Math708 - Programming Project

- 1. (20 points) Let S be (a) the spline of degree 1; (b) the spline of degree 2; (c) the natural cubic spline function; (d) the polynomial of degree 40, which interpolates $f(x) = (1+x^2)^{-1}$ at 41 equally spaced knots in the interval [-5, 5]. Plot the functions S(x) and f(x), and evaluate S(x) f(x) at 101 equally spaced points on the interval [0, 5].
- 2. (20 points) Compute an approximate value of the integral by (a) composite *Trapezoid* rule; (b) composite *Simpson's* rule; (c) adaptive *Simpson's* rule,

$$\int_0^1 e^{-x^2} dx$$

Here the uniform step size $h = 10^{-3}$.

3. (20 points) Find the root of the equation

$$2x(1 - x^2 + x)\ln x = x^2 - 1$$

in the interval [0, 1] by (a) bisection; (b) Newton's; (c) Secant methods. Here the error tolerance is 10^{-5} . Show the running results in each step, plot $(x_n, f(x_n))$, and compare the efficiency (number of steps needed) for each method.

4. (20 points) Use (a): Newton's (b) Broyden's method to solve the following nonlinear system,

 $f_1(x_1, x_2) = x_1^2 + x_2^2 - 2 = 0, \quad f_2(x_1, x_2) = x_1 - x_2 = 0.$

Verify that the system has two different solutions by changing initial guess, and verify the convergence rate for each method.

5. (20 points) Define an $n \times n$ matrix by $a_{i,j} = -1 + 2 \max\{i, j\}$, and let $b_j = \sum_{j=1}^n a_{i,j}$. Here n = 15.

(a): Test procedure *Naive* – *Gauss* on this system;

(b): Test procedure *Gaussian Elimination with Scaled Partial Pivoting* on this system;

(c): Find LU factorization of matrix A, then use forward and backward elimination to solve $A\mathbf{x} = \mathbf{b}$.

(d): Test Conjugate Gradients (CG) method on the minimization of the quadratic function $F(x) = x^T A x/2 - x^T b$.

6. (20 points) Solve the initial-value problem $x' = x/t + t \sec(x/t)$ with x(0) = 0 by (a) forward and (b) backward *Euler's* method; (c) the fourth-order *Runge* – *Kutta* method. Continue the solution to t = 1 using step sizes $h = 2^{-2}, 2^{-4}$ and 2^{-7} . Compare and plot the numerical solution with the exact solution, which is $x(t) = t \arcsin t$.