Math708 - Homework 4

1. Determine the quadrature points and weights for the weight function $w(x)=-\ln x$ on the interval $(0,1)$, for $n=0$ and $n=1$.
2. The n-point Gauss-Lobatto quadrature rule $(n>1)$ is the rule $\int_{-1}^{1} f d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)$ where the $x_{1}=-1, x_{n}=1$, and the other nodes and weights are chosen so that the degree of precision is as high as possible. Determine the rule for $n=2,3$, and 4 .
3. Let $f: R \rightarrow R$ be a C^{2} function with a root x_{*} such that neither f^{\prime} nor $f^{\prime \prime}$ has a root. Prove that Newton's method converges to x_{*} for any initial guess $x_{0} \in R$.
4. (Computer Exercise) Apply Adaptive Quadrature with Simpson's rule to solve

$$
\int_{-\pi}^{\pi} \cos (x) e^{x^{2}} d x .
$$

with error tolerance 10^{-5}.
5. (Computer Exercise) Find the root of the equation

$$
2 x\left(1-x^{2}+x\right) \ln x=x^{2}-1
$$

in the interval $[0,1]$ by Newton's method. Vary initial guess x_{0}, and make a table that shows the number of correct digits in each step.

