Math708 - Programming Project

1. (20 points) Let S be (a) the spline of degree 1 ; (b) the spline of degree 2 ; (c) the natural cubic spline function; (d) the polynomial of degree 40, which interpolates $f(x)=\left(1+x^{2}\right)^{-1}$ at 41 equally spaced knots in the interval $[-5,5]$. Plot the functions $S(x)$ and $f(x)$, and evaluate $S(x)-f(x)$ at 101 equally spaced points on the interval $[0,5]$.
2. (20 points) Compute an approximate value of the integral by (a) composite Trapezoid rule; (b) composite Simpson's rule; (c) adaptive Simpson's rule,

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

Here the uniform step size $h=10^{-3}$.
3. (20 points) Find the root of the equation

$$
2 x\left(1-x^{2}+x\right) \ln x=x^{2}-1
$$

in the interval $[0,1]$ by (a) bisection; (b) Newton's; (c) Secant methods. Here the error tolerance is 10^{-5}. Show the running results in each step, plot $\left(x_{n}, f\left(x_{n}\right)\right)$, and compare the efficiency (number of steps needed) for each method.
4. (20 points) Use (a): Newton's (b) Broyden's method to solve the following nonlinear system,

$$
f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2=0, \quad f_{2}\left(x_{1}, x_{2}\right)=x_{1}-x_{2}=0 .
$$

Verify that the system has two different solutions by changing initial guess, and verify the convergence rate for each method.
5. (20 points) Define an $n \times n$ matrix by $a_{i, j}=-1+2 \max \{i, j\}$, and let $b_{j}=\sum_{j=1}^{n} a_{i, j}$. Here $n=15$.
(a): Test procedure Naive - Gauss on this system;
(b): Test procedure Gaussian Elimination with Scaled Partial Pivoting on this system;
(c): Find $L U$ factorization of matrix A, then use forward and backward elimination to solve $\mathbf{A x}=\mathbf{b}$.
(d): Test Conjugate Gradients (CG) method on the minimization of the quadratic function $F(x)=x^{T} A x / 2-x^{T} b$.
6. (20 points) Solve the initial-value problem $x^{\prime}=x / t+t \sec (x / t)$ with $x(0)=0$ by (a) forward and (b) backward Euler's method; (c) the fourth-order Runge - Kutta method. Continue the solution to $t=1$ using step sizes $h=2^{-2}, 2^{-4}$ and 2^{-7}. Compare and plot the numerical solution with the exact solution, which is $x(t)=$ $t \arcsin t$.

