Math708 - Homework 1

- 1. Let $f(x) = e^x$, I = [0, 1]. For p = 1, 2 and ∞ , find the best L^p approximation to f in $P_0(I)$.
- 2. a: Construct Lagrange's interpolation polynomial for the data given below.

b: Construct Newton's interpolation polynomial for the data shown. Without simplifying it, write the polynomial obtained in nested form for easy evaluation.

- 3. Prove that $p_n(x) p_{n-1}(x) = c(x x_0)(x x_1) \cdots (x x_{n-1})$ for some constant c. We use the notation $f[x_0, x_1, \dots, x_n]$ to denote this constant and call it the *n*th divided difference of f at the x_i . Use the Lagrange's formula for the inerpolating polynomia to derive an expression for $f[x_0, x_1, \dots, x_n]$ in terms of x_i and $f(x_i)$.
- 4. (Computer Exercise) Using *n* equally spaced nodes (and *n* Chebyshev nodes) on the interval [-5, 5], find the interpolating polynomial *p* of degree *n* for the function $f(x) = (x^2 + 1)^{-1}$. Plot two functions with different values of *n* (*n* = 5, 11, 21, 41), and observe the discrepancy between f(x) and p(x).