Math708 - Homework 1

1. Let $f(x)=e^{x}, I=[0,1]$. For $p=1,2$ and ∞, find the best L^{p} approximation to f in $P_{0}(I)$.
2. a: Construct Lagrange's interpolation polynomial for the data given below.
b: Construct Newton's interpolation polynomial for the data shown. Without simplifying it, write the polynomial obtained in nested form for easy evaluation.

x	0	2	3	4
y	7	11	28	63

3. Prove that $p_{n}(x)-p_{n-1}(x)=c\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)$ for some constant c. We use the notation $f\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ to denote this constant and call it the nth divided difference of f at the x_{i}. Use the Lagrange's formula for the inerpolating polynomia to derive an expression for $f\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ in terms of x_{i} and $f\left(x_{i}\right)$.
4. (Computer Exercise) Using n equally spaced nodes (and n Chebyshev nodes) on the interval $[-5,5]$, find the interpolating polynomial p of degree n for the function $f(x)=\left(x^{2}+1\right)^{-1}$. Plot two functions with different values of $n(n=5,11,21,41)$, and observe the discrepancy between $f(x)$ and $p(x)$.
