n is the outward normal. The boundary condition for / is
o/
on

����
oDnC1

¼ 0. ð17Þ
We now describe our numerical approach. The time discretization is based on a semi-implicit second-order
rotational pressure-correction scheme for (14) (cf. [11]) and a stabilized semi-implicit scheme for (15). To
simplify the presentation, we use
~D ¼

er2 � 1
r2 er2 � 1

r2 er2

0BB@
1CCA
to denote the vector Laplace operator in cylindrical coordinates, and set
N1ðuÞ ¼ uur þ wuz �
1

r
v2; uvr þ wvz þ

1

r
uv; uwr þ wwz

� �t

;

N2ð/Þ ¼ er � ðð/r; 0;/zÞ � ð/r; 0;/zÞÞ
t
;

N 3ðu;/Þ ¼ ðu � erÞ/:
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Assuming (uk, pk, /k) and (uk�1, pk�1, /k�1) are known, we first solve ð~uk; uk; pkÞ from a semi-implicit rota-
tional pressure-correction method (see, for instance, [11]) for (14):
3~ukþ1�4ukþuk�1

2dt � m~D~ukþ1 þ erpk ¼ �ð2N1ðukÞ �N1ðuk�1ÞÞ þ ð2N2ð/kÞ �N2ð/k�1ÞÞ
ð~ukþ1;~vkþ1ÞjoD ¼ 0; ~wkþ1joDnC1

¼ 0; o~wkþ1

on jC1
¼ 0;

(
ð18Þ

� er2wkþ1 ¼ 1
2dt
er � ~ukþ1;

owkþ1

on

���
oD
¼ 0;

8<: ð19Þ
and
pkþ1 ¼ pk þ wkþ1 � m er � ~ukþ1;

ukþ1 ¼ ~ukþ1 � 2dt
3
erwkþ1:

ð20Þ
Then, we update /k + 1 by using the stabilized semi-implicit second-order scheme for (15):
3/kþ1�4/kþ/k�1

2dt � c er2/kþ1 ¼ �c 2f ð/kÞ � f ð/k�1Þ þ s
g2 ð/kþ1 � 2/k þ /k�1Þ

� �
�ð2N 3ðukþ1;/kÞ � N 3ðukþ1;/k�1ÞÞ þ cnkþ1;R

D r/kþ1 dr dz ¼
R

D r/k dr dz;

o/kþ1

o~n

���
oDnC1

¼ 0:

8>>>>>><>>>>>>:
ð21Þ
Several remarks are in order:

� One can initialize (u1, p1, /1) by using a first-order version of (18)–(21).
� We derive easily from (21) that
nkþ1 ¼ 1

jDj

Z
D

rð2f ð/kÞ � f ð/k�1ÞÞdr dz. ð22Þ
Hence, the Lagrange multiplier nk + 1 can be computed directly from previous data.
� We recall that f ð/Þ ¼ 1

g2 ð1� j/j2Þ/ so the explicit treatment of this term usually lead to a severe restriction
on the size of time step dt when g� 1. We introduced in (21) an extra dissipative term s

g2 ð/kþ1 � 2/k þ /k�1Þ,
which is of order sdt2

g2 , to improve the stability while preserving the simplicity. The parameter s is proportional
to the amount of artificial dissipation added in the numerical scheme. Larger s will lead to a more stable but
less accurate scheme. In our numerical simulations, we used s = 5 which appeared to provide a good balance
between stability and accuracy.
� At each time step, one only needs to solve a sequence of Poisson-type equations. This is to be accomplished

by using the Legendre–Galerkin method (cf. [20,29,30]).
� The scheme can be easily generalized to allow different viscosities m1 and m2 for the two fluids. In this case,

we can use the following harmonic ‘‘averaged’’ viscosity (through /) as the mixture viscosity:
1

mð/Þ ¼
1þ /

2m1

þ 1� /
2m2

. ð23Þ
Then, the new viscous term er � ðmð/Þð eruþ ð eruÞtÞÞ at tk+1 = (k + 1)dt can be approximated to a second-
order accuracy by replacing the term �meD~ukþ1 in (14) with
�m̂eD~ukþ1 � 2 er � ðmð/kÞ � m̂Þð eruk þ ð erukÞtÞ
� �

þ er � ðmð/k�1Þ � m̂Þð eruk�1 þ ð eruk�1ÞtÞ
� �

; ð24Þ
where m̂ is the harmonic average determined by 1
m̂ ¼ 1

2m1
þ 1

2m2
. Hence, the solution procedure in the variable

viscosity case is essentially the same as in the constant viscosity case.
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4. Numerical simulations

In this section, we describe our numerical simulations using the numerical method described in the previous
section. We shall simulate two processes: the retraction of a fluid filament and the fall and detachment of a
drop in an ambient fluid. The driving force is surface tension in the former and the gravity in the latter.
We will examine in particular how the viscosity of the fluids affects the pinch-off of the filament and formation
of satellite droplets.

In all the numerical examples presented below, we used the following parameters:
c ¼ 0:02; k ¼ 0:01; g ¼ 0:02. ð25Þ
Other parameters are specified below and in the figure captions. We use N and M to denote the numbers of
Legendre polynomials used in the z and r directions, respectively.

4.1. Shape evolution and breakup of retracting filaments

In this set of numerical simulations, we consider the retraction of a cylindrical filament of radius R ¼ 1
4

and
height H = 5.5 placed at the axis of a cylinder of radius R = 1 and height H = 6 filled with another ambient
fluid (see the first plot in Fig. 1).

We consider first the case where the two fluids have the same density and same viscosity, and we examine
the effect of varying the viscosity m on the formation of satellite drops. Initially, we set / = 1 inside the filament
and / = �1 in the ambient fluid.

Note that the results will depend on the combined effects of the surface tension, the viscosity and the elastic
relaxation time. When the last effect is absent (or very small), the dominant time scale of the problem will be
the capillary time (cf. [33]) which can be represented by the ratio of the kinematic viscosity m and the interfacial
tension coefficient k. Within a certain range, as viscosity decreases, the Allen–Cahn dynamic will evolve faster.
However, as the viscosity decreases beyond this range, the elastic relaxation effect will be more and more
dominant and more complicated phenomena will occur.

� We start with a relatively high viscosity m = 1, the filament contracts and slowly forms a single droplet; see
Fig. 1.
� Then, we set m = 0.02. Relative to the lower viscosity, the surface tension is larger in this case, and the

filament develops bulbous ends shortly after it starts to contract (t = 1). Eventually, capillary instability
develops and breaks the filament into two drops, see Fig. 2. Note that the topological changes are handled
seamlessly with the phase-field model.
� The result for m = 0.005 is shown in Fig. 3. Here, the filament also forms bulbous ends followed by capillary

instability in the middle. Unlike in Fig. 2, the filament fails to pinch-off despite the appearance of a very thin
neck at t = 2.6. Instead, the neck thickens subsequently and produces a single drop. The drop undergoes
damped oscillations in shape and will eventually become spherical. The failure for pinch-off in this case
may be due to the elastic relaxation mechanism in the Allen–Cahn equation for /. It appears that the
Fig. 1. Snapshots of the interface with m = 1 and g = 0. Numerical parameters: N = 160, M = 88, dt = 0.1, s = 5.



Fig. 2. Snapshots of the interface with m = 0.02 and g = 0. Numerical parameters: N = 160, M = 88, dt = 0.002, s = 5.

Fig. 3. Snapshots of the interface with m = 0.005 and g = 0. Numerical parameters: N = 160, M = 88, dt = 0.0005, s = 5.
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interfacial diffusion due to the Allen–Cahn dynamics interferes before the pinch-off mechanism has time to
take effect. In fact, if we decrease the elastic relaxation coefficient c to c = 0.002, the filament will eventually
pitch off. We refer to Section 5.2 in [10] for a more elaborate discussion in this regard.
� Fig. 4 shows the interfacial evolution with m = 0.002. Here, the behavior of the filament changes in a sur-

prising fashion. Initially, bulbous ends form on the contracting filament while capillary instability quickly
grows on the straight section of the filament, with a shorter wavelength than in the more viscous cases. It
looks as if the filament will break up and form four satellite drops (see the plot at t = 1.4). However, the
undulation in the middle soon dies out and gives way to a three-bulb shape at t = 1.85. It eventually pinches
off into three satellite drops.
� Fig. 5 shows a run with the smallest viscosity tested, m = 0.001. For t 6 1.4, the evolution is similar to the

case m = 0.002. However, for t > 1.4, their behaviors differ somewhat. In fact, the middle part does not
contract as in Fig. 4; the capillary force dominates the viscous force and causes the bulbous ends to pinch
off at a much earlier time (t = 1.475).

In conclusion, we can see that pinch-off is the result of complicated competition among various effects. If
the viscosity is too large, pinch-off will not occur because the capillary instability develops slowly, and does not
have time to take effect before the filament retracts. If the viscosity is too small, the filament may also fail to



Fig. 5. Snapshots of the interface with m = 0.001 and g = 0. Numerical parameters: N = 200, M = 100, dt = 0.00005, s = 5.

Fig. 4. Snapshots of the interface with m = 0.002 and g = 0. Numerical parameters: N = 160, M = 88, dt = 0.0002, s = 5.
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pinch off as the elastic relaxation will interfere with the pinch-off mechanism. The tradeoff between numerical
accuracy and interfacial integrity has been discussed by Jacqmin [16].

Let L0 be the dimensionless initial aspect ratio between half of the filament height and its radius, i.e.,
L0 ¼ 5:5=2

1=4
¼ 11 in Figs. 1–6. As found in other studies (see [26,21]), there is a critical number L0,c, dependent

on the interfacial tension and viscosity, such that the filament does not break for L0 < L0,c. Notz and Basaran
[21] examined the dependence of L0,c on the Ohnesorge number Oh ¼ lffiffiffiffiffiffi

qRr
p , where l is the dynamical viscosity,

r is the interfacial tension and R is the radius of the filament. They observed that L0,c increases with Oh (see
Table 3 in [21]). In our results, the kinematic viscosity m plays the role of the Ohnesorge number so we have
also numerically determined L0,c in terms of m and listed the results in Table 1. For example, the initial filament
with L0 P 13 ± 0.25 will break up when m = 10�2, but when m = 2 · 10�3, L0 P 9 is needed for the breakup to
occur. This appears to be qualitatively consistent with the results in [21]. Note that in [21], the ambient fluid is
the air, while in our study the ambient fluid is a different fluid with the same density and viscosity as the
filament. So the two results can only be compared qualitatively.
Fig. 6. Snapshots of the interface with different viscosities: m1 = 0.02, m2 = 0.07 and g = 0. Numerical parameters: N = 160, M = 88,
dt = 0.005, s = 5.



Table 1
Effect of viscosity on the critical initial aspect ratio L0,c below which a filament does not break

m 10�3 2 · 10�3 4 · 10�3 6 · 10�3 8 · 10�3 10�2

L0,c 7 ± 0.25 9 ± 0.25 11 ± 0.25 12 ± 0.25 12.5 ± 0.25 13 ± 0.25

Fig. 7. Snapshots of the interface with m = 1, q1 ¼ 3
2
, q2 ¼ 1

2
and g = �12 in (8). Numerical parameters: N = 160, M = 88, dt = 0.01, s = 5.
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As the last example in this subsection, we consider a case where the two fluids have the same density but
different viscosities. More precisely, we set m1 = 0.02 inside the filament and m2 = 0.07 outside. The result is
shown in Fig. 6. Here, the situation is very similar to the case in Fig. 2 where the fluids have the same viscosity
m = 0.02. The filament contracts and pinch-off into two satellites at a slightly early time.
4.2. The dynamics of dripping

When a drop falls from a faucet, it remains attached to the source by an elongating liquid filament until the
filament pinches off. A similar process occurs during the inkjet printing process. Since currently it is numer-
ically difficult to handle the very large density ratio between fluids such as water and air, we shall simulate this
dripping process by using the Boussinesq approximation (4)–(8) which is only valid for small density differ-
ence, to represent the gravitational force due to a density difference between the jet and the ambient fluid.
We set the initial interface shape to be a spherical cap as shown in the first plot of Fig. 7. The height and
the radius of the cylinder is set to be 7.5 and 1, respectively. The boundary conditions for u and / are still
given by (16) and (17), with zero velocity at the mouth of the ‘‘faucet’’.

The full process of the falling drop is shown in Fig. 7. As the liquid filament is stretched by gravity, a neck
forms near its base which elongates and becomes thinner. In the meantime, the lower end of the filament turns
into a round drop under capillary forces (see the plots at t = 2.3 in Fig. 7). The falling drop continues to
stretch the thread, and eventually the Rayleigh instability leads to the pinch-off of the main drop at
t = 5.1. A secondary pinch-off takes place at t = 5.5, and produces a small satellite drop. Note that the hang-
ing jets seem to have shrunk somewhat from t = 5.5 to t = 5.9. This is not a failure of mass conservation since
only the total mass, not the mass of each individual part, is conserved. Rather it is an effect of the Allen–Cahn
dynamics and could be controlled by taking a smaller relaxation coefficient c in the Allen–Cahn equation.
5. Concluding remarks

We presented an energetic variational phase-field method for simulating interfacial dynamics in filament
breakup and drop formation. The phase-field approach avoids the need for interface tracking and can easily
accommodate topological changes such as pinch-off. A stabilized semi-implicit second-order time-marching
scheme coupled with Legendre–Galerkin spectral discretization has proved to be efficient and accurate for this
class of problems. As numerical examples, we simulated the retraction and breakup of a fluid filament in
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another ambient fluid and the fall and pinch-off of drops from a pendant drop under gravity. The results are
consistent with prior computations and experiments.

As we have indicated in this paper (as in all the previous works in the area), the phase-field method is a very
versatile and robust method for studying interfacial motion in multi-component flows. It casts geometric evo-
lution in Lagrangian coordinates into a Eulerian formulation, and provides a way to represent surface effects
as bulk effects. The whole process allows us to use an energetic variational formulation that in turn makes it
possible to ensure the stability of corresponding numerical algorithms. The elastic relaxation built into the
phase-field dynamics prevents the interfacial mixing layer from spreading out. Moreover, being a physically
motivated approximation based on the competition between different parts of the energy functionals, the
phase-field model can be adapted easily to incorporate more complex physical phenomena such as Marangoni
effect and non-Newtonian rheology [33].

The main challenge of such methods lies in the fact that for real fluid systems, we typically have a good
understanding of the bulk but very little information about the interfacial layer. While the properties of the
flow away from the interface are independent of the choice of the mixing energy functionals, at least in the
limit of g! 0, there are applications where the interfacial profile is of significance. Accurate representation
of the interface location and the flow at the interface requires high resolution of a thin transitional layer
[16]. This is being pursued in ongoing projects that integrate our existing numerical algorithms with adaptive
methods (e.g., the moving mesh methods) to better resolve the interface profile. While the Allen–Cahn type
approximations have the advantage of keeping the transitional profile and width, it does bring in extra effects
due to its own dynamics (such as different coarsening mechanisms).

How to control or avoid such artificial mechanism is also an important research task. Du et al. [8] have
made some progress recently in this direction by developing an algorithm to detect and control the topological
changes through a generalized Euler number. Finally, more studies are needed to establish accurately the
correspondence between the parameters in this model and those from experiments.
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