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Simulated mixing rates of the Rayleigh-Taylor instability for miscible fluids with physical mass diffusion are
shown to agree with experiment; for immiscible fluids with physical values of surface tension the numerical
data lie in the center of the range of experimental values. The simulations are based on an improved front
tracking algorithm to control numerical surface tension and on improved physical modeling to allow physical
values of mass diffusion or surface tension. Compressibility, after correction for variable density effects, has
also been shown to have a strong influence on mixing rates. In summary, we find significant dependence of the
mixing rates on scale breaking phenomena. We introduce tools to analyze the bubble merger process and
confirm that bubble interactions, as in a bubble merger model, drive the mixing growth rate.
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I. INTRODUCTION

The dynamical equations governing fluid flow are based
on the principles of conservation of mass, momentum, and
energy. The front tracking code FRONTIER �1–5� has been
used to study the Euler equations for many years. It has been
shown to be successful, especially for flows dominated by
complex fluid interfaces and mixing processes.

To model the mixing of compressible miscible fluids with
mass diffusion, the conservation equations take the form

��

�t
+ � · ��u� = ��� ,

��u

�t
+ � · ��uu� = �P + �g + � � · �u � �� ,

���E�
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+ � · ���E + P�u� = � � · �E � �� + �ug . �1�

Here � is the coefficient of mass diffusion, � is density, u is
velocity, P is pressure, g is gravity, and E is total specific
energy. To complete the system, an equation of state �EOS�
relating the state variables is necessary. We use a gamma law
gas with �=1.67.

The Rayleigh-Taylor �RT� instability occurs when a fluid
of low density �l accelerates a fluid of heavy density �h. It
occurs in astrophysics �supernova�, geophysics, and technol-
ogy �inertially confined fusion� among other subjects. The
RT mixing rate is the dimensionless coefficient � in the
equation

h = �Agt2 �2�

for the height h of the bubbles, i.e., the interpenetration
distance h of the light fluid into the heavy fluid. Here
A= ��h−�l� / ��h+�l� is the Atwood number and t is the time.
Acceptable experimental values for � are �=0.063±0.013
�6–10�. See Ref. �11� for background information.

The main purpose of this paper is to use an improved
front tracking algorithm allowing limited physical �but not

numerical� mass diffusion across a tracked interface and to
validate this algorithm through the simulation of three-
dimensional �3D� Rayleigh-Taylor mixing of miscible fluids,
obtaining agreement with experimental data. The rest of the
paper is organized as follows. Section II discusses length
scales and dispersion relations to set initial conditions
equivalent under change of scale transformations to experi-
ments. Section III describes the physical mass diffusion ef-
fect on the turbulent mixing rates. We find a simulation value
of �=0.069 in comparison to the experimental value �9�
�=0.07, and in contrast to the ideal �zero diffusion� simula-
tion value �=0.09 �12�. We also summarize previous results
showing simulation agreement with experiment for immis-
cible fluids with physical values of surface tension �12�. We
analyze a conventional untracked total variation diminishing
�TVD� simulation �13� of the same problem for ideal fluids,
determine its effective value of numerical mass diffusion,
and discuss a grid related interface smoothing effect which
could be interpreted as numerical surface tension. We ex-
plore the role of compressibility on mixing rates. We find an
increase in mixing rates with increasing compressibility after
removing variable Atwood number effects.

In Sec. IV, we study the bubble merger process based on
our current simulations. Our results confirm a number of the
hypotheses and conclusions of the bubble merger models,
and serve to justify their application to RT mixing.

Finally, the results are summarized in Sec. V. The substan-
tial agreement with experiments for the simulation of real
fluid mixing rates with physical mass diffusion or surface
tension and the strong dependence of variable density cor-
rected RT mixing rates on compressibility indicate that scale
breaking phenomena are important in simulating the
Rayleigh-Taylor instability.

II. DISPERSION RELATIONS

In order to compare simulations to experiment, we do not
attempt to duplicate exactly all experimental conditions.
Rather we apply a change of scale, and attempt to duplicate
dimensionless parameters which characterize the experi-
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ments. The Rayleigh-Taylor experiments are for the most
part strongly incompressible, and simulation in this regime is
not practical with a compressible code, so we are content
with reduction of the dimensionless compressibility to suffi-
ciently small values so that the incompressible limit has been
attained numerically. Similarly, we do not attempt to dupli-
cate the very large number of different Atwood numbers
present in the experiments, as the scaling properties of this
variable are well understood. Physical values of the scale
breaking parameters are available from published sources,
especially if we ignore refinements such as temperature de-
pendence for quantities slowly varying over a presumed
range of experimental temperatures. See Ref. �14� for a dis-
cussion of transport coefficients in the plasma regime, where
compressibility is also important.

We first introduce the dimensionless mass diffusion �̃,
surface tension �̃, viscosity 	̃, and thermal conductivity 
̃
constants

�̃ = �/���Ag��, �̃ = �/��2��g� ,

	̃ = 	/���Ag��, 
̃ = 
/�cp���Ag�� . �3�

Here �, �, 	, and 
 are the corresponding dimensional pa-
rameters, cp is the specific heat, and � is a wavelength char-
acterizing the initial perturbations. The wavelength of the
initial disturbance is the least well determined of the quanti-
ties which enter into the dimensionless scale breaking coef-
ficient. The theory of the most rapidly growing wavelength
asserts that the observed, or true initial disturbance, in the
absence of externally imposed disturbances, will have this
most rapidly growing length. The growth rates are deter-
mined by dispersion relations, assuming a small amplitude
initial disturbance. When considering miscible fluids, we de-
note the thickness of the diffusion layer as �D=2��t. The
dispersion relation for incompressible flow including both
viscosity and mass diffusion gives the growth rate �14�

n = �Agk/ + 	2k4�1/2 − �	 + ��k2, �4�

where  is the eigenvalue of the equation

d

dz
��
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dz
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and

� =
1

2
��1 + �2��1 + A erf�z/�D��

is the density profile. The most unstable wavelength can be
calculated numerically. When viscosity alone is dominant,
the value of � is determined analytically �14�,

� =
4�	2/3

�Ag�1/3 . �5�

The dimensionless viscosity parameter 	̃ with this theoreti-
cal wavelength is a constant, 	̃=1/ �4��3/2. The thermal dif-
fusivity �0 can be defined by

�0 =



�cp
.

For incompressible fluids, the thermal diffusivity can be con-
sidered as an identical mass diffusion with mass diffusion
coefficient �0. For immiscible fluids, one has �6�

� = 2�� 3�

g��
�1/2

, �̃ = �/��2��g� =
1

3�2��2 = 8.5 � 10−3

�6�

for all values of g, �, and ��.
To clarify the multitude of parameters and their depen-

dences, we have generated a data base of known RT experi-
ments and parameters, an excerpt of which is presented in
Table I. We find many cases where the theory of the most
unstable wavelength agrees with observation. For related ex-
periments of the same class, but lacking the observational
data, it seems safe to infer that this theory remains valid. We
note that this not only increases the number of experiments
which can be modeled by our simulations, but it also re-
moves the slightly subjective aspect of visual determination
of the most unstable wavelength.

TABLE I. Summary of length scales and scale breaking parameters for various RT turbulent mixing
experiments.

Experiment
Scale breaking

physics
� observed

�cm�
� theory

�cm�

Parameter
observed

�dimensionless�

Parameter
theory

�dimensionless�

Immiscible surface 0.41–0.54 0.37–0.45 4.6–8.8 8.5

�8,6� tension �10−3 �10−3

Miscible viscosity 0.38 0.21–0.25 3.9–2.25 0.73–1.05

�6� initial mixing layer �10−4 �10−3

Miscible viscosity 5 0.44–0.86 7.33–8.11 2.06–2.39

�7� diffusion �10−4 �10−2

Miscible mass 0.5 6.61–8.37 0.19–0.31 3.97–4.54

�9� diffusion �10−3
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We also find cases where the observed wavelength and the
most unstable wavelength do not even nearly coincide, and
then we conclude that the observed value has been imposed
by the experimental apparatus. The question of initial condi-
tions for the experimental studies has been widely discussed
�15�, in the context of arguing that unobserved long wave
initial perturbations affect experimentally observed mixing
rates �. In contrast, we are making use of observed wave-
lengths somewhat longer or shorter than the most unstable
wavelength.

For the case modeled here of the splitter plate air-helium
experiments of Ref. �9�, we have as a private communication
from the author an initial disturbance wavelength of 0.5 cm.
For those experiments with a series of published visual im-
ages, we can estimate an initial wavelength as the smallest
observable length in the series of images.

A number of experiments have used immiscible fluids
with surfactants. There are two issues which require further
study in this case: the variable surfactant concentration along
the interface between the fluids, and the Marangoni force
resulting from variations in surfactant concentration. Until
these effects have been modeled numerically, we do not at-
tempt to simulate such experiments.

Plasma accelerated instabilities typically have machined
initial perturbations with one or several wavelengths. Visu-
ally, it is clear that the dominant effect derives from the
imposed wavelengths and not from the most unstable ones.
Thus the simulation of instabilities with initial wavelengths
other than the most unstable ones is of direct experimental
interest, and the effect of scale breaking on these experi-
ments has been identified as an important question �14�.

III. SIMULATION RESULTS FOR MISCIBLE
FLUIDS

We model miscible fluids using physical values for
the interfluid mass diffusion. Experiments �9� studied the
mixing of air and helium, with a Fickian diffusion constant

�=0.00066 cm2/ms �16�. We introduce the dimensionless
diffusion constant �̃=� / ���Ag��=0.3 and dimensionless
time scale t̃=�g�, with g=Earth’s gravity, A=0.035 the At-
wood number, and �=0.5 the initial bubble diameter. We
model this experiment with an initial �̃=0.3 and we use the
Atwood number A=0.5.

Our simulations are based on the improved front tracking
algorithm �17�, which greatly minimizes the interpolative
smoothing �numerical surface tension� of the interface. The
grid based algorithm previously used handled bifurcations
robustly, but with excess interpolation, and now the grid
based reconstruction is applied only in local regions where
needed and not globally as before. We use a fully Lagrangian
method to propagate the interface to obtain an accurate so-
lution of the interface position. Eulerian reconstruction of the
interface is only used in small regions where topological
bifurcation is detected.

The advantage of the front tracking method is to eliminate
numerical mass diffusion across the interface completely.
Physical mass diffusion must then be added to the calcula-
tion. In our simulations, we compute the diffused mass,
based on the analytical solution of the diffusion equation in
one dimension, i.e., with spectral accuracy, as the amount of
mass diffused through the interface at each time step. The
diffusion algorithm, based on these ideas, has been studied in
detail in a separate publication �18�. It can be regarded as a
type of subgrid algorithm, as its purpose is to give relatively
correct simulation values when the mesh is too large to ac-
complish this goal through normal finite differencing. As
with subgrid algorithms in general, its effect is removed as
the mesh is refined. Thus the asymptotic convergence is un-
changed.

Our main results, summarized in Table II, are the values
for the mixing rate � for the bubble penetration into the
heavy fluid, in agreement with experimental data. One simu-
lation presented here is highly compressible �M2=0.25�. All
the others are nearly incompressible �M2=0.0076�. Here
M2=�g /ch

2 is a dimensionless measure of compressibility,
where ch denotes the sound speed of the heavy fluid. On the

TABLE II. Mixing rates compared: FRONTIER simulation compared to experiment and ideal fluid FRON-

TIER compared to ideal untracked TVD. The final column �computed for simulations only� is the percentage
change from the FRONTIER simulation of the ideal case.

Experiment
simulation Comment Coeff. �

Percentage
change

Banerjee-Andrews Mass diffusion �9� �̃=0.3 0.07

FRONTIER Miscible �̃=0.3 0.069 −23%

TVD Untracked �13�, Ideal 0.0 0.035 −61%

FRONTIER Ideal 0.0 0.09 0%

TVD Untracked, ideal �renormalized� 0.0 0.076 −16%

FRONTIER Miscible, ideal �renormalized� 0.0 0.089 −1%

FRONTIER High compressibility �renormalized�

Ideal, M2=0.25 0.0 0.11 +22%

Ideal, M2=0.5 �13� 0.0 0.21 +133%
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basis of the results of Table II, we identify scale dependent
phenomena, i.e., transport, surface tension, and compressibil-
ity, as significant contributors to the mixing rate.

We remove the effects of compressible density stratifica-
tion and of various levels of numerical and/or physical mass
diffusion. In this manner, we explain the various bubble pen-
etration curves in terms of a universal theory, through the use
of time dependent Atwood numbers �13�. The raw or unad-
justed mixing rate is the slope of the curve h vs Agt2. Fol-
lowing Ref. �13�, we introduce a time dependent Atwood
number A�t� defined by the solution itself. Using this, we can
define the variable density corrected mixing rate as the slope
of h vs 2�0

t �0
sA�r�gdrds.

The raw and density renormalized mixing rates are plotted
in Fig. 1 �top and bottom�. Observe that the rescaled plots on
the bottom, for two tracked simulations �ideal and physical
mass diffusion�, are in close agreement, indicating that the
differences in the time dependent Atwood number account
for the different penetration rates of these cases. The discrep-

ancy between scaled tracked and untracked renormalized
plots appears to be due to grid related interface smoothing,
an effect we call numerical surface tension. The discrepancy
between scaled tracked high and low compressibility is due
to compressibility effects.

The h vs Agt2 and especially the renormalized h vs
�0

t �0
sA�r�gdrds plots in Fig. 1 have straight line shapes after

an initial transient, and we here report the slope obtained by
joining the initial to the final point. We separate variable
density effects from the numerical and physical surface
smoothing and surface tension effects and obtain the results
of Table II.

In Fig. 2, we plot the time dependent Atwood numbers
�13� for the curves of Fig. 1. The deviation of the low com-
pressibility A�t� from A=A�t=0� is due mainly to numerical
or physical mass diffusion.

IV. THE BUBBLE MERGER PROCESS

The acceleration of the bubble envelope in multimode
Rayleigh-Taylor �RT� instability is postulated to depend on
the process of bubble competition and merger �11,19–23�.
Key phenomena characterize this process.

�1� The proximity of bubbles to each other. Bubble com-
petition and the merger which drives the acceleration of the
bubble envelope can only occur if bubbles are sufficiently
close to each other.

�2� The speed of taller vs shorter bubbles. Taller bubbles
should on the average advance faster than neighboring
shorter bubbles. These faster moving bubbles then expand to
take up the space left by the slower, lower bubbles which, in
terms of relative velocities, get swept downstream of the
main bubble envelope flow. Thus there is an inverse cascade
with fewer and larger structures dominating the flow as time
progresses. This process is called bubble competition and
merger.

�3� Speed of taller bubbles vs single mode theory. The
vertical velocity of the taller multimode RT bubbles should

FIG. 1. Top: Self-similar growth of the mixing zone. Bottom:
The same data plotted using a time dependent Atwood number, to
remove the effects of numerical or physical mass diffusion and of
compressible �M2=0.25� density stratification. See also Table II
where results from several different compressibilities are given.

FIG. 2. Plot of the time dependent Atwood number for tracked
simulations with and without physical mass diffusion and for an
untracked simulation �with numerical mass diffusion�.
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be considerably greater than the terminal velocity of a single
bubble of an equivalent radius in single mode RT instability.
The increment in velocity, called the bubble envelope veloc-
ity �24�, is about equal to single mode bubble velocity �24�.

We demonstrate quantitatively �with the low compress-
ibility simulation of Sec. III� that tracked mass diffusive
simulations exhibit these three characteristics. Our diagnos-
tics therefore support the view that bubble competition and
merger occurs in RT simulations, driving the acceleration of
the bubble envelope.

A. Multimode vs single mode

Since Eq. �2� is used to describe the bubble penetration in
multimode RT instability, it is important that the simulations
remain in the multimode regime up to the latest times that
Eq. �2� is used to model the bubble envelope growth. The
dynamics of a single mode RT instability are very different
from the multimode case. Single mode RT instability is char-
acterized by a brief initial period of exponential growth fol-

lowed by linear acceleration and then transition to an ap-
proximately constant terminal velocity v� of the bubble
�11,22,25,26�; multimode RT is characterized by nonlinear
coupling of modes which drives continual acceleration of the
bubble envelope.

To analyze the bubble dynamics, we first identify the x ,y
�horizontal� plane location of the bubble peaks, and then de-
termine the average of the number of bubbles near each
bubble. We use an algorithm described in Ref. �12� to deter-
mine distinct bubble peaks above the 20% light fluid volume
fraction height. To ensure the accuracy of these bubble peak
locations, we compare the results of the algorithm with hori-
zontal slices through the bubble portion of the mixing zone
at and above the 20% light fluid volume fraction height. This
combined approach gives accurate bubble tip locations up to
dimensionless time 16.5 �the simulation runs up to dimen-
sionless time 19.25�, but the extremely complicated nature of
the late time interface makes the task of identifying indi-
vidual bubbles highly subjective, and none of the analysis
described in this section is performed on simulation times
later than t=18.

The radius of influence �or radius� of a bubble is defined
by first considering a Voronoi cell decomposition of the hori-
zontal plane containing the x-y location of the bubble peaks.
The radius of the largest circle centered at a bubble location
and enclosed in its Voronoi cell defines the radius of that
bubble. Figure 3�a� illustrates this construction for t̃=13.75.
See also Ref. �12�.

We use a one bubble radius separation to determine the
number of bubbles near a given bubble. See Fig. 3�b�. In Fig.
4, we plot the average number of other bubbles within a
one-radius neighborhood of each bubble. The average is
about 3, showing that the multimodal regime is still present
at late time. Bubbles are still sufficiently close to each other
at late time to affect the growth pattern of other bubbles
significantly; bubble competition and merger is still viable.
This analysis quantitatively confirms the qualitative impres-

FIG. 3. Horizontal plane view of bubble tip locations at time
t̃=13.75. �a� Voronoi diagram of the bubble tip locations in the
horizontal plane, and the accompanying maximum radius circles
enclosed in a Voronoi cell and centered at a bubble tip. These
circles represent the bubbles. �b� Definition of the one-radius neigh-
borhood of a bubble; the inner circle �solid line� is the bubble as
defined in �a� while the outer circle �dotted line� defines a one-
radius neighborhood around that bubble. The three dashed line
circles represent bubbles within the one-radius neighborhood of the
solid line bubble, and thus presumed to interact with it.

FIG. 4. �Color online� Mean number of bubbles within a one-
radius neighborhood of a given bubble.
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sion obtained from late time front plots of tracked RT mul-
timode simulations. �See, for example, Ref. �27� or �28�.�

B. Vertical velocities of neighboring bubbles
and inverse cascade

Using the one-radius neighborhoods defined in Sec. IV A
for each bubble, we study the relationship between the ver-
tical velocities of neighboring bubbles. The bubble competi-
tion and merger concept requires that, in general, taller
bubbles advance faster than their shorter neighbors. We illus-
trate that this in fact happens in our front tracking mass-
diffusion simulation using two metrics.

First, in Fig. 5, we show as a function of time the percent-
age of occurrences of the tallest bubble in a neighborhood
also having the largest vertical speed. This percentage �about
60% on a time-averaged basis� can be compared with the
value 25% which would result if there were no correlation
between bubble height and velocity.

However, even if the tallest bubble in a neighborhood is
not the fastest advancing bubble, it is typically almost the
fastest bubble. A second metric also illustrates that taller
bubbles move faster than shorter ones. For each one-radius
neighborhood we determine the percentage of bubbles which
are slower than the tallest bubble in that neighborhood. The
weighted mean of those percentages �with the proportion of
the total number of neighborhood bubbles in each neighbor-
hood serving as the weights� is then computed at fixed time
for all one-radius neighborhoods of bubbles. The results are
summarized in Fig. 6. The tallest bubble typically moves
faster than 80% of its neighbors. In the absence of a speed-
height correlation, this value would be 50%. We therefore
have quantitative confirmation that taller bubbles generally
advance faster than do shorter ones in our simulation, as is
characteristic of the process of bubble competition and
merger.

Finally, we provide evidence that the disparity in bubble
speeds results in an inverse cascade of increasing bubble
sizes and decreasing number of large scale structures in
the bubble envelope. In Fig. 7, the plots show, as a function
of simulation time, a decreasing trend in the number of
bubbles �frame �a�� and an increasing trend in the mean ra-
dius r̄ of the bubbles �frame �b��. Reference �23� defines an
�r= r̄ /Agt2 for which there is no known published miscible
experimental value but for which the immiscible experimen-
tal value is approximately 0.01. The immiscible simulation
�12� reports �r=0.01 also. That value is twice as large as
�r=0.005 obtained from the miscible front tracking simula-
tion, indicating a possible difference in the bubble dynamics
between miscible and immiscible RT mixing.

C. Multimode velocities vs single mode terminal velocities

We compare the vertical speeds of the taller multimode
RT simulation bubbles to the terminal speeds of single mode
bubbles of equivalent radii. By t̃=1.83, the simulation
bubbles have achieved a height much greater than half their
mean radius. From the rough guideline established in Ref.
�25�, this means that as single mode perturbations they
should be entering the terminal velocity regime. However, on
average, the speed of the tallest 25% of the multimode simu-
lation bubbles is 2.4 times the corresponding single mode
terminal velocity. This is consistent with the two-
dimensional simulation study �24�, which found increases in
multimode bubble velocities by a factor of 2 over equivalent
single mode bubble terminal velocities. This is further evi-
dence that the bubble dynamics are dominated by the inter-
action of neighboring bubbles. These results are summarized
in Fig. 8. The formula used for computing v� �29� is

v� = cb
�Agr = 0.48��Agr� , �7�

where r is the bubble radius.

FIG. 5. �Color online� Percentage measure of the number of
times the tallest bubble in a neighborhood is also the fastest advanc-
ing bubble in that neighborhood.

FIG. 6. �Color online� The percentage of bubbles in a neighbor-
hood which are slower than the tallest bubble in that neighborhood.
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V. CONCLUSIONS

In this paper, we report a set of 3D Rayleigh-Taylor mul-
timode mixing simulations, based on improved physics mod-
eling and on an improved tracking algorithm in the front
tracking code FRONTIER. The simulations model the experi-
mental data of Banerjee and Andrews �9�. We include a dis-
cussion of other scale breaking physical effects: mass diffu-
sion, surface tension, compressibility, and numerical scale
breaking effects �numerical mass diffusion and effective nu-

merical surface tension� in the analysis. The scale breaking
terms cause a change in the mixing rate � ranging from over
+100 to −61 % in comparison to an ideal simulation, lack-
ing scale breaking effects. They agree with experimental val-
ues for both miscible and immiscible fluids.

Our main conclusion is that simulations in agreement with
experiment for Rayleigh-Taylor mixing have been obtained.
Accurate numerical tracking to control numerical mass dif-
fusion and numerical surface tension and accurate modeling
of physical scale breaking phenomena were essential to ac-
complish these simulations.

Remaining issues concern the data of Dimonte and
Schneider �10�, for which the role of surfactants requires
additional physical modeling and some miscible experiments
for which viscosity, not mass diffusion, is the dominant scale
breaking physics. Additionally, the influence of mesh refine-
ment should be explored when computer resources permit,
but we observe that the mesh resolution per bubble used in
the present study is already 2 times finer than that of the
benchmark study �15�.
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FIG. 7. �Color online� �a� The number of bubble peaks above
the 20% volume fraction contour as a function of time. �b� The
mean bubble radius r̄ as a function of scaled distance.

FIG. 8. �Color online� A comparison of the front tracking simu-
lation vertical speed v of the tallest 25% of bubbles with the Taylor-
formula terminal vertical speed v� of those same bubbles when
regarded as single isolated bubbles.
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