Math708-Homework 3

1. Construct orthogonal polynomials of degree 0,1 and 2 on the interval $(0,1)$ with the weight function $w(x)=-\ln x$.
2. The Newton-Cotes formula with $n=3$ on the interval $[-1,1]$ is $\int_{-1}^{1} f(x) d x \approx$ $w_{0} f(-1)+w_{1} f(-1 / 3)+w_{2} f(1 / 3)+w_{3} f(1)$. Find the values of the weights w_{0}, w_{1}, w_{2} and w_{3}, and give the error estimate.
3. (Computer Exercise) Using n equally spaced nodes on the interval $[-5,5]$, find the interpolating liner spline and natural cubic spline for the function $f(x)=\left(x^{2}+\right.$ $1)^{-1}$. Plot two functions with different values of $n(n=5,11,21)$, and observe the discrepancy between $f(x)$ and $p(x)$.
4. (Computer Exercise) Apply composite midpoint, trapezium and Simpson rules to evaluate

$$
\int_{0}^{2 \pi} \cos (2 x) e^{-x} d x
$$

with error tolerance $\epsilon=1.0 \times 10^{-5}$.
5. (Computer Exercise, Extra Credits) Apply Fast Fourier Transform (FFT) to solve

$$
\int_{-\pi}^{\pi} \cos (x) e^{x^{2}} d x
$$

with $n=1000$ equally spaced points using left end point rule.

