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Synopsis

ynamic �unsteady� defect structures arising in the hydrodynamics of sheared nematic polymers
re investigated by numerical simulations and real-time diagnostics in two space dimensions. We
imulate the Larson–Mead experiments on roll-cell formation and breakup, following recent
umerical studies with a similar model �Klein et al., Phys. Fluids 19, 023101 �2007a�; Klein, D.
., Ph.D. thesis, University of California, Santa Barbara �2007b��. The simulations are blindly
onitored on the basis of tensorial defect metrics defined by eigenvalue degeneracies, which are

ocal in space and time, and monitored cost free. The focus in the defect detection is shifted from
opology to local conditions, yet the nonlocality of defect domains is recovered by graphics of

etric level sets. These tools reveal the spawning of an array of oblate defect core domains, which
hen deform, propagate, collide, merge, and split in a dynamic process that numerically continues
d infinitum. Next, we paint topological features onto snapshots of the level set texture of the
blate metric, using the remainder of the tensor information: first, the full tensor morphology
triaxial ellipsoids per grid point�, and then the principal axis �where identifiable� of each
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590 YANG et al.
rientation ellipsoid. These enhanced textures yield the traditional topological defect metric based
n nonlocal winding number of the principal axis and the regularization of each apparent half
nteger and integer degree singularity. The most compelling predictions of these simulations and
iagnostics are persistence of interacting oblate defect domains, while topology is highly transient,
nd coincidence of topological transitions with oblate domain merger and splitting. Finally, the
oupling between orientation features and the transient primary and secondary flow are amplified
ith additional graphics. © 2009 The Society of Rheology. �DOI: 10.1122/1.3089622�

. INTRODUCTION

Defects in nematic liquids have a rich history involving theory and experiment.
eslie–Ericksen–Frank �LEF� director models of liquid crystals �cf. de Gennes and Prost

1993�; Kleman and Friedel �1969�; Kleman �1977�; Meyer �1973�� provide a topological
efect degree of planar textures based on the norm 1 director field. Landau–de Gennes
rientation tensor models for liquid crystals and liquid-crystalline polymers �cf. de
ennes and Prost �1993�; Forest et al. �1999, 2000b, 2001a�; Feng and Leal �1997�;
arson �1999�; Rosso and Virga �1996�; Sigillo et al. �1998�; Sonnet et al. �1995�; Tsuji
nd Rey �1997, 1998, 2000�; Virga �1994�� provide topological degree by extracting the
rincipal axis of the orientation tensor then applying the director metric. Microstructure-
ased kinetic theory �Doi �1981�; Hess �1976�; Doi and Edwards �1986�; Marrucci and
reco �1991�; Marrucci and Greco �1994�; Larson �1990�; Larson and Ottinger �1991�;
galari et al. �2002�; Sgalari et al. �2003�; Grosso et al. �2001�; Forest and Wang �2003�;
orest et al. �2004a, 2004b�; Forest et al. �2007b�� for the orientational probability dis-

ribution function �PDF� of rigid-rod nematic polymers provides defect topology by ex-
racting the second-moment tensor of the orientational probability distribution and then
pplying the tensor protocol. In Landau–de Gennes and kinetic models, as well as mo-
ecular �particle� simulations, the orientation tensor affords the means to explore the
efect core by identification of local disordered phases �cf. Andrienko and Allen �2000�;
allan-Jones et al. �2006�; Kralj et al. �2008�; Schopohl and Sluckin �1987�; Wincure and
ey �2006, 2007a, 2007b�; Klein et al. �2007a�; Klein �2007b�; Yang et al. �2008�;
hoate et al. �2009��.

Experimental studies on nematic polymers in steady shear yield remarkable hydrody-
amic orientational phenomena that remain poorly understood. We refer to the final
hapter of Larson �Larson �1999�� and recent review articles �cf. Kroger �2004�; Rey and
enn �2002�; Tan and Berry �2003��. Defects lie at the center of liquid crystal and
ematic polymer phenomena �Kleman and Lavrentovich �2003��, from statics or near-
quilibrium dynamics of the isotropic-nematic transition where free energy minimization
rinciples apply, to strongly nonequilibrium conditions where the only tools at present are
omputational. Open issues include defect genesis, spatial extent, number density, the
ature of defect cores, the role of defects in regions I, II, and III of the shear-viscosity
urve of Onogi and Asada �1980�, and the dynamics and fate of defects during and upon
essation of shear.

The particular phenomena of interest for the present paper derive from the classical
arson–Mead experiments �Larson and Mead �1993�� and the insights already gained

rom numerical simulations by director �Feng et al. �2001�; Tao and Feng �2003�� and
ensor �Klein et al. �2007a�; Klein �2007b�� orientation models with full hydrodynamic
oupling. Flow features include steady roll cells in the secondary flow field �transverse to
he direction of plate motion� at very low plate speeds followed by a transition to un-
teady flow with increased bulk shear rate. The orientational features that accompany
hese flow phenomena include: in the steady roll-cell regime, steady nematic distortions

here the principal axis of orientation slowly varies across the flow gradient-vorticity
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591DYNAMIC DEFECT MORPHOLOGY OF SHEARED NEMATICS
lane; then, as the bulk shear rate is increased, the unsteady transition is accompanied by
pparent defect nucleation, propagation, splitting, reformation, and other complex phe-
omena. At the very least, experiments can be interpreted better with the aid of modeling
nd simulations, especially in light of recent advances in experimental observations of the
omplex flow and orientational features in shear cell experiments �Smalyukh and Lavren-
ovich �2006��. In this direction, Leal and collaborators �Klein et al. �2007a, 2008�; Klein
2007b�� led the way in the full hydrodynamic and orientation tensor modeling of the
arson–Mead experiments �Larson and Mead �1992, 1993��.

In this paper, we revisit the two-dimensional �2D� simulations of the Leal group with
similar Doi–Marrucci–Greco �DMG� flow-orientation model and our numerical algo-

ithms �Yang et al. �2008��. The model difference arises from choices of closure rules; we
efer to Forest and Wang �2003� for comparisons of various closure rules in the shear-
mposed monodomain phase diagram and we refer to Heidenreich et al. �2008a, 2008b�
or comparisons of kinetic-flow one-dimensional �1D� simulations with the model em-
loyed in this paper and with a thermodynamics-based tensor-flow model.

A primary emphasis of the presented paper is the implementation of tensor-based
iagnostics developed over the past several years in our group for any number of space
imensions. In 2D simulations, these diagnostics are intimately related to methods ap-
lied to molecular dynamics simulations of liquid crystals �cf. Andrienko and Allen
2000�; Callan-Jones et al. �2006��. The key idea �conceptually from de Gennes �1969�
nd analytically from Schopohl and Sluckin �1987�� is that topological defects are ac-
ompanied by defect cores, where either an isotropic �fully disordered� or an oblate
niaxial �partially disordered� phase arises. Thus, why not search for defect cores first,
hich are trivial to detect, and then assess topology only after a positive test?
Recall that local defects arise in any space dimension, beginning from purely homo-

eneous phases. In the classical Onsager phase diagram for equilibria of nematic poly-
ers with either an Onsager or Maier-Saupe intermolecular potential, the isotropic phase

s the lone stable equilibrium below a critical dimensionless concentration N=Nc
�; for N

etween Nc
� and Nc

��, three phases coexist: an isotropic stable, an unstable prolate, and a
table prolate nematic phase. For N�Nc

��, the highly ordered stable prolate phase coex-
sts with unstable isotropic and oblate nematic phases �Forest et al. �2005a, 2005b��. The
umerical experiments presented here and in Klein et al. �2007a� and Klein �2007b� are
or N�Nc

��, i.e., in the nematic equilibrium regime.
From a computational perspective, the notion of focusing on the defect core for de-

ection purposes has exceptional impact: nontopological disordered phases are defined by
ocal conditions, in space and in time, which are inexpensively monitored by level set

ethods, thereby supplanting the laborious task of monitoring texture snapshots for to-
ological defects. These tensorial diagnostics have many applications for the spatially 2D
ow-orientation studies of interest here: for efficient defect detection and tracking �by
ocusing on local conditions in defect cores as the primary object�; for additional dy-
amical issues such as nucleation and annihilation of defects, which turn out to be easily
etected and monitored; and for imaging the full orientation space morphology surround-
ng defect cores.

Tensor nontopological diagnostics known as scalar order parameters �de Gennes and
rost �1993�� are simply the differences in principal values of the second-moment orien-

ation tensor. Since the tensor has constant trace, any two differences can be monitored.
s local analytical conditions, isotropic �both differences vanish� and oblate �the two

eading eigenvalues are equal and bounded above the remaining eigenvalue� defect met-
ics apply independent of spatial dimension. Indeed, our group has used these order

arameter metrics to characterize sheared monodomains �homogeneous phases� �cf. For-
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592 YANG et al.
st et al. �2004a, 2004b��, extensional flow-driven monodomains �cf. Forest et al. �2000a,
001b��, spatially 1D nematic filament flows �Forest and Wang �1998��, 1D sheared film,
efect and shear banding between parallel plates �Forest et al. �2004c, 2005a, 2005b,
006, 2007a�; Heidenreich et al. �2008a, 2008b��, elongation-induced 2D patterns �Forest
t al. �1999��, equilibrium 2D patterns supported by short and long range elasticity
otentials �Forest et al. �2000b, 2001a��, and finally 2D sheared films between parallel
lates �here and in Yang et al. �2008��.

Even though the isotropic and oblate phases are unstable at rest, at sufficiently high
od volume fractions they are nonetheless fundamental in nonequilibrium processes such
s shear flow. Disordered phases provide a means to regularize incompatible local or-
ered phases that are forced to occupy nearby spatial sites. In 1D spatially heterogeneous
orphologies �Forest et al. �2005a, 2005b��, we identified a prominent role of the oblate

efect phase in unsteady sheared structures, serving as the regularizing phase for nearby
in time and space� oriented phases which are incompatible. In Heidenreich et al. �2008a,
008b�, we showed the remarkable correlation between space-time nucleation of the
blate defect, pulsating hydrodynamic jets, and the local transition between tumbling
monotone rotation of the principal axis of the orientation tensor� and wagging �finite
scillation of the principal axis�. This flow-defect correlation amplified one of the early
tudies of hydrodynamic coupling in sheared nematic polymers by Kupferman et al.
2000�.

Our previous studies of sheared defects were below the critical space dimension where
opological defects are possible. Thus, the correlation between nontopological and topo-
ogical defects was delayed in our group’s flow-nematic studies until �Yang et al. �2008��
nd the present paper. The detection of topological defects through local point-wise
iagnostics is based on the tacit assumption that any such structure has a core in which
he apparent discontinuity of the principal axis of orientation is regularized. The seminal
aper of Schopohl and Sluckin �1987� explored the disordered phases that arise in cores
f �

1
2 defects with a Landau–de Gennes tensor model, and later extended for integer

egree defects by Biscari and Virga �1997�, Mottram and Hogan �1997�, and Sigillo et al.
1998�. These fundamental concepts were applied in molecular simulations by Andrienko
nd Allen �2000� and by Callan-Jones et al. �2006�. We note that the orientation tensor-
ow simulations of de Luca and Rey �2006�, Wincure and Rey �2006, 2007a, 2007b�,
lein et al. �2007a, 2008�, and Klein �2007b� monitored eigenvalue metrics of the ori-

ntation tensor. Wincure and Rey �2007a� simulated the isotropic-nematic transition with-
ut flow and clearly identified a topological defect where the core has a highly localized
blate phase. Also, Klein et al. �2007a� and Klein �2007b� saw a significant weakening of
rientational order in the core of topological defects of integer and half-integer degree,
sing a scalar order parameter that is equivalent to the sum of squares of our metrics,
hich only detects isotropic defects.
In this paper, we show that the oblate defect phase always forms in defect cores, in

avor of the isotropic phase under conditions that simulate the roll-cell instability. Fur-
hermore, once defects are detected �through a positive test of the oblate metric�, oblate
efect domains persist irrespective of director topology, and therefore appear to be the
undamental signature of shear-generated defect dynamics.

We offer further motivation for these studies based on their relevance for film and
old processing of nematic polymers and nanorod dispersions. For material property

haracterization, the precise nature of orientational anisotropy and heterogeneity and
efect morphology in particular is paramount. These questions were central in the ex-
erimental investigations and theoretical developments that were extremely active in the

990s. Chapter 11 of Larson’s book �Larson �1999�� has a detailed description of this
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593DYNAMIC DEFECT MORPHOLOGY OF SHEARED NEMATICS
ctivity. Han and Rey �1995� were apparently the first to simulate flow-imposed, two-
imensional sheared morphology, and defect structures using a LEF director model. de
uca and Rey �2006� recently extended these results to a Landau–de Gennes tensor
odel of the extrusion duct of spiders, where they insert defects and then study their

volution. Yang et al. �2008� recently simulated flow-imposed 2D transient and steady
heared responses with a McMillan tensor model of plane Couette cells, where we find no
vidence of creation of topological defects, suggesting flow feedback as a key mecha-
ism.

To simulate hydrodynamic coupling—the focus of this paper—Navier–Stokes algo-
ithms in two or three space dimensions are required coupled with the orientational
odel. The first 2D physical space flow-coupled parallel shear simulations with a tensor
odel �derived from the microstructure kinetic theory� were presented by Sgalari et al.

2002�, with resolution in the flow and flow gradient plane. Subsequent flow-orientation
imulations in the flow gradient-vorticity plane were developed to model the Larson–

ead experiments. Feng et al. �2001�, Tao and Feng �2003� �using a director model�,
galari et al. �2003�, Klein et al. �2007a, 2008�, and Klein �2007b� �with a tensor model
erived from the microstructure-based kinetic theory with a Bingham closure and vari-
ble rotary diffusivity� each successfully simulated steady roll cells, their breakup, and
ransition to unsteady flow, coupled with topological defect nucleation, merger, and split-
ing. The identification of defects in each study is based on a winding number of the
irector or tensor principal axis of largest principal value. We shall find quite similar
ransient flow-orientation phenomena, not surprising since we use similar models, with
ew observations of defect morphology and dynamics based on an expanded set of tensor
efect metrics and detection strategy.

We note that tensor order parameter metrics have been utilized in molecular simula-
ions of liquid crystals, for confinement in a cylinder with homeotropic anchoring �An-
rienko and Allen �2000�� and for the quench from an isotropic to nematic temperature
Callan-Jones et al. �2006��. Wincure and Rey �2007a, 2007b� likewise used these metrics
or studying defect formation in the isotropic-nematic phase transition in two space
imensions. Our simulations and those of Leal’s group impose a fixed temperature or rod
olume fraction and homogeneous initial data, and defects are created by the combination
f imposed shear between parallel plates and orientational confinement at solid walls.

There is no theory yet that guarantees precise relationships between topological and
ontopological defects in nonequilibrium states. Work cited earlier �Schopohl and
luckin �1987�; Sigillo et al. �1998�; Kralj et al. �2008�; Virga �1994�� developed an exact

ensor defect construction for static defects; there are no guidelines as to how such static
efects will deform in the presence of flow. We proceed according to simple reasoning, as
iscussed in Callan-Jones et al. �2006�. Tensor models that yield topological defects do so
y a dual projection of a smooth solution in full orientation space: the full tensor is
rojected onto its principal axis of largest principal value and then this object is projected
nto a two space dimensional plane. The observed topological defect, when viewed “up”
n full orientation tensor space, is regular since our model equations are basically non-
inear reaction-diffusion equations which do not exhibit singularities. The defect mor-
hology as determined by the projection in a nonlocal 2D region therefore must be
egular in the full tensor space. There are two ways this can happen. First, the apparent
efect may in fact be an artifact of the 2D projection, arising from a so-called escape into
he third dimension of the principal axis �Meyer �1973��. We show illustrations of this
cenario in the simulations reported here, namely, the integer defects. Second, the tensor
ay regularize the discontinuity in the principal axis by passing through a degeneracy of
he principal axis of orientation, i.e., through a collision of either the leading two �oblate
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594 YANG et al.
etric� or all three �isotropic metric� principal values. This scenario involves a defect
ore which is either an oblate or an isotropic phase similar to the static constructions of
chopohl and Sluckin �1987�, Sigillo et al. �1998�, and Virga �1994�. In the simulations
resented here, we always observe oblate cores in favor of isotropic cores. The quench
imulations of Callan-Jones et al. �2006� found evidence of both types of defect cores. In
eneral, since we do not a priori know which degeneracy is preferred, we monitor all
ossibilities.

If the above reasoning is sound, then the strategy for detection should be switched to
local �in space and time� monitoring of collisions of principal values followed after a

ositive test by the dual projection of the principal axis in a planar domain and measure-
ent of topological nonlocal defect degree. This reasoning is emphasized in the recent
ork of Callan-Jones et al. �2006�. These methods have significant implications for
umerical defect detection, since nontopological defect signatures are local in space and
ime. The metrics can be implemented automatically and with minimal computational
ost by level set tracking methods, supplanting the need to generate snapshots of planar
extures and manually search for topological defects. Furthermore, as we will illustrate
elow, the nontopological diagnostics are robust during onset, nucleation, propagation,
erger, and annihilation of defects; whereas topological degree only provides informa-

ion when defects are fully formed. In the present paper, we report coupled flow-
rientation studies in two space dimensions on the orientation tensor model of Doi, Hess,
arrucci, and Greco, employing a high order numerical algorithm based on the spectral-
alerkin flow solver of Shen �1994� and Yang et al. �2008� and parallel implementation.
he defect diagnostic tools are explained further in Andrienko and Allen �2000�, Callan-
ones et al. �2006�, and Yang et al. �2008�.

I. THE LCP-FLOW MODEL AND NUMERICAL METHOD

. The DMG model

The Doi–Hess kinetic theory describes the dynamics of rigid-rod macromolecules in a
iscous solvent in terms of an orientational PDF, whereas Marrucci and Greco �Marrucci
nd Greco �1991�; Marrucci and Greco �1994�� extended the model to include a distor-
ional elasticity potential. While the authors developed algorithms for the Smoluchowski
quation coupled to the flow equations �Forest et al. �2005a, 2005b��, the system is
omputationally prohibitive and therefore Leal’s group �Feng and Leal �1997�; Chaubal
nd Leal �1998�; Feng et al. �1998�; Sgalari et al. �2002�; Sgalari et al. �2003�; Klein et
l. �2007a, 2008�; Klein �2007b�� and the authors �Forest and Wang �2003�; Forest et al.
2004c, 2006, 2007a�� pursued effective closures of the Smoluchowski equation and
tress constitutive law. Rey has developed a Landau–de Gennes theory from continuum
echanical principles. The version that we adopt here features a finite aspect ratio of

ematic liquid crystal molecules modeled as spheroids and a constant rotary diffusivity
Wang �2002��. The fundamental descriptive variable of these models is the so-called
rientation tensor Q,

Q = M −
I

3
, M = �mm� , �2.1�

here the angular brackets indicate an average with respect to the PDF, m is a unit vector
epresenting the direction of a rodlike molecule, and I is the identity tensor.

The orientation tensor is thus the traceless part of the second-moment tensor M
�mm� of the orientational PDF. Q and M share spectral properties, with the same

1
igenvectors and eigenvalues that differ by 3 . Recall that M is symmetric, trace 1, and
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ositive semidefinite, with non-negative eigenvalues 0�d3�d2�d1�1. The orthonor-
al frame of eigenvectors ni with semiaxes di therefore geometrically determines a

riaxial ellipsoid at each mesoscopic location and time. Spheres correspond to isotropic
istributions d1=d2=d3= 1

3 with all directions of orientation equally probable; prolate
pheroids �with two equal minor axes� correspond to uniaxial distributions d1�d2=d3,
uch as all stable nematic equilibria; oblate spheroids �with two equal major axes, d1

d2�d3� correspond to a defect phase in which the most likely axis of orientation lies
nywhere on the circle in the plane normal to the unique minor axis associated with the
rincipal value d3�; full triaxial ellipsoids correspond to biaxial orientation where all di

re distinct. Whenever d1 is simple, the associated peak orientation direction n1 is called
he major director.

N.B. The stable prolate uniaxial phase �d1�d2=d3�, the unstable oblate uniaxial phase
d1=d2�d3�, and the isotropic phase �d1=d2=d3� �whose stability changes with rod
olume fraction�, comprise all equilibria in the Onsager equilibrium phase diagram for
ematic rod dispersions. These conditions are easily monitored by local metrics, the zero
evel sets of d1−d2 and d2−d3, which are relevant here for the following reason. At
ufficiently high volume fractions, the partially disordered oblate phase or the fully dis-
rdered isotropic phase—although both unstable—nevertheless arise in the cores of to-
ological defects.

The spectral representation of Q is

Q = s�n1�x,t�n1�x,t� −
I

3
� + ��n2�x,t�n2�x,t� −

I

3
� , �2.2�

here s=d1−d3 and �=d2−d3. We now translate the above special phase criteria in terms
f di to these two order parameters. First, s���0, where the equalities define special
onfigurations. Whenever s�0, n1 is uniquely defined and called the major director; if in
ddition, �=0 then the orientation is uniaxial, whereas ��0 corresponds to biaxial
hases. Orientational degeneracies or disordered phases correspond to phases where a
nique major director is not identifiable: the oblate phase satisfies s=��0 while the
sotropic phase satisfies s=�=0. Geometrically, the tensors of these disordered phase
onditions correspond to oblate spheroids and spheres, respectively, which are easily
dentifiable in the graphics. Thus, by blind monitoring of two scalar metrics d1−d2 and

2−d3, an oblate or isotropic defect core is detected locally in space and time. At times
ith positive tests, a snapshot of the ellipsoids gives a full orientation space texture,
here “platelets” identify oblate defect cores and spheres identify isotropic defect cores.
inally, a projection of the principal axis �where identifiable� onto the texture plane gives

he director field topology surrounding each core.
We label “in-plane” ��� and “out-of-plane” ��� angles of the major director n1 defined

ith respect to the flow coordinates �x is the flow direction, y is the velocity-gradient
irection, and z is the vorticity axis�: n1= �cos � cos � , cos � sin � , sin ��. Note that �
0 corresponds to in-plane orientation where n1 lies in the shear plane �x ,y�, while �
� /2 corresponds to vorticity alignment of n1, also known as logrolling alignment.
hese logrolling anchoring conditions at the plates are indicated by the Larson–Mead
xperiments used by Klein et al. �2007a, 2008�, Klein �2007b�, and Yang et al. �2008�

nd applied in this paper.
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596 YANG et al.
. Model equations

We nondimensionalize the DMG model using the gap height 2h, the nematic rotational
iffusion time scale tn, and the characteristic stress 	0=
h2 / tn

2 where 
 is the density of
he nematic polymer liquid. The dimensionless velocity, position, time, stress, and pres-
ure variables become

Ṽ =
tn

h
V, x̃ =

1

h
x, t̃ =

t

tn
, 	̃ =

	

	0
, p̃ =

p

	0
. �2.3�

he plates move at constant speed v0, which defines a bulk flow time scale t0=h /v0; the
verage rotary diffusivity Dr of the rods defines another time scale tn=1 /6Dr, whose ratio
efines the Deborah number De= tn / t0=v0 /6hDr. The following seven dimensionless
arameters arise:

Re =
	0tn

�
, � =

3ckT

	0
, Er =

8h2

Nl2 , 
i =
3ckT�i

tn	0
, i = 1,2,3, �2.4�

here Re is the solvent Reynolds number; the solvent viscosity is �; � measures the
trength of entropy relative to kinetic energy; c is the number density of rod molecules;
is the Boltzmann constant; T is absolute temperature; Er is the Ericksen number which
easures the short-range nematic potential strength relative to distortional elasticity

trength, which involves the persistence length l and the dimensionless volume fraction
, which governs the strength of the Maier-Saupe intermolecular potential; 1 /
i, i=1, 2,
nd 3 are the three nematic Reynolds numbers, themselves dependent on the three shape-
ependent viscosity parameters due to the polymer-solvent interaction 3ckT�i, i=1, 2,
nd 3. We drop the ˜ on all variables; the dimensionless flow and stress constitutive
quations take the following forms:

DV

Dt
= � · �− pI + 	� , �2.5�

he extra stress constitutive equation is given by

	 = 	 2

Re
+ 
3
D + a�F�Q� +

a�

3 Er
��Q:Q	Q +

I

3

 −

1

2
��QQ + Q�Q� −

1

3
�Q�

+
�

3 Er
�1

2
�Q�Q − �QQ� −

1

4
��Q:�Q − ��Q:Q�� + 
1�	Q +

I

3

D + D	Q +

I

3

�

+ 
2D:Q	Q +
I

3

 , �2.6�

here DV /Dt=�V�t+ �V ·��V is the material derivative, D= 1
2 ��V+ ��V�T� is the sym-

etrized velocity-gradient tensor �rate-of-strain tensor�, a= �r2−1� / �r2+1� parametrizes
he aspect ratio r of spheroidal molecules, and rotational Brownian motion and short-
ange excluded volume effects enter through the gradient of the Maier-Saupe potential,

F�Q� = 	1 −
N

3

Q − NQ · Q + NQ:Q	Q +

I

3

 . �2.7�
he orientation tensor equation is
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DQ

Dt
= �Q − Q� + a�DQ + QD� +

2a

3
D − 2aD:Q	Q +

I

3



− �F�Q� +
1

3 Er
��Q:Q	Q +

I

3

 −

1

2
��QQ + Q�Q� −

1

3
�Q�� , �2.8�

here DQ /Dt=�Q /�t+ �V ·��Q and �= 1
2 ��V− ��V�T� is the vorticity tensor. Physical

oundary conditions include no-slip velocity at the plates, which in dimensionless units
ecomes

V
y=�hy
= ��De,0,0� , �2.9�

hereas periodic boundary conditions are imposed in the vorticity �z� direction. All
elocity components, pressure, and tensor components are allowed and computed as
unctions of y, z, and t; the only restriction we make is to suppress dependence along the
rimary flow axis x.

To make contact and comparisons with Klein et al. �2007a, 2008� and Klein �2007b�,
e impose so-called logrolling boundary conditions on the orientation tensor Q at the

olid plates: the nematic uniaxial equilibrium order parameter values s=0.809 and �=0
re imposed �determined from the presumed dimensionless rod volume fraction N=6�,
nd the major director is fixed along the vorticity axis n1= �0,0 ,1�. For initial data, we
rst extend the plate orientation tensor equilibrium across the gap and then introduce a
andom perturbation of O�10−6� amplitude in all orientation tensor components at each
patial site between the two plates.

. Numerical method

For Eq. �2.8�, noticing that the Laplacian operator is multiplied by the function Q, we
ubtract �Q on both of the left- and right-hand sides at the same time and impose the
mplicit form for the left and explicit form for the right in order to utilize the fast Poisson
olver. We rewrite the systems �2.5�–�2.8� in the following form:

�V�x,t�
�t

−
1

Re
�V�x,t� + �p�x,t� = Vn�V�x,t�,Q�x,t�� ,

� · V�x,t� = 0, �2.10�

�Q�x,t�
�t

−
1

3 Er
�Q�x,t� = Qn�V�x,t�,Q�x,t�� −

1

3 Er
�Q�x,t� ,

here Qn and Vn contain all corresponding nonlinear terms. Assuming �k is the numeri-
al approximation of � at time t=k�t, �Vk , pk ,Qk� and �Vk−1 , pk−1 ,Qk−1� are known, for
he time discretization, the second-order pressure-correction scheme of the flow equation
cf. Guermond and Shen �2004�� and second-order semi-implicit scheme of the morphol-
gy equation can be described as follows:

Find the intermediate velocity Ṽk+1= �Ṽx
k+1 , Ṽy

k+1 , Ṽz
k+1� such that

3Ṽk+1 − 4Vk + Vk−1

2�t
−

1

Re
�Ṽk+1 + �pk = 2Vn�Vk,Qk� − Vn�Vk−1,Qk−1� ,

�2.11�
Ṽx

k+1
y=�h = De,Ṽy
k+1
y=�h = 0, ṽz

k+1
y=�h = 0.

y y y
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Find the auxiliary function �k+1 to satisfy

− ��k+1 =
3

2�t
� · Ṽk+1

�2.12�

� ��k+1

�y
�

y=�hy

= 0.

Update �pk+1 ,Vk+1� by

pk+1 = pk + �k+1 −
1

Re
� · Ṽk+1,

�2.13�

Vk+1 = Ṽk+1 −
2�t

3
� �k+1.

Find Qk+1 such that

3Qk+1 − 4Qk + Qk−1

2�t
−

1

3 Er
�Qk+1 = 2Qn�Vk,Qk� − Qn�Vk−1,Qk−1� −

1

3 Er
�Qk,

�2.14�
Qk+1
y=�hy

= Q0
y=�hy
.

he semidiscrete scheme above provides an advantage: for each time step, we only need
o solve a sequence of Poisson equations of the form,

u − ��u = f�u� ,

�2.15�

u�y,z�
y=�1 = 0 or � �u�y,z�
�y

�
y=�1

= 0.

o solve the above equation, we assume that the function u�y ,z� can be expanded in the
ollowing form, consistent with physical boundary conditions between the plates and
eriodicity in the vorticity direction:

u�y,z� = �
m=−M/2

m=M/2

um�y�eimz. �2.16�

hen Eq. �2.15� yields,

�1 + �m2�um�y� − �umyy�y� = fm�y� ,

�2.17�

um�y = � 1� = 0 or � �um�y�
�y

��y = � 1� = 0.

or any fixed m, we solve the above 1D Poisson equation, as in �Shen �1994�; Yang et al.
2008��. In the simulations presented in this paper, the computational domain is �y ,z�

�−hy ,hy�� �0,hz� where hy =1 and hz=2, with periodicity in the z direction and physi-
al boundary conditions at the planar plates y= �hy. Our goal is to reproduce steady roll
ells at low plate speeds followed by unsteady transitions at higher plate speeds, as seen
y Larson–Mead experimentally and by Klein et al. �2007a� with simulations of a similar

odel. We identify parameter sets based on these criteria aided by comprehensive nu-
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erical studies of monodomain phase diagrams for variable Deborah number and 1D
eterogeneous phase diagrams for variable Deborah and Ericksen numbers. The follow-
ng parameter values suffice for these purposes: a=0.8, 
1=9�10−3, 
2=9�10−3, 
3

1.0, Re=10.0, �=2, and Er=50. We fix the equilibrium nematic concentration N=6, so
he equilibrium order parameter is s0=0.809. This value is the baseline for how well
rdered the rod ensemble is throughout the gap in our graphics. The initial flow profile
nd geometry of the Q tensor is described in Fig. 1.

We now explore the structure formation for the initial-boundary value data prescribed
bove, with all other parameters fixed, for variable De. In all simulations, we use 256
ourier modes in z and 256 Legendre polynomials in z, with a time step of �t=0.001. The
esults presented are robust to finer resolution in space and time, as discussed in Heiden-
eich �2008a�.

II. NUMERICAL RESULTS

We focus on the details of two particular space-time attractors: the steady roll-cell flow
attern and associated orientational morphology and then the unsteady attractor that

IG. 1. Sketch of the initial condition of M ellipsoids and velocity profile �arrows�. The right color bar is based
n the level set values of the oblate defect metric d1−d2, which is consistent �~0.8� for the uniform initial
onditions on orientation chosen here. The same color scale is applied throughout the paper.
rises at higher Deborah number from the roll-cell instability. In each simulation, we
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resent correlations among the flow and principal orientation axis features, textures de-
ned by the local defect metrics, and textures defined by the full geometry of the orien-

ation tensor at each spatial site.

. Stable roll cells

We begin at a low Deborah number De=1.5, where steady-state attractors are ob-
erved. The simulations converge to steady state by t=400, or equivalently, �=300 strain
nits.

Figure 2�a� shows the absolute value of the out-of-plane angle � of the principal axis
major director� superimposed with the secondary flow profile �Vy ,Vz�, in the �y ,z� tex-
ure plane, transverse to the flow direction. The terminology “roll cell” is self-evident.
here are two roll cells in the physical domain, and the level sets of � coincide with the

IG. 2. 2D steady roll-cell morphology: secondary flow and orientational correlation. Top: The absolute value
f the out-of-plane primary director angle � superimposed with the secondary flow �Vy ,Vz�. Bottom: The M
llipsoids color-coded by level set values of the oblate defect metric of d1−d2, indicating a negative test for
efects.
losed streamlines. Figure 2�b� gives the steady-state distribution of orientation tensor
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601DYNAMIC DEFECT MORPHOLOGY OF SHEARED NEMATICS
llipsoids which provide full configuration space information across the 2D physical
omain. The ellipsoids are color coded in terms of the primary defect metric d1−d2,
hich reinforces the information carried by the ellipsoid geometry. These graphics indi-

ate that the orientational morphology has very weak order parameter distortions, and the
tructure is dominated by the rotation of the principal axis of orientation. Figure 3 gives
uantitative confirmation of this morphology characterization with the steady-state values
f both the isotropic metric d1−d3 �left� and the oblate metric d1−d2 �right�, across the
exture plane, showing variation from the equilibrium plate conditions by less than 5%.
his is truly a director-dominated steady morphology. It is not surprising that this
director-dominated” morphology would be captured by liquid crystal LEF simulations
Feng et al. �2001��.

We now show the full flow features associated with the roll-cell regime, which will set
he stage for transitions to more complex features at higher De. Figure 4 shows the
teady-state primary velocity, the departure from pure shear �the nonlinear flow feed-
ack�, individual secondary flow components �additional flow feedback�, and the pres-
ure. If there were no flow feedback, for these boundary conditions we would have Vx

Vx
0=De�y, where Vx

0=Vx�t=0� is the initial condition. Since 
Vx−Vx
0
 / 
Vx
�10−3, as

een from the scale in part �b�, the primary flow is indistinguishable from pure shear.
ote that the secondary flow components Vy and Vz have maximum norms on the order
f 10−3, while the pressure is on the order of 10−2. These results again support the
xcellent approximation of the roll-cell formation in the LEF model simulations of Feng
t al. �2001�.

For spatial domains of aspect ratio hz / �2hy�=1, two roll-cells form at De=1.5 and
r=50. As we increase the physical domain aspect ratio, the same qualitative steady
ttractor persists, with an increase in the number of roll cells as follows: six cells for
spect ratio 2, ten cells for aspect ratio 4, and 20 cells for aspect ratio 8. For this paper,
e are interested in the detailed features of the orientational morphology as they correlate
ith roll cells and then the flow-morphology correlations as roll cells destabilize and
efects are spawned. We restrict this study to the spatial domain aspect ratio of 1, which
educes the number of cells. The features we report are robust to higher aspect ratios,
xcept that the number density of prominent features is increased.

. Unsteady transition: Roll-cell breakup and defect nucleation

We increase the Deborah number to De=3.5, retaining all other parameters fixed. The

IG. 3. 2D steady roll-cell morphology: order parameter defect diagnostics. Left: The steady isotropic defect
etric d1−d3. Right: The steady oblate defect metric d1−d2. Note that each defect metric is color-coded with

lue for the minimum value and red for the maximum value. Both metrics are bounded far from the zero value
ndicative of defects.
teady roll cells and orientational morphology at De=1.5 become unstable with longtime
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602 YANG et al.
ersistence of unsteady flow and orientational morphology. The main emphasis of the
resent paper is to study the transient 2D attractor that results from the roll-cell instability
n the basis of full tensor defect diagnostics and graphics.

Figure 5 shows the absolute value of the out-of-plane angle � superimposed on the
econdary flow profile �Vy ,Vz� at three early selected times in the simulation t=16, 17,
0, or equivalently in strain units �=28, 29.75, and 87.5. Four roll-cells form at t=16,
ncentered and asymmetric—reminiscent of Fig. 2�a�—except that the major director at
he center of the cells has rotated significantly toward the shear �x ,y� plane while the
roughs between the cells remain almost vorticity aligned. The first panel of Fig. 5�b�
ives a blowup of the domain near the top plate where two cells meet; vorticity alignment
ersists deep into the center of the updraft. Note further that the z gradient of � is again
oncentrated at the “updrafts” and “downdrafts” between the roll cells. The flow genera-
ion at t=16 is shown in the top row of Fig. 6. We find that all orientation-induced flow
eatures are amplified by 1 order of magnitude or greater from the De=1.5 results, with
aximum norms rising to the order of a few percent of the normalized plate speed De.
ummarizing, we find that an increase in De from 1.5 to 3.5 has led to 1 order of
agnitude increase in flow generation and stronger director gradient morphology based

n the t=16 snapshot of the simulation. The prominent features are striped domains
etween the roll cells, where there is the strongest upflow or downflow toward the plates
nd where the director has rotated farthest from the plate orientation. The strongest
rientational gradients are at the tips of the striped domains.

(a) Vx (b) Vx − V 0
x (c) Vy

(d) Vz (e) p

IG. 4. 2D steady roll-cell morphology: full 2D velocity V= �Vx ,Vy ,Vz� and pressure profiles, where Vx
0

Vx�t=0�, �a� Vx, �b� Vx−Vx
0, �c� Vy, �d� Vz, and �e� p. The color code for each quantity is blue for the minimum

alue and red for the maximum value.
The next snapshot t=17 indicates that the secondary flow persists with four slightly
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odified roll cells, but the morphology of the director angle � has changed dramatically,
ow migrating further toward the shear plane in the interior. The prominent features are
igar-shaped �dark blue� domains in the up and down drafts between roll cells, inside of
hich the director orientation is tilted all the way to the shear �x-y� plane. At the tips of

ach cigar domain, an extremely strong orientational gradient is implied: the major di-
ector varies from vorticity alignment to in-plane alignment over a very short lengthscale.
rom t=16 to t=17, the thin vertical strips of vorticity alignment have split, leaving

IG. 5. Unsteady regime of roll-cell breakup: Top row: Snapshots of the absolute value of the out-of-plane
ngle � superimposed on the secondary flow profiles �Vy ,Vz� at t=16, 17, and 50. Bottom row: Local blow up
f the regions in each snapshot where a strong gradient occurs. In all six figures, the color-coding is based on
he values of �, where dark red � 90 degrees for vorticity �z-axis� alignment and dark blue � 0 degrees for
lignment somewhere in the shear �x,y� plane.

(a) Vx (b) Vx − V 0
x (c) Vy (d) Vz (e) p

(f) Vx (g) Vx − V 0
x (h) Vy (i) Vz (j) p

(k) Vx (l) Vx − V 0
x (m) Vy (n) Vz (o) p

IG. 6. Unsteady regime of roll-cell breakup: primary and secondary flow and pressure profiles at t=16 �top
ow�, t=17 �middle row�, and t=50 �bottom row�. The color-coding in each figure interpolates between dark red

or the maximum value and dark blue for the minimum of each respective function.
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orticity-aligned fingers from the plate to the cigar tips, while the cigar domains have
n-plane orientation. The flow features at t=17 are given in row 2 of Fig. 6, showing only

inor qualitative differences from t=16. The dynamics from t=16 to t=17 are dominated
y an orientational response to the quasistationary flow, with little flow changes. We
eturn shortly to amplify the orientational morphology with enhanced diagnostics and
raphics.

The t=17 orientation-flow structure persists for some time but eventually breaks up
nd settles into a dramatically different morphology shown at t=50. The entire texture,
side from localized plate boundary layers, has nearly in-plane orientation �i.e., the prin-
ipal axis has very small vorticity axis component�. The fingers at t=17 where �=� /2
ave stretched and thickened, now reaching to within 0.05 normalized height units of the
lates, still residing in the up and down drafts between the four quasistationary roll cells.
he red regions of vorticity alignment are now localized in boundary layers near each
late, with a wavelength of variation of one fourth of the z period. The layer is blown up
n panel 3 of Fig. 5�b� for comparison with the other two snapshots. The corresponding
ow features at t=50 are shown in row 3 of Fig. 6.

. Oblate defect cores and defect detection metrics

Figure 7 amplifies the morphology at t=16, 17, and 50 with graphics of the defect
etrics d1−d2 and d1−d3 and of the full orientational ellipsoid representation of texture.
The isotropic defect metric d1−d3 is bounded away from zero at all times: isotropic

efect phases do not form. �Level set tracking of d1−d3 for all times confirms these
bservations.� Yet, column 2 shows oblate defect phases which are evident in each

(a)

(b)

(c)

IG. 7. Unsteady regime of roll-cell breakup. Order parameter diagnostics for isotropic defects d1−d3 �column
� and oblate defects, d1−d2 �column 2�, and M tensor ellipsoids color coded by level set values of the oblate
efect metric d1−d2 �column 3�, at t=16 �row 1�, t=17 �row 2�, and t=50 �row 3�. N.B. Dark blue signals
blate defect domains of the level set d1−d2=0, which we conclude from the isotropic defect metric that
emains well above zero.
napshot, in geometric domains that vary in shape, size, and location precisely correlated
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605DYNAMIC DEFECT MORPHOLOGY OF SHEARED NEMATICS
ith strong gradients in the major director angle �. The oblate domains are transient:
ertical stripes at t=16, then tear-shaped drops at t=17, and then thin strips along the
lates at t=50. In the subsequent dynamics, for as long as we run the codes, oblate defect
omains persist. �We turn to topology below, which will not be robust.�

The thin vertical stripes at t=16 and thin horizontal stripes at t=50 occur when the
rincipal axis of the orientation has strong gradients that are primarily 1D: in the z
irection in the narrow trough between roll cells at t=16, in the y direction localized near
he plates at t=50. When the strong gradients are more localized and 2D at t=17, oblate
efect drops form. The upshot is that strong gradients engage the full orientation tensor;
onitoring either the order parameters or the principal axes, strong gradients are corre-

ated. This feature is consistent with asymptotic and numerical studies of wall boundary
ayers in shear cells �cf. Forest et al. �2004c, 2006, 2007a��.

Column 3 of Fig. 7 gives the full orientational configuration space morphology
hrough the second-moment tensor ellipsoid textures of each snapshot t=16, 17, and 50,
learly revealing oblate spheroids precisely in the oblate defect domains �vertical stripes,
rops, and thin horizontal stripes� detected in column 2 by the zero level set metric d1

d2=0.

. Topological metrics associated with defect cores

At this stage, we have a positive test for defect cores, and furthermore, clear evidence
f dynamic transitions in the geometry, number, and location of defect domains. Next, we
ursue the nonlocal topology that we suspect surrounds the defect domain cores. We
gain acknowledge the independent numerical work of Andrienko and Allen �2000� and
allan-Jones et al. �2006� and the insights gained by the analysis of Schopohl and
luckin �1987�, Sigillo et al. �1998�, and Kralj et al. �2008�.

We focus on the t=50 snapshot in Fig. 8. This structure is chosen for a detailed
nspection because it persists as a quasistationary state for tens of time units. These defect
tructures are of two types: those nearest to the plates and those further inside the gap. We
agnify each of the ellipsoidal structures by a factor of 4 from Fig. 7 in Fig. 8 column 1,

anels �a� and �d�. We enhance the ellipsoids with the level set color scheme of the oblate
efect metric d1−d2 so the defect core is prominent. The double projection �of the
rincipal axis of M, onto the texture plane� is given below the ellipsoidal texture, with
ertical solid stakes identifying the locations of topological defects. These projections
ossess insufficient resolution, so we next magnify the y−z director projections by an-
ther factor of 4 in column 2 of Fig. 8, panels �b� and �e�; the oblate defect metric d1

d2 is again superimposed on the director topology using an absolute color scale. We find

Each oblate defect core has two topological defects attached to it: a half-integer defect
residing at the center of the oblate defect �the zero level set of d1−d2� and an integer
defect that is shifted off the oblate core center and removed from the zero level set of
the oblate metric. We refer to these as defect domain structures, each consisting of an
oblate core and an attached pair of degree �+1,− 1

2
� or �−1, + 1

2
� topological defects.

The integer defects are associated with nondegenerate structures when viewed in full
orientation space: the principal axis of the second-moment ellipsoid smoothly escapes
into the third dimension �the primary flow direction�.
The integer defect core corresponds to a return to nearly uniaxial symmetry, with �d2

−d3�0.01�, whereas the uniaxial order parameter s=d1−d3�0.76: a slightly lower
value than the equilibrium value �s=0.809� imposed at the plates.
The half-integer defects are associated with the algebraic degree 2 multiplicity of the

maximum principal value of the orientation tensor, i.e., the oblate phase. The predomi-
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nantly planar principal axis surrounding the core defocuses to a circle of orientations at
the core �the oblate phase�, thereby resolving the pending singularity of the principal
axis at the center of the core.

. Secondary flow-defect morphology correlations

Column 3 of Fig. 8, panels �c� and �f�, superimposes the secondary flow with the color
cale of the oblate defect metric on the same scale as the director projections of panels �b�
nd �e�. The graphics reveal

The defect domain structures at the top plate with �+1,− 1
2

� topology form at the tips of
downdrafts between roll cells, nearby a stagnation point of secondary straining flow.
The structures at the top plate with �−1, + 1

2
� topology form at the tips of updrafts

between roll cells, also nearby a stagnation point of secondary straining flow.

. Oblate defect merger: Persistence of oblate domains and transition to
rivial topology

The defect domain structures at t=50 persist for tens of time units. From t=15 to t
70, the dynamics is dominated evolution of the orientational morphology, while the
ydrodynamic response is almost stationary, with a quasisteady secondary roll-cell struc-
ure and primary shear flow. Around t=70, there is a breakdown of the four roll-cell

(a) +1,− 1
2 (b) +1,− 1

2 (c) +1,− 1
2

(d) −1,+ 1
2 (e) −1,+ 1

2 (f) −1,+ 1
2

IG. 8. Unsteady regime of roll-cell breakup: post-diction topological evaluation of defects from the t=50
napshot in Fig. 7. The two distinct defect domain structures near the top plate are amplified: y�0.95, z

1.1, in panels �a�–�c� and y�0.95, z�0.63 in panels �d�–�f�. Column 1: fourfold magnification of the
llipsoid texture together with the projection of the major ellipsoid axis onto the texture plane. Column 2:
6-fold magnification of the major director topology, superimposed with color coding by the level sets of the
blate defect metric d1−d2. Column 3: 16-fold magnification of the secondary flow profile, superimposed with
olor coding by the level sets of the oblate defect metric d1−d2. Topological defects are identified and labeled
ccording to degree: +1 �square� and − 1

2 �tripod� defects share one oblate defect core; �1 �cross� and + 1
2 �circle�

efects share the other oblate defect core. �a� +1, − 1
2 , �b� +1, − 1

2 , �c� +1, − 1
2 , �d� �1, + 1

2 , �e� �1, + 1
2 , and �f� �1,

1
2 .
econdary flow pattern accompanied by a subsequent merger of neighboring pairs of
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efect domain structures. We emphasize that these features are tracked and depicted by
ow-cost level set graphics of the oblate defect metric; the isotropic metric clearly shows
he smallest eigenvalue of M is simple throughout the simulation and will not be shown.
he topology, as we shall see, is transient; whereas the oblate domains remain identifi-
ble.

Snapshots at t=74, 90, 94, 98, 98.25, and 99 of salient flow-orientation features are
resented next. Figure 9 gives the full orientation ellipsoid textures, Fig. 10 gives the
uperposition of the major director and the color-coded oblate defect metric d1−d2, and
ig. 11 superimposes the secondary flow and the out-of-plane director angle �. As the

wo oblate domains merge, the integer defects disappear because the ellipsoids whose
rincipal axes escape into the third dimension grow from a localized “spot” to a 2D
omain. Since there is no local escape of the primary director, the integer degree topol-
gy is gone. The half-integer defects disappear by t=99, as seen in the snapshots of Fig.
0, but the secondary flow is key to understanding this process. From Fig. 11, the t
74 snapshot shows that the + 1

2 defect and core at �z=0.64, y=0.95� is getting swept by
he secondary flow toward the − 1

2 defect and core at �z=1.1, y=0.95�, which is still near
stagnation point of the secondary flow. By t=90, the + 1

2 defect and core are continuing
o be swept to the right �increasing z�, and the − 1

2 defect and core are drifting left
decreasing z� along with the stagnation point in the flow. Figure 11 shows that the light

(a) t = 74 (b) t = 90

(c) t = 94 (d) t = 98

(e) t = 98.25 (f) t = 99

IG. 9. Diagnostics of defect merger, annihilation of topology, and persistence of oblate domains: Two defects
t t=74, their merger �t=90 to 98.25�, and topological annihilation �t=99�, seen through full orientational
llipsoid textures. �a� t=74, �b� t=90, �c� t=94, �d� t=98, �e� t=98.25, and �f� t=99.
reen-blue domain between the two half-integer defects is shrinking in height until it is
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one at t=98.1. This means that the y gradients of the out-of-plane angle � are trapped
etween the merging oblate defect domains, and the opposite-signed half-integer director
otations at the center of the merging cores smoothly cancel each other until the two
alf-integer defects have annihilated and the topology is trivial.

The defect merger just shown corresponds to a topological transition, whereas the
evel sets of the oblate defect metric d1−d2 reveal persistence and propagation of oblate
omains. The center of the oblate domains may weaken �the minimum of d1−d2 rises
lightly above zero� when the topology is trivial, but the gradients of d1−d2 clearly
emain identifiable. For the next 30 time units, the localized oblate domains remain
dentifiable while the surrounding topology is trivial. This phenomenon detected by level
ets of the oblate metric has not been reported previously in defect morphology studies.
e emphasize that the remnants of topology are tracked in this way, and we show next,

hese tracked oblate domains also play a leading role in the next topological transition.

. Oblate defect domain splitting and reformation of nontrivial
opology

Next, Fig. 12 �the ellipsoids�, Fig. 13 �the director projection and color-coded oblate
etric�, and Fig. 14 �the color-coded out-of-plane angle � and secondary flow field�

ocument the reformation of defect topology. The ellipsoidal texture and the oblate defect
etric d1−d2 identify oblate domains that persist with trivial topology until t=120; the

ut-of-plane director angle � shows a small localized domain �dark blue� of in-plane
rientation at the center of the oblate domain, with a strong gradient indicated by the
lose proximity of the vorticity-aligned domain �dark red�. At t=121, the single oblate

(a) t = 74 (b) t = 90

(c) t = 98 (d) t = 98.1

(e) t = 98.25 (f) t = 99

IG. 10. Diagnostics of defect merger, annihilation of topology, and persistence of oblate domains: seen
hrough projection of the director field superimposed with color-coded level sets of the oblate metric d1−d2.
opological defects: +1 �square�; − 1

2 �tripod�; �1 �cross�, and + 1
2 �circle�. �a� t=74, �b� t=90, �c� t=98, �d� t

98.1, �e� t=98.25, and �f� t=99.
omain at t=120 has split into two asymmetric domains; from the director projection
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exture, we observe the nucleation of opposite signed, half-integer defects at the center of
hese two oblate defect domains. From the � level sets, we observe that the domain of
n-plane orientation has spread with strong gradients now separated and coincident with
he oblate domain cores. At t=123 and 124, integer defects have now formed, thereby
ecreating the earlier defect domain structures: two oblate domain cores each carrying a
opological defect pair of opposite-signed half-integer and integer winding numbers. The
evel sets of � clearly show a larger domain of in-plane orientation between the separated
blate defect structures, and the sharp blue-red transition of strong gradient of �. The
efect structures have also migrated closer to the plate, and by t=126, they have propa-
ated very near to the top plate.

Closer scrutiny of the secondary flow at t=126 shows the flow is sweeping the left
efect structure to the right, while the right defect is sitting just above and to the left of
small roll cell, with very little flow either right or left. This flow geometry explains the

=128 snapshot where the two defect cores have come closer, and the flow is essentially
he same, so these two defects will be drawn yet closer in time, followed by another
erger and topological transition.
Integrating further in time, the process continues, at least numerically so, with persis-

ent oblate defects domains with topology attracting one another, oblate domain merger
nd loss of topology, migration toward the interior, splitting of oblate domains and ref-
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(a) t = 74 (b) t = 90

(c) t = 98 (d) t = 98.1

(e) t = 98.25 (f) t = 99

IG. 11. Diagnostics of defect merger, annihilation of topology, and persistence of oblate domains: seen
hrough the secondary flow field superimposed with color-coded level sets of the director angle � with respect
o the shear plane. �a� t=74, �b� t=90, �c� t=98, �d� t=98.1, �e� t=98.25, and �f� t=99.
rmation of topology, propagation toward the plates, ad infinitum. This is the defect
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orphology features of the unsteady attractor that arises from the roll-cell instability.
hile our simulations and diagnostics share details at specific times with the Klein et al.

2007a� and Klein �2007b� studies, there are some differences in the evolution that are
lmost surely due to the different closure rules employed by the two models. It would be
orthwhile to ascertain which model is more faithful to the full kinetic microstructure

nd Navier–Stokes simulation and to determine which features might be experimentally
erified.

V. CONCLUSION

We have amplified the structure and dynamics of defects that arise in model simula-
ions of the experiments by Larson and Mead on the roll-cell instability, using a combi-
ation of local algebraic and nonlocal topological metrics and associated graphics. Klein
t al. �2007a� and Klein �2007b� presented the first simulations of coupled flow and full
ensor orientation dynamics in two space dimensions; we have repeated their simulations
ith a different closure approximation of the DMG model and a different numerical code.
he major new flow-orientation phenomena presented here relate to defect detection,
haracterization, and evolution with correlations in the secondary flow afforded by full
ensor metrics and graphics.

First, we establish that the fundamental defect structure in these flow-coupled systems
s an oblate phase arising from a local degree 2 algebraic degeneracy in the leading
rincipal value of the orientation tensor. This degeneracy is trivially detected and imaged
hrough the level sets of the oblate metric d1−d2, where d1 and d2 are the leading
igenvalues of the second-moment orientation tensor M. Once defects are spawned, our

(a) t = 120 (b) t = 121

(c) t = 123 (d) t = 124

(e) t = 126 (f) t = 128

IG. 12. Diagnostics of oblate defect splitting and reformation of topological degree: seen through the full
rientational ellipsoid textures between t=120 and t=128. �a� t=120, �b� t=121, �c� t=123, �d� t=124, �e� t
126, and �f� t=128.
imulations reveal that the oblate domains persist ad infinitum, irrespective of topology
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ssociated with the projection of the principal axis of M. Indeed, oblate defect domains
emain clearly identified while the topology surrounding each oblate domain varies
mong three distinct types during stages of the flow-orientation evolution.

One long-lived topological defect structure consists of an oblate domain with a half-
nteger defect sitting at the center where d1−d2=0 and d1�d3, and an integer defect of
pposite sign translated a small distance from, yet sharing the same oblate domain.
henever such a defect structure appears, there is a twin structure with opposite-signed

opology of both integer and half-integer degrees. The integer defects are always nonde-
enerate, as seen from the texture of full orientation tensor ellipsoids; the integer defect
enter corresponds to director escape into the transverse dimension. The half-integer
efects are truly degenerate structures associated with the oblate phase core in which the
rincipal axis spreads to a circle.

The second long-lived defect structure has trivial topology, yet the oblate defect do-
ains continue to be identified by level set color coding of the oblate metric d1−d2.
raditional diagnostics that focus on topology or on the isotropic phase would therefore
ail to identify these persistent defect structures. It is essentially cost free to numerically
onitor the isotropic �d1−d3� and oblate �d1−d2� metrics. The simulations therefore

moothly track the remnants of topological structure through oblate metric level sets,
hich we show are the sources of subsequent transitions back to nontrivial topology as

(a) t = 120 (b) t = 121

(c) t = 123 (d) t = 124

(e) t = 126 (f) t = 128

IG. 13. Diagnostics of oblate defect splitting and reformation of topological degree: seen through the projec-
ion of the major director and the color-coded level sets of the oblate defect metric d1−d2 between t=120 and
=128. Topological defects: +1 �square�; − 1

2 �tripod�; �1 �cross�, and + 1
2 �circle�. �a� t=120, �b� t=121, �c� t

123, �d� t=124, �e� t=126, and �f� t=128.
blate defect domains split. �Oblate defects without topology are not without precedent:
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n Heidenreich �2008a�, we find 1D heterogeneous structures that are stable to 2D per-
urbations, and which have periodic oblate defect domains with trivial topology.� The
hird short-lived defect structure consists of an oblate domain with only one half-integer
efect sitting over the core, which forms in the transition between the two long-lived
tructures.
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