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Abstract. Solid tumors are heterogeneous in composition. Cancer stem cells

(CSCs) are a highly tumorigenic cell type found in developmentally diverse

tumors that are believed to be resistant to standard chemotherapeutic drugs
and responsible for tumor recurrence. Thus understanding the tumor growth

kinetics is critical for development of novel strategies for cancer treatment.

In this paper, the moment stability of nonlinear stochastic systems of breast
cancer stem cells with time-delays has been investigated. First, based on the

technique of the variation- of-constants formula, we obtain the second order

moment equations for the nonlinear stochastic systems of breast cancer stem
cells with time-delays. By the comparison principle along with the established
moment equations, we can get the comparative systems of the nonlinear sto-
chastic systems of breast cancer stem cells with time-delays. Then moment
stability theorems have been established for the systems with the stability

properties for the comparative systems. Based on the linear matrix inequality
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(LMI) technique, we next obtain a criteria for the exponential stability in mean
square of the nonlinear stochastic systems for the dynamics of breast cancer

stem cells with time-delays. Finally, some numerical examples are presented
to illustrate the efficiency of the results.

1. Introduction. Breast cancer is a malignant disease with a heterogeneous dis-
tribution of cell types. Despite aggressive clinical treatment including surgical
resection, radiation, and chemotherapy, tumor recurrence is essentially universal.
Therapeutic failure is due, in part, to tumor cell heterogeneity, derived from both
genetic and non-genetic sources, which contributes to therapeutic resistance and
tumor progression. Understanding this heterogeneity is the key for the develop-
ment of targeted cancer-preventative and -therapeutic interventions. One of the
currently prevailing models explaining intratumoral heterogeneity is the CSC hy-
pothesis [1, 18].

Cancer stem cells (CSCs) are defined as “a small subset of cancer cells” within
a cancer that can self-renew and replenish the heterogeneous lineage of cancer cells
that comprise the tumor. CSCs are often resistant to chemotherapeutic drugs,
sharing similar gene expression profiles and properties with normal stem cells such
as formation of spheres in culture, and may be responsible for tumor relapse and
metastasis [19, 17, 2]. A broad range of CSC frequency, often spanning multiple
orders of magnitude, has been observed in human solid tumors of various organ
types [21, 20, 5, 9, 15]. According to the CSC hypothesis [19], CSCs possess the
ability to divide either symmetrically to yield two identical immortal cancer stem
cells; or asymmetrically, to simultaneously self-renew and yield one mortal non-stem
cancer cell with finite replicative potential [20]. The proportion of CSCs has been
speculated to be maintained through alternative use of symmetric and asymmetric
division. However, it is largely unknown how to control the switch between these
two dividing modes. Mathematical modeling has been utilized to study underly-
ing mechanistic principles and to help design appropriate experiments for better
understanding of complex dynamics and interactions of tumor cell populations [4].

In [6], via the contraction fixed point theorem, the exponential stability has been
achieved in mean square of the stochastic neutral cellular neural network. Moti-
vated by [6], this paper will investigate the moment stability of nonlinear stochastic
systems of breast cancer stem cells with time-delays based on comparison principle,
variation-of-constants formula and linear matrix inequality (LMI) techniques.

The rest of the paper is organized in the following. In §2, we will generalize the
population dynamics with different cell types by a system of differential equations,
and introduce some notations. In §3, we sill study the stability properties in mean
square of the the stochastic system as developed in §2. In §4, some numerical
examples are provided to further demonstrate the results. Finally, a brief conclusion
is drawn.

2. Preliminaries. In [14], a mathematical model has been developed to explore the
growth kinetics of CSC population both in vitro and in vivo. Here we denote xi(t)
the number of cells at time t for cell types i, i = 0, 1, · · · , n− 1. Pi the probability
that the cell type i is divided into a pair of itself, Qi the probability that the cell type
i is divided into a pair of next cell lineage (cell type i+1). Thus 1−Pi−Qi denotes the
probability that an asymmetric cell division takes place from cell type i to cell type
i−1. Here vi is the synthesis rate which quantifies the speed for cell type i to divide
in unit time, di is the degradation rate, and w(t) = (w1(t), w2(t), · · · , wm(t))T ∈
Rm is a m-dimensional Brownian motion defined on a complete probability space
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(Ω,F , P ). The stochastic disturbance term, hk,ij (t, u1, u2) ∈ C(R×R+×R+)(k, i =

0, 1, · · · , n − 1, j = 1, 2, · · · ,m), can be viewed as stochastic perturbations on the
stem cells states and delayed stem cells states. Here τ is a positive constant, Pi > 0,
Qi > 0, νi > 0(i = 0, 1, 2, · · · , n − 2) are all decreasing functions of xn−1, which
represents the negative feedback from the terminally differentiated cell type n− 1.
Based on the model as developed in [14], a general population dynamics of different
cell types can be described by a system of stochastic ordinary differential equations,

dx0(t) = {[P0(xn−1(t− τ))−Q0(xn−1(t− τ))]ν0(xn−1(t− τ))x0(t)

−d0x0(t)}dt+
∑m
j=1[

∑n−1
i=0 h

0,i
j (t, xi(t), xi(t− τ))]dwj(t),

dx1(t) = {[1− P0(xn−1(t− τ)) +Q0(xn−1(t− τ))]ν0(xn−1(t− τ))x0(t)

+[P1(xn−1(t− τ))−Q1(xn−1(t− τ))]ν1(xn−1(t− τ))x1(t)− d1x1(t)}dt

+
∑m
j=1[

∑n−1
i=0 h

1,i
j (t, xi(t), xi(t− τ))]dwj(t),

...

dxn−2(t) = {[1− Pn−3(xn−1(t− τ)) +Qn−3(xn−1(t− τ))]

×νn−3(xn−1(t− τ))xn−3(t)

+[Pn−2(xn−1(t− τ))−Qn−2(xn−1(t− τ))]νn−2(xn−1(t− τ))xn−2(t)

−dn−2xn−2(t)}dt+
∑m
j=1[

∑n−1
i=0 h

n−2,i
j (t, xi(t), xi(t− τ))]dwj(t),

dxn−1(t) = {[1− Pn−2(xn−1(t− τ)) +Qn−2(xn−1(t− τ))]

×νn−2(xn−1(t− τ))xn−2(t)

−dn−1xn−1(t)}dt+
∑m
j=1[

∑n−1
i=0 h

n−1,i
j (t, xi(t), xi(t− τ))]dwj(t)

(1.1)
Let (Ω,F , P ) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions, i.e. it is right continuous and F0 contains all P -null sets. Let
CbF0

([−τ, 0];R) be the family of all bounded, F0-measurable functions. We denote
by C([−τ, 0];R) the family of all continuous functions φ : [−τ, 0]→ R with

‖φ‖2 = sup
−τ≤θ≤0

|φ(θ)|1.

Since Pi, Qi and νi(i = 0, 1, 2, · · · , n − 2) are all decreasing functions of xn−1,
there exist some positive constants P i, Qi and νi such that

Pi(xn−1) ≤ P i, Qi(xn−1) ≤ Qi, νi(xn−1) ≤ νi for (i = 0, · · · , n− 2).
(1.2)

To simplify, we can rewrite (1.1) as

dx = [F (t, x(t), x(t− τ))−Dx(t)]dt+
∑m
j=1Hj(t, x(t), x(t− τ))dwj(t) (1.3)

with the initial condition

x(s) = ϕ(s) ∈ C([−τ, 0];Rn), −τ ≤ s ≤ 0, (1.4)

where x(t) = (x0(t), x1(t), · · · , xn−1)T , D = diag(d0, d1, · · · , dn−1),
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Hj(t, x(t), x(t− τ)) =



∑n−1
i=0 h

0,i
j (t, xi(t), xi(t− τ))∑n−1

i=0 h
1,i
j (t, xi(t), xi(t− τ))

...∑n−1
i=0 h

n−2,i
j (t, xi(t), xi(t− τ))∑n−1

i=0 h
n−1,i
j (t, xi(t), xi(t− τ))


,

F (t, x(t), x(t− τ)) =



f1

f2
...

fn−2

fn−1


= A(xn−1(t− τ))



x0

x1
...

xn−2

xn−1



=



[P0(xn−1(t− τ))−Q0(xn−1(t− τ))]
×ν0(xn−1(t− τ))x0(t)

[1− P0(xn−1(t− τ)) +Q0(xn−1(t− τ))]
×ν0(xn−1(t− τ))x0(t)

+[P1(xn−1(t− τ))−Q1(xn−1(t− τ))]
×ν1(xn−1(t− τ))x1(t)

...

[1− Pn−3(xn−1(t− τ)) +Qn−3(xn−1(t− τ))]
×νn−3(xn−1(t− τ))xn−3(t)

+[Pn−2(xn−1(t− τ))−Qn−2(xn−1(t− τ))]
×νn−2(xn−1(t− τ))xn−2(t)

[1− Pn−2(xn−1(t− τ)) +Qn−2(xn−1(t− τ))]
×νn−2(xn−1(t− τ))xn−2(t)



,

A(xn−1(t− τ)) =
[P0 −Q0]ν0 0 · · ·

[1− P0 +Q0]ν0 [P1 −Q1]ν1 · · ·
...

...
...

0 0 · · ·
0 0 · · ·

· · · 0 0 0
· · · 0 0 0
...

...
...

...
· · · [1− Pn−3 +Qn−3]νn−3 [Pn−2 −Qn−2]νn−2 0
· · · 0 [1− Pn−2 +Qn−2]νn−2 0

 .
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Let B = [bij(t)]n×n with

|x(t)|1 =
∑n
i=1 |xi(t)|,

and

‖B(t)‖3 =
∑n
i,j=1 |bij(t)|.

We denote the mathematical expectation by E throughout the paper.

Definition 2.1. The system (1.3) with the initial condition is said to be the first
moment exponentially stable if there exist two positive constants µ and β such that

‖Ex(t;ϕ)‖2 ≤ µ‖ϕ‖2e−βt, t ≥ 0. (2.1)

Definition 2.2. The system (1.3) with the initial condition is said to be expo-
nentially stable in mean square if there exists a solution x of (1.3) and there exists
a pair of positive constants µ and β with

E‖x(t;ϕ)‖22 ≤ µE‖ϕ‖22e−βt, t ≥ 0. (2.2)

Definition 2.3. The system (1.3) with the initial condition is said to be globally
exponentially stable in mean square if there exists a scalar ς > 0, such that

lim
t→∞

sup
1

t
log(E‖x(t;ϕ)‖22) ≤ −ς. (2.3)

Let C1,2(R+ × Rn;R+) denote the family of all nonnegative functions V (t, x)
on R+ × Rn which are continuously twice differentiable in x and once differen-
tiable in t. In order to study the mean square globally exponential stability, for
each V ∈ C1,2([−τ,∞) × R+;R+), define an operator LV , associated with the
uncertain stochastic neural networks with multiple mixed time-delays (1.3), from
(R+ × C[−τ∗,∞);Rn) to R by

LV (t, x) = 1
2 trace[(

∑m
j=1H

T
j (t, x(t), x(t− τ)))Vxx(t, x)

×(
∑m
j=1Hj(t, x(t), x(t− τ)))]

+Vt(t, x) + Vx(t, x)[F (t, x(t), x(t− τ))−Dx(t)],

where

Vt(t, x) = (∂V (t,x)
∂t ),

Vx(t, x) = (∂V (t,x)
∂x1

, ∂V (t,x)
∂x2

, · · · , ∂V (t,x)
∂xn

),

Vxx(t, x) = (∂
2V (t,x)
∂xi∂xj

)n×n.

3. Stability of nonlinear stochastic systems of breast cancer stem cells
with time-delays. In this section, we will study the stability properties in mean
square of the stochastic nonlinear growth kinetics of breast cancer stem cells.

Throughout this paper, we always assume the following:
(A1) there exist positive constants α(j), and positive definite constant matrices

C
(0)
j , C̃

(0)
j , C

(1)
j , C̃

(1)
j , C

(2)
j and C̃

(2)
j such that

‖Hj(t, x(t), x(t− τ(t)))−Hj(t, y(t), y(t− τ(t)))‖2

≤ α(j)[‖x− y‖1 + ‖x(t− τ(t))− y(t− τ(t))‖2]
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and

‖C̃(0)
j ‖3 + xT (t)C̃

(1)
j x(t) + xT (t− τ)C̃

(2)
j x(t− τ)

≤ HT
j (t, x(t), x(t− τ))×Hj(t, x(t), x(t− τ))

≤ ‖C(0)
j ‖3 + xT (t)C

(1)
j x(t) + xT (t− τ(t))C

(2)
j x(t− τ),

where T represents the transpose, j = 1, 2, · · · , · · · ,m, and

Hj(t, x(t), x(t− τ)) =



∑n−1
i=0 h

0,i
j (t, xi(t), xi(t− τ))∑n−1

i=0 h
1,i
j (t, xi(t), xi(t− τ))

...∑n−1
i=0 h

n−2,i
j (t, xi(t), xi(t− τ))∑n−1

i=0 h
n−1,i
j (t, xi(t), xi(t− τ))


.

Note from (1.3) and (1.4) that

x(t) = exp(−Dt){ϕ(0) +
∫ t
0

exp(Ds)[F (s, x(s), x(s− τ))]ds

+
∑m
j=1

∫ t
0
Hj(s, x(s), x(s− τ)) exp(Ds)dw(s)}.

(3.1)

From (A1) we have that F (·, ·, ·) and Hj(·, ·, ·) satisfy the Lipschitzian condition.
Then there is a unique solution of the system (1.1) through (t, ϕ).

3.1. The first moment stability.
Let x(t) be the solution of (1.1) and (1.2), we have from (3.1)

‖Ex(t;ϕ)‖2 = ‖ exp(−Dt){ϕ(0) +
∫ t
0

exp(Ds)[F (s, x(s), x(s− τ))]ds‖2. (3.2)

Now, we consider the following deterministic equation dx = [−Dx(t) + F (t, x(t), x(t− τ(t)))]dt,

x(s) = ϕ(s) ∈ C([−τ, 0];Rn), −τ ≤ s ≤ 0.
(3.3)

Let xϕ(t) be the solution of (3.3).

Theorem 3.1. Suppose
(A2) The solution of (3.3) is exponentially stable, i.e,. there exist two positive
constants κ and λ such that

‖xϕ(t)‖2 ≤ κ‖ϕ‖2e−λt, t ≥ 0.

Then the system (1.1) is first moment exponentially stable, i.e,.

‖Ex(t;ϕ)‖2 = ‖xϕ(t)‖2 ≤ κ‖ϕ‖2e−λt, t ≥ 0. (3.4)

Proof of Theorem 3.1. The result follows from (A2) and (3.2).

Remark 1. In fact, if the equilibrium of the system (3.3) is stable, or asymptoti-
cally stable, then the equilibrium of the system (1.1) is also stable in first moment,
or asymptotically stable in first moment, respectively, i.e., the stability of the system
(3.3) implies the same stability of the system (1.1) in first moment.

For convenience, in the following discussions, we always assume that the system
(1.1) is first moment exponentially stable.
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3.2. Mean square stability.
Now we study the stability in mean square of the system (1.1).
Since dwjds = 0, Edwj = 0 and E(dwj(s), dwk(s)) = δjkds(j, k = 1, 2, · · · ,m),

we have from the definitions of | · |1, ‖ · ‖2 , ‖ · ‖3 and (3.1) that

E|x(t)|21
= E| exp(−Dt){ϕ(0) +

∫ t
0

exp(Ds)[F (s, x(s), x(s− τ))]ds

+
∑m
j=1

∫ t
0
Hj(s, x(s), x(s− τ)) exp(Ds)dw(s)}|21

≤ E{2‖ϕ(0)‖22‖ exp(−Dt)‖23 + 2
∫ t
0
‖ expD(s− t)F (s, x(s), x(s− τ))‖22ds

+
∫ t
0
‖ expD(s− t)‖23[

∑m
j=1H

T
j (s, x(s), x(s− τ))

×Hj(s, x(s), x(s− τ))]ds}

≤ E{2n2‖ϕ(0)‖22e−2λmin(D)t + 2n2
∫ t
0
e2λmin(D)(s−t)‖A(xn−1(s− τ))‖23

×|x(s)|21ds+
∫ t
0
n2e2λmin(D)(s−t)[

∑m
j=1(‖C(0)

j ‖3 + xT (s)C
(1)
j x(s)

+xT (s− τ)C
(2)
j x(s− τ))]ds}

≤ E{2n2‖ϕ(0)‖22e−2λmin(D)t + 2n2
∫ t
0
e2λmin(D)(s−t)

×[
∑n−2
i=0 νi(1 + 2P i + 2Qi)]

2|x(s)|21ds+
∫ t
0
n2e2λmin(D)(s−t)

×[
∑m
j=1(‖C(0)

j ‖3 + xT (s)C
(1)
j x(s) + xT (s− τ)C

(2)
j x(s− τ))]ds}

≤ E{Φe−2λmin(D)t +
∫ t
0
e2λmin(D)(s−t)

×[C
(0)

+ C
(1)|x(s)|21 + C

(2)‖x(s− τ)‖22]ds}

= Φe−2λmin(D)t + E
∫ t
0
e2λmin(D)(s−t)

×[C
(0)

+ C
(1)|x(s)|21 + C

(2)‖x(s− τ)‖22]ds,
(3.5)

where λmin(D) represents the minimal eigenvalue of matrix D, λmax (C
(0)
j ),

λmax (C
(1)
j ) and λmax (C

(2)
j ) represent the maximal eigenvalues of C

(0)
j , C

(1)
j and

C
(2)
j (j = 1, 2, · · · ,m),

Φ = 2n2‖ϕ(0)‖22, C
(0)

= n3
∑m
j=1 λmax (C

(0)
j ), C

(2)
= n3

∑m
j=1 λmax (C

(2)
j )

C
(1)

= n3
∑m
j=1 λmax (C

(1)
j ) + 2n2[

∑n−2
i=0 νi(1 + 2P i + 2Qi)]

2,

expD(s− t) =


ed0(s−t) 0 0 · · · 0

0 ed1(s−t) 0 · · · 0
...

...
...

...
...

0 0 0 · · · edn−1(s−t)


and

‖ expD(s− t)‖3 =
∑n−1
i=0 e

di(s−t).
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Theorem 3.2. Let (A1) and (A2) be satisfied. Then

E|x(t)|21 ≤ u(t), t ≥ 0,

where u(t) is the solution of the comparison equation u̇(t) = (−2λmin(D) + C
(1)

)u(t) + C
(2)
u(t− τ) + C

(0)
, t ≥ 0,

u(s) ≥ Φ ≥ 0, s ∈ [−τ, 0].

(3.6)

Proof of Theorem 3.2. Let
M(t) = Φe−2λmin(D)t

+E
∫ t
0
e2λmin(D)(s−t)[C

(0)
+ C

(1)|x(s)|21 + C
(2)‖x(s− τ)‖22]ds,

M(s) ≥ Φ, s ∈ [−τ, 0].

(3.7)

We have from (3.5) and (3.7)

Ṁ(t) = −2λmin(D){Φe−2λmin(D)t + E
∫ t
0
e2λmin(D)(s−t)[C

(0)
+ C

(1)|x(s)|21

+C
(2)‖x(s− τ)‖22]ds}+ C

(0)
+ C

(1)
E|x(t)|21 + C

(2)
E‖x(t− τ)‖22

≤ −2λmin(D)M(t) + C
(0)

+ C
(1)
M(t) + C

(2)
M(t− τ)

= (−2λmin(D) + C
(1)

)M(t) + C
(2)
M(t− τ) + C

(0)
, t ≥ 0.

From (3.7), let u(s) = M(s), s ∈ [−τ, 0]. From the comparison theorem of ordinary
differential equations, we get u(t) ≥M(t), t ≥ 0, u(s) ≥M(s), s ∈ [−τ, 0], and thus

E|x(t)|21 ≤M(t) ≤ u(t), t ≥ 0.

The proof is complete.

Theorem 3.3. If the assumptions of Theorem 3.2 are satisfied, and the equi-
librium of system (3.6) is stable, or asymptotically stable, then the equilibrium of
system (1.1) is also stable in mean square, or asymptotically stable in mean square,
respectively, i.e., the stability of system (3.6) implies the same stability of system
(1.1) in mean square.

3.3. Mean square instability.
Similar reasoning as in (3.5), we have from the definition of | · |1 and (3.1) that

E|x(t)|21 = E| exp(−Dt){ϕ(0) +
∫ t
0

exp(Ds)[F (s, x(s), x(s− τ))]ds

+
∑m
j=1

∫ t
0
Hj(s, x(s), x(s− τ(s))) exp(Ds)dw(s)}|21

= E{‖ exp(−Dt)‖23[ϕ(0) +
∫ t
0

exp(Ds)F (s, x(s), x(s− τ))ds]T

×[ϕ(0) +
∫ t
0

exp(Ds)F (s, x(s), x(s− τ))ds]

+
∫ t
0
‖ expD(s− t)‖23[

∑m
j=1H

T
j (s, x(s), x(s− τ))

×Hj(s, x(s), x(s− τ))]ds}

≥ E{
∫ t
0
n2e2λmax (D)(s−t)[

∑m
j=1(nλmin(C̃

(0)
j ) + nλmin(C̃

(1)
j )|x(s)|21
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+nλmin(D̃
(2)
j )|x(s− τ)|21)]ds− 2n2

∫ t
0
e2λmin(D)(s−t)

×‖A(xn−1(s− τ))‖23|x(s)|21ds}

≥ E{
∫ t
0
n3e2λmax (D)(s−t)[

∑m
j=1(λmin(C̃

(1)
j )|x(s)|21

+λmin(D̃
(2)
j )|x(s− τ)|21 + λmin(C̃

(0)
j ))]ds

−2n2
∫ t
0
e2λmin(D)(s−t)[

∑n−2
i=0 νi(1 + 2P i + 2Qi)]

2|x(s)|21ds}

= E
∫ t
0
e2λmax (D)(s−t)[Ĉ(0) + Ĉ(1)|x(s)|21 + Ĉ(2)‖x(s− τ)‖22]ds,

(3.8)

where λmax (D) represents the maximal eigenvalue of D, λmin(C̃
(1)
j ) and λmin(C̃

(2)
j )

represent the minimal eigenvalues of C̃
(1)
j and C̃

(2)
j (j = 1, 2, · · · ,m),

Ĉ(0) = n3
∑m
j=1 λmin(C̃

(0)
j ), Ĉ(2) = n3

∑m
j=1 λmin(C̃

(2)
j ),

Ĉ(1) = n3
∑m
j=1 λmin(C̃

(1)
j )− 2n2[

∑n−2
i=0 νi(1 + 2P i + 2Qi)]

2.

Theorem 3.4. Suppose

1) The assumptions (A1) and (A2) are satisfied;

2)

Ĉ(1) = n3
∑m
j=1 λmin(C̃

(1)
j )− 2n2[

∑n−2
i=0 νi(1 + 2P i + 2Qi)]

2 > 0.

Then

E|x(t)|21 ≥ u(t), t ≥ 0,

where u(t) is the solution of the comparison equation u̇(t) = (−2λmax (D) + Ĉ(1))u(t) + Ĉ(2)u(t− τ) + Ĉ(0), t ≥ 0,

u(s) ≥ 0, s ∈ [−τ, 0].
(3.9)

Proof of Theorem 3.4. Let M(t) = E
∫ t
0
e2λmax (D)(s−t)[Ĉ(0) + Ĉ(1)|x(s)|21 + Ĉ(2)‖x(s− τ)‖22]ds,

M(s) ≥ 0, s ∈ [−τ, 0].
(3.10)

We have from (3.10)

Ṁ(t) = −2λmax (D)E
∫ t
0
e2λmax (D)(s−t)[Ĉ(0) + Ĉ(1)|x(s)|21 + Ĉ(2)‖x(s− τ)‖22]ds

+Ĉ(0) + Ĉ(1)E|x(t)|21 + Ĉ(2)E‖x(t− τ)‖22
≥ −2λmax (D)M(t) + Ĉ(0) + Ĉ(1)M(t) + Ĉ(2)M(t− τ)

= (−2λmax (D) + Ĉ(1))M(t) + Ĉ(2)M(t− τ) + Ĉ(0).

From (3.10), let u(s) = M(s), s ∈ [−τ, 0]. By the comparison theorem of ordinary
differential equations, we get u(t) ≤M(t), t ≥ 0, and thus

E|x(t)|21 ≥M(t) ≥ u(t), t ≥ 0.
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The proof is complete.

Theorem 3.5. If the assumptions of Theorem 3.4 are satisfied, and the equilib-
rium of system (3.10) is unbounded, then the equilibrium of system (1.1) is also
unbounded in mean square, i.e., the unboundedness of system (3.10) implies the
same unboundedness of system (1.1) in mean square.

3.4. Mean square globally exponentially stable.

Theorem 3.6. Suppose (A1) and (A2) hold and assume that there exist matrices
P > 0, Q > 0, M0 ≥ 0 and Mi ≥ 0 (j = 1, 2, · · · ,m) such that

trace[
∑m
j=1H

T
j (t, x(t), x(t− τ))PHj(t, x(t), x(t− τ))]

≤ xT (t)M0x(t) +
∑m
j=1 x

T (t− τ)Mjx(t− τ).

(3.11)

Then system (1.1) is globally exponentially stable in mean square, if there exist
positive scalars µ > 0, ρ > 0 and positive definite matrices Γi > 0 (i = 1, 2, · · · ,m)
such that the LMI holds:

−PD −DP + µQ+M0 0

+
∑m
j=1 ρΓj + 2

∑n−2
i=1 νi(1 + 2P i + 2Qi)P

0
∑m
j=1(Mj − ρΓj)− µQ

 < 0.

Proof of Theorem 3.6. Let

V (t, x(t)) = xT (t)Px(t) + µ
∫ t
t−τ x

T (s)Qx(s)ds+
∑m
j=1 ρ

∫ t
t−τ x

T (s)Γjx(s)ds.

(3.12)
From Itô,s differential formula (see, e.g., [12]) we have along (1.3)

LV (t, x(t)) = xT (t)[−PD −DP ]x(t)

+trace
∑m
j=1H

T
j (t, x(t), x(t− τ))PHj(t, x(t), x(t− τ))

+2xT (t)PF (t, x(t), x(t− τ)) + µxT (t)Qx(t) +
∑m
j=1 ρx

T (t)Γjx(t)

−µxT (t− τ)Qx(t− τ)−
∑m
j=1 ρx

T (t− τ)Γjx(t− τ)].

(3.13)
From (3.11) and (3.13), we have that

LV (t, x(t)) ≤ xT (t)[−PD −DP + µQ+M0 +
∑m
j=1 ρΓj ]x(t)

+2xT (t)PA(xn−1(t− τ))x(t)

+xT (t− τ)[
∑m
j=1(Mj − ρΓj)− µQ]x(t− τ)

≤ xT (t)[−PD −DP + µQ+M0 +
∑m
j=1 ρΓj

+2
∑n−2
i=1 νi(1 + 2P i + 2Qi)P ]x(t)

+xT (t− τ)[
∑m
j=1(Mj − ρΓj)− µQ]x(t− τ)

= ξΠξT ,

(3.14)

where

ξ = (xT (t), xT (t− τ))
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and

Π =


−PD −DP + µQ+M0+ 0∑m

j=1 ρΓj + 2
∑n−2
i=1 νi(1 + 2P i + 2Qi)P

0
∑m
j=1(Mj − ρΓj)− µQ

 .

Let Ṽ (t, x(t)) = ektV (t, x(t)), where k is to be determined. It is easy to check that

V (t, x(t)) ≤ λmax (P )|x(t)|21 + µ
∫ t
t−τ x

T (s)Qx(s)ds+
∑m
j=1 ρ

∫ t
t−τ x

T (s)Γjx(s)ds.

Thus

LṼ (t, x(t)) = ekt[kV (t, x(t)) + LV (t, x(t)]

≤ ekt{ξTΠξ + k[λmax (P )|x(t)|21 + µ
∫ t
t−τ x

T (s)Qx(s)ds

+
∑m
j=1 ρ

∫ t
t−τ x

T (s)Γjx(s)ds]}.

(3.15)

Choose k sufficiently small so that

ξTΠξ + k[λmax (P )|x(t)|21 + µ
∫ t
t−τ x

T (s)Qx(s)ds

+
∑m
j=1 ρ

∫ t
t−τ x

T (s)Γjx(s)ds] ≤ 0.
(3.16)

From (3.15) and (3.16), we have

LṼ (t, x(t)) ≤ 0,

which implies that

EṼ (t, x(t)) ≤ EṼ (0, x(0)). (3.17)

Therefore, we have

ektEV (t, x(t)) ≤ EV (0, x(0))

≤ E{λmax (P )|x(0)|21 + µ
∫ 0

−τ x
T (s)Qx(s)ds

+
∑m
j=1 ρ

∫ 0

−τ x
T (s)Γjx(s)ds}

≤ [λmax (P ) + µτλmax (Q) +mτρλmax (Γ)]max −τ≤s≤0E|x(s)|21,
(3.18)

where λmax (Γ) = max {λmax (Γ1), λmax (Γ2), · · · , λmax (Γm)}. Also, it is easy to see
that

EV (t, x(t)) ≥ λmin(P )|x(t)|21. (3.19)

From (3.18) and (3.19), it follows that

E|x(t)|21 ≤ λ−1min(P )[λmax (P ) + µτλmax (Q) +mτρλmax (Γ)]

×e−ktmax −τ≤s≤0E|x(s)|21.
(3.20)
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Thus system (1.1) is globally exponentially stable in mean square.

Remark 2. Note that [23] is a special case of system (1.1) and note that the
Laplace transform technique fails for system (1.1).

Remark 3. System (1.1) can be generalized to the general form

dx = [−(D +4D(t))x(t) + (B +4B(t))F (t, x(t), x(t− τ1(t)),

· · · , x(t− τm(t))) +
∑k
p=1(Wp +4Wp(t))

∫ t
t−rp(t) gp(x(s))ds]dt

+
∑l
j=1Hj(t, x(t), x(t− σj(t)))dw(t).

4. Examples. We consider the following special case of (1.1) with three types of
of cells as in [14]

dx0 = {[ p0
1+γ0

1(x2(t−τ))2 −
q0

1+γ0
2(x2(t−τ))2 ] ν0

1+β0(x2(t−τ))2x0(t)− d0x0(t)}dt

+h0(x0(t− τ))dw0(t),

dx1 = {[1− p0
1+γ0

1(x2(t−τ))2 + q0
1+γ0

2(x2(t−τ))2 ] ν0
1+β0(x2(t−τ))2x0(t)

+[ p1
1+γ1

1(x2(t−τ))2 + q1
1+γ1

2(x2(t−τ))2 ] ν1
1+β1(x2(t−τ))2x1(t)− d1x1(t)}dt

+h1(x1(t− τ))dw1(t),

dx2 = {[1− p1
1+γ1

1(x2(t−τ))2 + q1
1+γ1

2(x2(t−τ))2 ] ν1
1+β1(x2(t−τ))2x1(t)− d2x2(t)}dt

+h2(x2(t− τ))dw2(t).
(4.1)

Here x0(t), x1(t), and x2(t) are the number of cancer stem cells (CSCs), progen-
itor cells (PCs), and terminally differentiated cells (TDCs), respectively, at time t.
The time-delay τ is 0 for Figure 1 and 10 time units for Figure 2. There is only one
stochastic disturbance term, hi(xi(t− τ)), i = 0, 1, 2, for each cell type, and it is an
explicit function of only the cell type that it affects.

The figures show the solution of (4.1) implemented in MATLAB with initial
condition x(0) = (10, 200, 800)T . The parameters and stochastic terms used in each
figure are listed in Table 1. Figures 1 and 2 have the same parameters and stochastic
terms and differ only in the time delay. Due to the presence of a stochastic term,
each figure is the average of ten trials. The x-axis is time units, and the y-axis is
number of cells in a log-scale. The inset shows a zoomed-in portion of the graph.

In Figure 1a, there is no noise term. The number of cells shoots up to about 104

and then levels off. Equilibrium is reached. In Figure 1b, the noise term is

H(x(t)) =


30

40

20

 .

The number of cells shoots up to about 104 and then levels off. Equilibrium is
reached, but there is small perturbation around the equilibrium position. In Figure
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1c, the noise term is

H(x(t)) =



h1x
2
1

1 + g1x21
h2x

2
2

1 + g2x22
h3x

2
3

1 + g3x23


.

The number of cells shoots up to about 104 and then levels off. Equilibrium is
reached, but there is small perturbation around the equilibrium position. In Figure
1d, the noise term is

H(x(t)) =



h1x
2
1

1 + g1x1
h2x

2
2

1 + g2x2
h3x

2
3

1 + g3x3


.

The number of cells shoots up and increases by orders of magnitude more than the
previous scenarios. There is large perturbation. Equilibrium is not reached, but
the total number of cells is between 106 and 1012.

In Figures 2a, b, and c, the number of cells shoots up to about 106 and then levels
off. This is 100 times greater than in Figure 1. Equilibrium is reached, but there
are oscillations in the number of PCs and TDCs around the equilibrium position.
The noise term has a negligible effect in Figures 2b and c. In Figure 2d, the number
of cells shoots up and increases by orders of magnitude more than the previous
scenarios. There is small perturbation. Equilibrium is not reached, and the number
of cells grows unboundedly.

The parameters were chosen both from biological data from our collaborator’s
lab [14] and from requiring that equilibrium is reached. From experiments with
tumor cells we know that the degradation rate is the greatest for TDCs, then PCs,
and then CSCs. We also know that the equilibrium tumor size is roughly 106 total
cells from our collaborator’s lab. Additionally, the probabilities, p0, q0, p1, and q1,
and degradation rates, d0, d1, and d2, are between 0 and 1 by definition. With
these restrictions, the parameters were then chosen through guess and check until
equilibrium was reached.

5. Conclusion. Breast cancer is a malignant disease with a heterogeneous distri-
bution of cell types. Mathematical modeling has been utilized to study underlying
mechanistic principles and to help design appropriate experiments for better un-
derstanding of complex dynamics and interactions of tumor cell populations. In
this paper, we have studied the moment stability of nonlinear stochastic systems of
breast cancer stem cells with time-delays. Based on the technique of the variation-
of-constants formula along with the comparison principle, the moment stability
theorems have been established for the systems with the stability properties for the
comparative systems. By applying the linear matrix inequality (LMI) technique, we
also obtain a criteria for the exponential stability in mean square of the nonlinear
stochastic systems. Some numerical examples are performed to further validate the
results. As discussed in [14], the results developed in this paper will help to further
reveal the underlying mechanisms to regulate and control the dynamics of cancer
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(a) (b)

(c) (d)

Figure 1. Solution of (4.1). Parameters and noise functions are
listed in Table 1. Time delay is 0. All figures represent the average
of ten trials. (a) There is no noise term. Equilibrium is reached.
(b), (c) There is a noise term. Equilibrium is reached with small
perturbation. (d) There is a noise term. The number of cells is
orders of magnitude greater than the previous scenarios. Equilib-
rium is not reached, but the number of cells is bounded. There is
large perturbation.

tumor growth. Hence the outcome of this study may potentially lead to design novel
therapeutic strategies for treating cancer development. We plan next to explore the
stochastic dynamics of breast cancer cells with inherent noise perturbation on the
variations of different parameters.
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40
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h1x
2
1

1+g1x2
1

h2x
2
2

1+g2x2
2

h3x
2
3
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3


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2
2
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2
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