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Abstract

The advantage of front tracking over capturing methods for the numerical simulation of discontinuity surfaces in fluid
flow is to eliminate the numerical diffusion of mass across a fluid interface. For accurate modeling of an interface between
miscible fluids, however, physical mass diffusion may be significant, and must be added to the calculation. The main pur-
pose of this paper is to introduce a new front tracking algorithm in which the physical diffusion of mass across a tracked
interface is included. The accuracy and convergence properties of this algorithm are discussed. The new algorithm is a sub-
grid algorithm in the sense that the asymptotic fine grid behavior is identical to conventional untracked (capturing) meth-
ods while the coarse grid behavior is improved. It is thus most suitable for modeling small values of physical mass
diffusion, for which adequate numerical resolution is computationally demanding. The mixing rates for the 3D Ray-
leigh–Taylor instability of miscible fluids based on this algorithm agree with experimental values.
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

The conservation laws
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þr � qv ¼ D � mq;

oqv

ot
þr � qvv ¼ �rP þ qg þr � mvrq;

oðqEÞ
ot
þr � ððqE þ P ÞvÞ ¼ qv � g þr � mErq;

ð1Þ
model the mixing of compressible miscible fluids with physical mass diffusion, where q is density, v is velocity,
P is pressure, g is gravity, E is total specific energy, and m is the coefficient of mass diffusion.
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The difficulty in solving this system is to eliminate numerical diffusion across an interface between distinct
fluids while allowing the correct amount of physical mass diffusion, in the limit where m is small relative to the
affordable grid resolution. The front tracking method [2,3,6,17,18,21] totally eliminates numerical diffusion,
but until now it has not allowed the inclusion of small amounts of physical mass diffusion. In this paper,
we introduce a new algorithm, building on the front tracking method, to add small amounts of physical mass
diffusion while preserving the elimination of numerical mass diffusion across an interface. The improved algo-
rithm is based on the analytical solution of the diffusion equation in one dimension.

Front tracking provides sharp resolution of wave fronts through the active tracking of interfaces between
distinct materials. It is a numerical method that represents interfaces explicitly as a lower dimensional mesh
moving through a volume filling grid. The time step of the front tracking code FronTier consists of two parts,
the finite difference interior solver for the states defined on the volume filling rectangular grid and front prop-
agation for the front position and states defined on each side of the front, see [13,3,14,11,16,10]. This propa-
gation of the front points and front state variables distinguishes front tracking from other numerical methods.
We use a directionally split method, which breaks the front propagation into normal and tangential steps. For
the normal front propagation, we project Eq. (1) to the front normal direction to yield the one dimensional
system
Fig. 1.
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where o
oN is the directional derivative in the normal direction ~N , vN ¼ v � ~N , gN ¼ g � ~N , and vT ¼ v� vN

~N is the
tangential velocity component (see Fig. 1).

Our primary results are to introduce the new, limited diffusion tracking algorithm, to test this algorithm in
1D examples, and to discuss its extension to 3D. Sample 3D simulation results with experimental validation
will be summarized also. In Section 2, the new algorithm to solve the continuity equation with physical dif-
fusion in one dimension is introduced, making use of the front tracking approach. In Section 3, we present
computational verification evidence for the proposed algorithm. In Section 4, we extend the algorithm to
A schematic showing the normal propagation stencil of states used in propagating a front point. For simplicity the diagram is
for two spatial dimensions.
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higher dimensions. We validate the 3D algorithm by comparing 3D simulations of the Rayleigh–Taylor insta-
bility to experimental results.
2. Physical mass diffusion in one dimension

The new algorithm, developed first in 1D, is based on the following ideas. Untracked contact discon-
tinuities give rise to a blurred or smeared out front. We preserve the tracking of a sharp front and intro-
duce physical mass diffusion through it as a perturbation. Thus the time step is split into two parts, the
first being the usual non diffusive front tracking [7,12], and the second a pure physical mass diffusion step.
Since the first step has been described previously, we only describe the second, physical mass diffusion,
step. Conceptually, the front states stored on the tracked front represent the states at ±1 relative to
the scale of the diffusion layer and the diffusion correction of the interior states near the front will be
carried along the characteristics. For the mass diffusion step at each time step, we compare two algo-
rithms. The first is a subgrid algorithm which allows limited mass diffusion according to the analytic form
of the solution for the diffusion equation. The second is a finite difference (FD) algorithm. It is concep-
tually simpler, and computes the desired diffusion across the front based on the interior (nonfront) states,
with no regard for any tracked front which might occur within the difference stencil. After the diffusion
layer has reached a width of 2Dx, the first algorithm is turned off and replaced with the second. In
referring to the finite difference algorithm, we understand the case in which it is used for all times, not
just after the diffusion layer width is comparable to the mesh spacing. Both algorithms appear to give
satisfactory results, but the subgrid algorithm is superior in computing the amount of mass diffused
through the interface. These two algorithms are compared to a finite difference algorithm without
tracking.

The subgrid algorithm starts with a reconstruction of the diffusion transition layer. Consider the convection
equation with physical diffusion
qt þ uqx ¼ mqxx ð3Þ

and the initial condition
qðx; 0Þ ¼
q�1 x < x0;

q1 x > x0;

�

where m is the physical diffusion coefficient. This initial value problem can be solved exactly
qðx; tÞ ¼ q�1 þ
q1 � q�1ffiffiffi

p
p

Z ðx�X Þ=
ffiffiffiffi
4mt
p

�1
e�n2

dn; ð4Þ
where X = x0 + ut.
When Eq. (3) is solved numerically, the finite difference (or finite volume) equation is equivalent to the fol-

lowing modified equation:
qt þ uqx ¼ ðmþ ~mÞqxx; ð5Þ

where ~m is the numerical diffusion. As a result, the numerical solution is approximately
�qðx; tÞ ¼ q�1 þ
q1 � q�1ffiffiffi

p
p

Z ðx�X Þ=
ffiffiffiffiffiffiffiffiffiffiffi
4ðmþ~mÞt
p

�1
e�n2

dn: ð6Þ
The diffusion widths for the exact solution and numerical solution are d ¼ p
ffiffiffiffi
mt
p

and �d ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ ~mÞt

p
respec-

tively. Since ~m! 0 as Dx! 0, �d ! d under the mesh refinement.
However, for a large scale computation in three dimensions, mesh refinement is expensive and requires

large increases of memory and CPU time. For example, each doubling of the number of grid points in each
dimension requires an 8 times increase of memory and a 16 times increase of CPU time. We wish to use finite
and affordable computational mesh to simulate realistic physical mass diffusion when the physical diffusion
coefficient is substantially smaller than the numerical diffusion coefficient.
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Assume that we know the density transition, qn
�1, at the current step, the location of the density transition

(midpoint), Xn, at the current step, and the amount of mass which has diffused through the interface in either
direction up to the current step, Mn

�. The density transition and its location are stored as front states and front
positions, and updated as part of the (non-diffusive) front and interior state update. The diffused mass, Mn

�, is
a new variable. It is a diffusion progress variable, and it is updated incrementally within the mass diffusion
step. On this basis, we define an analytic solution
qðx; tnÞ ¼ q�1 þ
q1 � q�1ffiffiffi

p
p

Z ðx�X nÞ=
ffiffiffiffiffiffi
4mtn
p

�1
e�n2

dn: ð7Þ
The solution of (7) depends on a time tn, defined by the property that the integral of q � q�1 from �1 to Xn

is just Mn
�.

Thus we define the current (pseudo) time tn in terms of Mn
� and the current density states at infinity,

through the formula
Mn
þ ¼

Z 1

0

ðqðx; tnÞ � qn
þ1Þdx ¼ ðqn

�1 � qn
þ1Þ

Z 1

0

1� 1ffiffiffi
p
p

Z x
ffiffi
p
pffiffiffiffiffiffi

4pmtn
p

�1
e�n2

dn

 !
dx;

Mn
� ¼

Z 0

�1
ðqðx; tnÞ � qn

�1Þdx ¼
qn
þ1 � qn

�1ffiffiffi
p
p

Z 0

�1

Z x
ffiffi
p
pffiffiffiffiffiffi

4pmtn
p

�1
e�n2

dndx:

ð8Þ
Notice Mn
� ¼ �Mn

þ. The increased mass diffused through the middle point at step n is defined as
DMn
� ¼Mnþ1

� �Mn
�; ð9Þ
where Mnþ1
� is defined the same as in (8), but with the pseudo time tn replaced by tn + Dt.

As a convention [4], the diffusion layer is reconstructed as a simple piecewise linear curve, defined by a line
segment tangent to q(x, tn) through the transition mid point Xn and cutting the horizontal lines q = q±1. The
edges of the reconstructed transition layer are located at Xn ± dn, where
dn ¼ dðtnÞ ¼ jq1 � q�1j
2jmax

x
q0ðx; tnÞj � p

ffiffiffiffiffiffi
mtn
p

¼ dn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2mDtn

ðdn�1Þ2

s

and the max is computed within the transition zone.

Mn
� is defined incrementally from its previous value by adding the amount of mass to diffuse in the current

step. This amount is defined by the analytic solution of (7), using the equivalent time tn defined in terms of Mn
�

and the current time step size Dt. The diffused mass is added to the interior state on one side of the front and
subtracted from the interior state on the other.

The subgrid algorithm is applied as long as dn < Dx. When dn P Dx or if the finite difference algorithm
rather than the subgrid algorithm is being used, then the diffusion step is a pure centered second order finite
difference step, applied to the interior states, with no regard for the front locations, and no use of ghost cells
near the front. In either case, the diffusion step defines an amount of mass to be added to or subtracted from
that located in the interior states at locations adjacent to the front.

Assume that the velocity and total energy are slowly varying through the transition layer, in comparison to
the density variation. On this basis, we also treat the diffusion terms added to the momentum and energy equa-
tions as a diffusional correction, and define a parabolic update step for these equations.

To update the interior states, we use operator splitting to separate the hyperbolic from the parabolic
terms. A regular stencil is one which does not meet the front. The diffusion term is solved by conventional
centered finite differences. For an irregular stencil, if the front cuts a mesh cell not at the center of the
stencil, we define ghost cell extrapolation of the states on the same side of the front as the center cell
using the front states as in [15]. In case the front cuts the central cell of the stencil, i.e., the cell that

the stencil is updating, we use the new algorithm explained below. We denote by ~qnþ1
i , gðqvÞnþ1

i , gðqEÞnþ1
i

the states at xn
i after the hyperbolic update. Let DMn

� be defined as above. This mass must be added
to the mass described by the interior states. We distribute this increment of diffused mass to the two clos-
est grid cells which lie on each side of the center of the layer. In order to do this, we detect the closest
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grid center points on either side of the front center point X nþ1
c , namely xi and xi+1. We add to these cells

the mass diffused from the other side
Fig. 2.
steps a
qnþ1
i ¼ ~qnþ1

i þ DMn
�

Dx
;

ðqvÞnþ1
i ¼ gðqvÞnþ1

i þ ~vn
i DM

n
�

Dx
;

ðqEÞnþ1
i ¼ gðqEÞnþ1

i þ
eEn

i DM
n
�

Dx
;

qnþ1
iþ1 ¼ ~qnþ1

iþ1 þ
DMn

þ
Dx

;

ðqvÞnþ1
iþ1 ¼ gðqvÞnþ1

iþ1 þ
~vn

iþ1DM
n
þ

Dx
;

ðqEÞnþ1
iþ1 ¼ gðqEÞnþ1

iþ1 þ
eEn

iþ1DM
n
þ

Dx
:

ð10Þ
3. Validation

First we compare algorithms for a 1D pure diffusion and transport problem in Fig. 2. We set a constant
velocity field v = 0.5, and study the mass diffusion across a density jump. We compare the exact solution
(obtained from a fine grid untracked numerical method) to the subgrid algorithm, the tracked FD algorithm
and an untracked FD algorithm. The later three algorithms are computed on a coarse grid, with the final time
and the physical values of mass diffusion equivalent to that used in the 3D RT simulation for all figures of
Section 3. We choose m = 0.0008 in all simulations shown in Section 3. On the scale of three or so mesh blocks,
we see that the untracked algorithm is wrong, the tracked FD algorithm is good and the subgrid algorithm is
excellent. The excessive mass diffusion in the untracked solution results from the transport within the Euler
equation step and not from the computation of diffusion per se.
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Comparison of algorithms for the 1D diffusion and transport problem. Plot of density vs time, displayed after 2000 coarse grid time
nd an equivalent physical time for the fine grid.
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Fig. 3 compares density contours with different algorithms for the pure transport and diffusion problem,
from which we can see that the subgrid (tracked) algorithm is less diffused than the untracked algorithm.

Table 1 compares the L1 errors for different algorithms for the diffusion and transport problem. We denote
by qexact(x, tn) the exact solution, which can be obtained by a numerical solution using a very fine grid and by
q(x, tn) the numerical solution computed on a coarse grid, and interpreted as piecewise linear between grid
points. For the two tracked algorithms, the grid cell which contains the front is divided into two fractional
cells on either side of the front, and the front states provide the additional data to reconstruct a linear solution
in each subcell. We calculate the L1 error at time tn by

R1
�1 jqðx; tnÞexact � qðx; tnÞjdx.

Table 2 compares the mass diffused through the diffusion layer midpoint Xn at time tn. For untracked sim-
ulations, Xn is defined as the midpoint location of the density within the transition layer. This location is, in
general, not a grid point, and so the diffused mass calculation involves use of a fractional cell. The diffused
mass is computed by 2

R X n

�1 jqðx; tnÞ � q�1jdx. From this comparison, we see that the subgrid algorithm is
far more accurate in this measure of convergence than the FD (tracked and especially untracked) algorithms
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Fig. 3. Comparison of coarse mesh space time density contours for different algorithms. Two contours are shown, for q = 1.5 and q = 2.5,
that is 25% and 75% of the density change through the transition layer. To avoid stairstep plots of coarse grid piecewise constant functions,
we use reconstruction of the transition layer as defined in Section 2. For the untracked FD algorithm, we interpolate data between adjacent
grid points. Left: subgrid (tracked) algorithm. The diffusion layer has a width of about 2dn = 0.8Dx at time t = 16. Right: FD (untracked)
algorithm. The numerically computed diffusion layer has a width of about 3Dx at time t = 16.

Table 1
L1 error comparison for different algorithms

Mesh Subgrid (tracked) FD (tracked) FD (untracked)

40 0.30 0.29 1.02
80 0.28 0.26 0.57

160 0.21 0.20 0.25

Table 2
Comparison of diffused mass for different algorithms at the same time with different grid sizes

Mesh Subgrid (tracked) FD (tracked) FD (untracked)

40 0.240 0.071 1.274
80 0.242 0.129 0.735

160 0.252 0.218 0.480
4000 0.264 0.264 0.264

The coarsest mesh corresponds to the late time 3D simulation.
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for a coarse grid, and that the tracked (FD and subgrid) algorithm can eliminate the numerical diffusion across
the interface completely. All algorithms agree with a fine grid.

Fig. 4 shows the convergence of the subgrid and the tracked FD algorithms. Both algorithms have good L1

error norms, even for the coarse grid, with a slight advantage for the FD algorithm.
Fig. 5 compares the algorithms for a shock–contact interaction, again with an imposed velocity field. The

left frame is before and the right frame after the interaction of the shock with the contact. The same three
algorithms are compared to a fine grid solution. Fig. 6 compares the numerical algorithms before (left) and
after (right) a rarefaction wave interacts with the contact interface, parameters chosen as above. From these
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Fig. 4. Convergence of the tracked subgrid and the tracked FD algorithms for the same 1D diffusion and transport problem. Left: the
tracked subgrid algorithm; right: the tracked FD algorithm. The coarsest grid coincides with that of Fig. 2.
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three plots, we conclude that the tracked subgrid algorithm and the tracked FD algorithm are nearly equiv-
alent, and both are much better than the completely untracked solution.

4. Extension to higher dimensions

For the higher dimension case, we split the front into normal and tangential directions. The subgrid algo-
rithm is applied along the normal direction, and no diffusion is added to the tangential sweep. In this way, the
subgrid algorithm in one dimension can be extended easily and efficiently to the higher dimension. We do not
present results from a 3D extension of the tracked FD algorithm, but we remark that it also must be solved in
normal-tangential coordinates to avoid over-diffusing the mass. The subgrid algorithm is validated by compar-
ing a 3D simulation of the Rayleigh–Taylor (RT) instability to laboratory experiments [1]. The RT instability
occurs at a fluid interface whenever the density gradient is opposed to the acceleration gradient across the
interface. The RT mixing rate is the dimensionless coefficient a in the equation
h ¼ aAgt2 ð11Þ

for the height h of the bubbles, i.e., the interpenetration distance h of the light fluid into the heavy fluid. Here
A = (qh � ql)/(qh + ql) is the Atwood number and t is the time. Acceptable experimental values for a are
a = 0.06 ± 0.01 [23,1]. See [22] for background information. To remove effects of mass diffusion (physical
and/or numerical), we follow [8] to define a time dependent Atwood number A(t), and the renormalized
growth rate aren,
aren ¼
h

2
R t

0

R s
0 AðrÞg dr ds

:

Our 3D validation results are summarized in Table 3. See also Fig. 7. Details regarding this simulation will be
published separately [20].

5. Discussion

We have introduced a new subgrid algorithm to combine physical mass diffusion with the tracking of an
interface (to eliminate numerical mass diffusion between the two fluids). The algorithm has been tested in typ-



Table 3
Mixing rates compared for an air–helium 3D Rayleigh–Taylor experiment and related simulations

Experiment Simulation Comment a

Andrews Miscible [1] 0.07
FronTier Miscible 0.069
TVD Untracked [8], ideal 0.035
FronTier Ideal 0.09
TVD Untracked, ideal (renormalized) 0.076
FronTier Miscible, ideal (renormalized) 0.089

The simulations compare physical mass diffusion to ideal physics (no diffusion) and they compare tracked to untracked algorithms. The
agreement of the tracked simulation with physical mass diffusion with the experiment is excellent, while the ideal simulations do not agree
with experiment, nor (because of the numerical mass diffusion in the untracked ideal simulation) with each other.
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Fig. 7. Left: Self similar growth of the mixing zone. Right: the same data plotted using a time dependent Atwood number, to remove the
effects of numerical or physical mass diffusion.
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ical 1D wave interaction problems, extended to 3D and then compared to a laboratory experiment of RT mix-
ing rates, with basically perfect agreement. We can also identify two other issues that could contribute oppo-
site effects and at least in part cancel each other, subgrid or unresolved mass diffusion due to unresolved
subgrid interfaces and long wave length initial conditions.

Viscosity will be very small for the air–helium experiment but large for other experiments, see the discussion
in [20]. The extension of the subgrid algorithm to include the viscosity will definitely be useful and will be our
future study.

We omit tangential mass diffusion as this effect is not directly coupled to the diffusion related decrease of
buoyancy forces that is activated by the mass diffusion normal to the interface. Similarly we regard curvature
related corrections to the diffusion process as secondary. Such phenomena are not considered here but could
be studied in following investigations.

This result can be compared to typical untracked simulations, which generally under-predict mixing in com-
parison to experiment by a factor of 2 [5]. In the study [8], we identified numerical mass diffusion as an expla-
nation of the discrepancy between untracked simulations and experiment.

The total variation diminishing (TVD) algorithm [19] gives a value for the growth rate a = 0.035, while for
other simulation codes [5], a varies from 0.023 to 0.030. We list three differences between the untracked sim-
ulation [19] and the others [5] with the potential to explain these differences: [19] used 2 times the mesh reso-
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lution per mode, it used artificial compression to reduce mass diffusion and it used a different numerical algo-
rithm (TVD).

In previous work, we obtained agreement with experimental data for RT mixing of immiscible fluids [9],
namely, anumerical = 0.067, aexperiment = 0.063 ± 0.013.

Combining the present study and this previous one, we can state that improved numerical modeling of
interfaces (via front tracking) and improved physics modeling (via inclusion of scale breaking phenomena)
is an important factor to our agreement between numerical simulation and experiment. We are not aware
of other 3D RT mixing simulations with comparable agreement with experiment.

References

[1] A. Banerjee, M.J. Andrews, A gas channel facility to investigate statistically steady Rayleigh–Taylor mixing at high Atwood numbers,
Phys. Fluids, in press.

[2] M. Ben-Artzi, The generalized Riemann problem for reactive flow, J. Comput. Phys. 86 (1989) 70–101.
[3] I-L. Chern, J. Glimm, O. McBryan, B. Plohr, S. Yaniv, Front tracking for gas dynamics, J. Comput. Phys. 62 (1986) 83–110.
[4] A. Chorin, J. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, Heidelberg, Berlin, 2000.
[5] G. Dimonte, D.L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garsi, A. Robinson, M. Andrews, P. Ramaprabhu, A.C.

Calder, B. Fryxell, J. Bielle, L. Dursi, P. MacNiece, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tubo, Y.-N. Young, M. Zingale,
A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the
alpha-group collaboration, Phys. Fluids 16 (2004) 1668–1693.

[6] J. Donea, S. Giuliani, J.P. Halleux, An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure
interactions, Comput. Methods Appl. Mech. Eng. 33 (1982) 689–723.

[7] Jian Du, Brian Fix, James Glimm, Xicheng Jia, Xiaolin Li, Yunhua Li, Lingling Wu, A simple package for front tracking, J. Comp.
Phys. 213 (2006) 613–628, Stony Brook University preprint SUNYSB-AMS-05-02.

[8] E. George, J. Glimm, Self similarity of Rayleigh–Taylor mixing rates, Phys. Fluids 17 (2005) 054101-1–054101-13, Stony Brook
University Preprint number SUNYSB-AMS-04-05.

[9] E. George, J. Glimm, X.L. Li, Y.H. Li, X.F. Liu, The influence of scale-breaking phenomena on turbulent mixing rates, Phys. Rev. E
73 (2006) 016304-1–016304-5.

[10] J. Glimm, J.W. Grove, X.L. Li, W. Oh, D.H. Sharp, A critical analysis of Rayleigh–Taylor growth rates, J. Comput. Phys. 169 (2001)
652–677.

[11] J. Glimm, J.W. Grove, X.-L. Li, K.-M. Shyue, Q. Zhang, Y. Zeng, Three dimensional front tracking, SIAM J. Sci. Comput. 19 (1998)
703–727.

[12] J. Glimm, J.W. Grove, X.-L. Li, N. Zhao, Simple front tracking, in: G.-Q. Chen, E. DiBenedetto (Eds.), Contemporary Mathematics,
vol. 238, American Mathematical Society, Providence, RI, 1999, pp. 133–149.

[13] J. Glimm, J.W. Grove, Y. Zhang, Interface tracking for axisymmetric flows, SIAM J. SciComp. 24 (2002) 208–236, LANL Report
No. LA-UR-01-448.

[14] J. Glimm, E. Isaacson, D. Marchesin, O. McBryan, Front tracking for hyperbolic systems, Adv. Appl. Math. 2 (1981) 91–119.
[15] J. Glimm, D. Marchesin, O. McBryan, Stable and unstable fluid interface surfaces in petroleum engineering, Technical Report

preprint, Rockefeller University, 1980.
[16] J.W. Grove, Applications of front tracking to the simulation of shock refractions and unstable mixing, J. Appl. Numer. Math. 14

(1994) 213–237.
[17] J.W. Grove, R. Menikoff, The anomalous reflection of a shock wave at a material interface, J. Fluid Mech. 219 (1990) 313–336.
[18] C.W. Hirt, A.A. Amsden, J.L. Cook, An arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys. 14

(1974) 227–253, Reprinted in 135 (1997) 203–216.
[19] X.-L. Li, Study of three dimensional Rayleigh–Taylor instability in compressible fluids through level set method and parallel

computation, Phys. Fluids A 5 (1993) 1904–1913.
[20] X.F. Liu, E. George, W. Bo, J. Glimm, Turbulent mixing with physical mass diffusion, Phys. Rev. E 73 (2006) 056301-1–056301-8.
[21] L.G. Margolin, Introduction to an arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys. 135 (1997)

198–202.
[22] D.H. Sharp, An overview of Rayleigh–Taylor instability, Physica D 12 (1984) 3–18.
[23] V.S. Smeeton, D.L. Youngs, Experimental investigation of turbulent mixing by Rayleigh–Taylor instability (part 3), AWE Report

Number 0 35/87, 1987.


	A front tracking algorithm for limited mass diffusion
	Introduction
	Physical mass diffusion in one dimension
	Validation
	Extension to higher dimensions
	Discussion
	References


