Math708 - Homework 4

- 1. Determine the quadrature points and weights for the weight function $w(x) = -\ln x$ on the interval (0,1), for n = 0 and n = 1.
- 2. The *n*-point Gauss-Lobatto quadrature rule (n > 1) is the rule $\int_{-1}^{1} f dx \approx \sum_{i=1}^{n} w_i f(x_i)$ where the $x_1 = -1, x_n = 1$, and the other nodes and weights are chosen so that the degree of precision is as high as possible. Determine the rule for n = 2, 3, and 4.
- 3. Let $f : R \to R$ be a C^2 function with a root x_* such that neither f' nor f'' has a root. Prove that Newton's method converges to x_* for any initial guess $x_0 \in R$.
- 4. (Computer Exercise) Apply Adaptive Quadrature with Simpson's rule to solve

$$\int_{-\pi}^{\pi} \cos(x) e^{x^2} dx.$$

with error tolerance 10^{-5} .

5. (Computer Exercise) Find the root of the equation

$$2x(1 - x^2 + x)\ln x = x^2 - 1$$

in the interval [0, 1] by Newton's method. Vary initial guess x_0 , and make a table that shows the number of correct digits in each step.