Math708 - Final Project

1. (25 points) Prove or disprove: if $f \in C([-1,1])$ has mean value zero, then a best approximation to f by polynomials of degree at most n (minimax) with mean value zero is a best approximation to f among all polynomials of degree n.
2. (25 points) Find the simple quadrature rule of highest degree of precision for estimating $\int_{-1}^{1} f(x) d x$ in terms of the values of f at $-1 / 2,0$, and $1 / 2$. Give a complete convergence analysis for the corresponding composite quadrature rule.
3. (25 points) For the initial-value problem $y^{\prime}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$, show that the one-step method defined by

$$
y_{n+1}=y_{n}+\frac{1}{2} h\left(k_{1}+k_{2}\right)
$$

where

$$
k_{1}=f\left(x_{n}, y_{n}\right), k_{2}=f\left(x_{n}+h, y_{n}+h k_{1}\right)
$$

is consistent and find the truncation error.
4. (25 points) For the initial-value problem $y^{\prime}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$, determine the order of the linear multistep method

$$
y_{n+2}-(1+a) y_{n+1}+y_{n}=\frac{1}{4} h\left[(3-a) f_{n+2}+(1-3 a) f_{n}\right]
$$

and investigate its zero-stability and absolute stability.
5. (25 points) For the initial-value problem $y^{\prime}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$, consider the θ-method

$$
y_{n+1}=y_{n}+h\left[(1-\theta) f_{n}+\theta f_{n+1}\right]
$$

for $\theta \in[0,1]$. Show that the method is A -stable if, and only if, $\theta \geq 1 / 2$.

