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Abstract. We outline a program for the study of turbulent mixing of com-
pressible fluids. We emphasize recent progress and steps still to be taken.

1. Introduction

We are interested in the description of fluid mixing layers which grow out of
acceleration driven instabilities, including the classical cases of Rayleigh-Taylor
(RT) instability, driven by a steady acceleration and Richtmyer-Meshkov (RM)
instability, driven by an impulsive acceleration. Classical references to this subject,
which has attracted a high level of interest over many decades, include [1, 24];
more recent references can be traced from the series [11], and earlier volumes in
this series.

Our program starts with high resolution methods of numerical simulation of
two (or more) distinct fluids, continues with analytic analysis of these solutions, and
the derivation of averaged equations. All steps are to be compared with available
experimental data and the final step of averaged equations is compared as well with
the direct simulation of the of the microfluid equations describing the fluid mixture.

In summary, the steps are as follows:
(1) High resolution methods for simulation of fluid flow with discontinuities

and steep gradients with comparison to other numerical methods [13].
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(2) Direct numerical simulation (DNS) of the microphysical equations of fluid
mixing, with validation through comparison to laboratory experiments
[15, 16].

(3) Derivation of averaged equations and closure hypotheses for fluid mixing
[2, 3, 17, 9].

(4) Mathematical analysis of properties of fluid mixing and of the averaged
equations [4, 5, 6, 8].

(5) Validation of closure hypotheses and the averaged equations by compari-
son to data from microphysical simulations [20].

Each of these steps will be explained in a section of this paper.

2. Front Tracking

We emphasize three new developments for the Front Tracking code FronTier.

2.1. Local Grid Based Tracking. In grid free tracking, the tracked front
is a triangulated surface, propagating freely through a rectangular volume filling
mesh. In grid based tracking, the front is regularized, or reconstructed, at each
time step. After propagation, the points of intersection of the front with all grid
cell edges are determined. Assuming at most one such intersection for each grid
cell edge, the complete interface is reconstructed in a simple manner from these
intersections.

Grid based tracking is very robust. (It is similar to the level set in this sense,
and both are derived from computer science graphics routines). However, grid
based tracking is inaccurate, as is the level set method. Grid based tracking, the
level set, and untracked simulations, which also determine an interface from grid
based information, all have a form of interface smoothing which resembles surface
tension. We call this property numerical surface tension, for reasons which will
become clear in the next section.

Local grid based tracking [13] combines these two algorithms, preserving the
advantages of each. This algorithm relies on the more accurate grid free tracking
unless there is a bifurcation. This part of the algorithm is robust as the problems
with the grid free propagation occur only with bifurcations of the interface. When
a bifurcation occurs, a small box is constructed around it. Grid based propagation
is used inside the box. The grid free surface triangulation near the box has to be
rejoined to the reconstructed grid inside the box in a construction which also has
a grid based flavor.

The result is favorable: the accuracy of grid free tracking and the robustness
of grid based tracking are both preserved.

We carried out a systematic study [13] of this new algorithm in comparison to
other interface methods (level sets, volume of fluids), and found that locally grid
based front tracking is the best of all methods tested. An extract from this study
is presented in Fig. 1.

2.2. Surface Tension and Physical Mass Diffusion. Front Tracking is a
very convenient framework to add additional surface based physics. Normal vectors
and curvature tensors are supported by the code.

Surface tension forces a pressure jump at the interface proportional to the
surface curvature. Within the normal propagation step for the dynamic time step
of the front, there is a solution of a Riemann problem. This Riemann problem
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t = 0 t = 10 t = 20

Figure 1. Comparison between level set and front tracking on
velocity reversal. The upper sequence shows the results of level set
using fifth order WENO while the lower sequence shows the results
of front tracking using the fourth order Runge-Kutta for the point
propagation. The ellipse at time t = 0 is placed in a dipole velocity
field. The velocity is reversed at t = 10, so any deviation between
the first and third columns is a numerical error.

is central to Front Tracking, as it connects dynamically the states on the two
sides of the front; it replaces a finite difference operation across the front. In the
Riemann solution, the basic equations are equilibration of the normal velocity and
the pressure at the front. On this basis, one solves for the mid state pressure [10]. In
the presence of surface tension, with a specified jump in the pressures (proportional
to the surface curvature at the point), the equation of pressure equilibration is
modified due to the pressure jump. But an equation for the equilibration of the
two mid state pressures is still valid, and is used after modification in the usual
manner in the solution for the mid state pressures and for the Riemann problem.

To compute with physical mass diffusion, two steps are needed. First, and most
difficult, is to eliminate numerical mass diffusion. Front Tracking does this very
effectively. High order or spectral compact differential schemes may also accomplish
this goal. The second step is to add limited amounts of mass diffusion back into
the calculation, on the basis of prescribed values for the physical mass diffusion
constant. Our algorithm for doing this is based on the following ideas:

(1) Determine the density jump ρr − ρl or mass fraction jump at the current
time by taking the values at the edges of a suitable finite difference stencil.

(2) Record as a history variable the amount of mass which has diffused through
the interface (and remains within the stencil size).



4BO, CHENG, DU, FIX, GEORGE, GLIMM, GROVE, JIA, JIN, LEE, LI, LI, LIU, SHARP, WU, AND YU

Experiment Comment α
Simulation
Read-Youngs Immiscible [22] # 33 0.066
FronTier Immiscible 0.062
Smeeton-Youngs Miscible [25] # 112 0.062
FronTier Miscible 0.070
TVD Ideal Untracked [14] 0.035
FronTier Ideal 0.09

Table 1. Mixing rates compared: FronTier simulation compared
to experiment and contrasted to untracked (TVD) and ideal fluid
FronTier simulations.

(3) Use the density jump, the diffused mass and the diffusion constant to
compute (from an analytic solution of the diffusion in 1D, i.e. with spectral
accuracy) the amount of mass to be diffused in the current time step.

2.3. FronTier-Lite. We have extracted from the FronTier code developed
by the authors and colleagues over a period of years the purely geometrical parts
(physics independent parts) of front tracking. This code is modular and can be
called as an external library in other codes. We have released this code for public
distribution. See

http://www.ams.sunysb.edu/FTdownload

3. Simulations of Rayleigh-Taylor Instabilities

We report on a new series to Rayleigh-Taylor mixing simulations based on the
improved algorithms described in Sec. 2.1 and the improved physics modeling de-
scribed in Sec. 2.2. The results for the immiscible simulations (surface tension) are
presented in [15], and the results for miscible simulations (physical mass diffusion)
will be presented in a future paper. Here we compare simulation and experiment
in terms of the growth rate of the bubble side of the mixing layer, defined by the
dimensionless constant α in the equation

(3.1) h = αAgt2

for the bubble (light fluid) penetration h in terms of the Atwood number A, gravity
g and time t.

The values of α = αb are given in Table 1. We also compare simulation to
experiment using another measures of the mixing process, defining an αr associated
with the bubble radius. See Table 2.

4. Averaged Equations and Closure

Two-phase flow equations are derived by applying an average process to the
microscopic dynamics. Let the function Xk be the phase indicator for material k
(k = 1, 2); i.e., Xk(t,x) equals 1 if position x is in fluid k at time t, zero otherwise.
We average the advection law for the indicator function Xk of the region occupied
by the fluid k,

(4.1)
∂Xk

∂t
+ vint · ∇Xk = 0 .
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Data/Comment αb αr

Smeeton & Youngs [25] 0.067 0.01
Cheng et al. [8]
Average #104, 105, 114
RNG Fixed Point [8] 0.06 0.01
FronTier immiscible 0.062 0.01

Table 2. Comparison of bubble radius and of height fluctuations
between experimental data, theory and simulation.

It was shown [12] that Xk satisfies (4.1). Here vint is the microphysical velocity
evaluated at the interface (the velocity component normal to the boundary ∂Xk

is continuous so that vint∇̇Xk is well defined). We also average the microscopic
conservation equations

∂ρ

∂t
+∇ · ρv = 0 ,(4.2)

∂ρv
∂t

+∇ · ρvv = −∇p + ρg ,(4.3)

∂ρE

∂t
+∇ · ρvE = −∇ · pv + ρvg .(4.4)

Here the dependent variables v, ρ, p, and E denote, respectively, the velocity,
density, pressure, and total energy with E = e + v2/2 and e the internal energy.

Scale breaking physics such as mass diffusion or surface tension will add new
terms to these equations. The extension of these equations, including their closure
has been extended to arbitrary n fluids in the incompressible case [9].

4.1. Averaged Equations. We denoted the ensemble average 〈·〉. The aver-
age 〈Xk〉 of the indicator function Xk is denoted βk; βk(z, t) is then the expected
fraction of the horizontal layer at height z that is occupied by fluid k at time t. The
quantities ρk and pk are, respectively, phase averages of the density ρ and pressure
p:

ρk =
〈Xkρ〉
〈Xk〉 , pk =

〈Xkp〉
〈Xk〉 .(4.5)

The quantities vk and Ek are phase mass-weighted averages of the fluid z-velocity
vz and total energy E:

(4.6) vk =
〈Xkρvz〉
〈Xkρ〉 , Ek =

〈XkρE〉
〈Xkρ〉 .

Applying the ensemble average to Eqs. (4.1)-(4.4), we obtain the one-dimensional
two-pressure two-phase flow averaged equations. Let s = 0, 1, 2 for planar, cylin-
drical or spherical geometry. We follow [12, 2, 3, 23] to obtain

(4.7)
∂βk

∂t
+ 〈v · ∇Xk〉 = 0 ,

(4.8)
∂(βkρk)

∂t
+

1
zs

∂

∂z
(zsβkρkvk) = 0 ,
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(4.9)
∂(βkρkvk)

∂t
+

1
zs

∂

∂z
(zsβkρkv2

k) +
∂(βkpk)

∂z
=

〈
p
∂Xk

∂z

〉
+ βkρkg ,

(4.10)
∂(βkρkEk)

∂t
+

1
zs

∂

∂z
[zsβkvk(ρkEk + pk)] = 〈pv · ∇Xk〉+ βkρkvkg

for the volume fraction βk, velocity vk, density ρk, pressure pk, and total energy
Ek of phase k. Here k = 1 = b (bubble) and k = 2 = s (spike) denote the light and
heavy fluids respectively, k′ = 3− k and g = g(t) > 0 is the gravity.

Three interfacial terms are defined by

〈v · ∇Xk〉 = v∗
∂βk

∂z
,(4.11)

〈
p
∂Xk

∂z

〉
= p∗

∂βk

∂z
,(4.12)

〈pv · ∇Xk〉 = (pv)∗
∂βk

∂z
.(4.13)

We have thus defined

(4.14) v∗ =
〈v · ∇Xk〉
〈n3 · ∇Xk〉 , p∗ =

〈pn3 · ∇Xk〉
〈n3 · ∇Xk〉 , (pv)∗ =

〈pv · ∇Xk〉
〈n3 · ∇Xk〉 ,

where n3 is the unit normal vector in z direction. The quantities q∗, q = v, p, pv,
represent averages of microscopic quantities.

The gradient∇R of the Reynolds stress R = 〈ρvv〉−〈ρv〉2 / 〈ρ〉 does not appear
in (4.9) and a related second moment is absent from each of the equations (4.10).
An exact identity [2, 3, 7] expresses R as a sum of first order two phase products
expressing velocity fluctuations between phases and two pure phase Rk Reynolds
stress terms, reflecting within phase velocity fluctuations. Specifically,

(4.15) R = β1β2
ρ1ρ2

〈ρ〉 (v1 − v2)2 + β1R1 + β2R2 .

The first term in (4.15) is the between-phase Reynolds stress and the last two terms
are the within-phase Reynolds stresses. For the problems we are interested in, it
appears that the within-phase velocity fluctuations and turbulence are small, and
we have chosen to set Rk to zero.

4.2. The v∗ closure. In [17] the interface velocity v∗ has been derived ex-
actly from (4.7) and (4.8) independently of any closure assumption. The result is
extended to the present context (s = 0, 1, 2) in the following theorem.

Theorem 4.1. The interface quantity v∗ has the exact formula

v∗ =
β1

[
∂(zsv1)

∂z
+

zs

ρ1

D1ρ1

Dt

]
v2 + β2

[
∂(zsv2)

∂z
+

zs

ρ2

D2ρ2

Dt

]
v1

β1

[
∂(zsv1)

∂z
+

zs

ρ1

D1ρ1

Dt

]
+ β2

[
∂(zsv2)

∂z
+

zs

ρ2

D2ρ2

Dt

]

≡ µv
1v2 + µv

2v1 ,

(4.16)

where the mixing coefficients have the fractional linear form

µv
k =

βk

βk + dv
kβk′

.(4.17)
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The constitutive factor dv
k is also expressed in the exact form

dv
k(z, t) =

∂(zsvk′)
∂z

+
zs

ρk′

Dk′ρk′

Dt
∂(zsvk)

∂z
+

zs

ρk

Dkρk

Dt

.(4.18)

The factor dv
k(z, t) in (4.18) is a ratio of logarithmic rates of volume creation

for the two phases.
A closure condition of spatial homogeneity assumes

dv
k(t) =

∫ Zk′

Zk

∂(zsvk′)
∂z

+
zs

ρk′

Dk′ρk′

Dt
dz

∫ Zk′

Zk

∂(zsvk)
∂z

+
zs

ρk

Dkρk

Dt
dz

=
Zs

k′Vk′ − Zs
kvk′(Zk) +

∫ Zk′

Zk

zs

ρk′

Dk′ρk′

Dt
dz

−Zs
kVk + Zs

k′vk(Zk′) +
∫ Zk′

Zk

zs

ρk

Dkρk

Dt
dz

.

(4.19)

The identity (4.19) states that the relative extent of volume creation for the two
fluid species is independent of the spatial location in the mixing zone. Thus we
see that the closure (4.19) is logically and physically independent of and distinct
from (4.18). Given the mixing zone edge positions Zk(t) or velocities Vk(t) = Żk,
the identity (4.19) is a zero parameter model for the constitutive law dv

k(t). The
boundary data vk(Zk′), k = 1, 2, are found by solving Eq. (4.8) for v1 in the single
phase region, assuming the boundary conditions (no flow at the top, z+∞) at the
outer edges of a finite container containing the mixing layer. We also use the
identity

Zs
k′vk(Zk′)− Zs

kvk′(Zk) =
∫ Zk′

Zk

∂(zsv)
∂z

dz = −
∫ Zk′

Zk

zsβk

ρk

Dkρk

Dt
+

zsβk′

ρk′

Dk′ρk′

Dt
dz

(4.20)

derived from (4.8) independently of closure assumptions. Thus we have

dv
1(t) =

Zs
2V2 −

∫ z+∞

Z1

zsβ1

ρ1

D1ρ1

Dt
dz +

∫ Z2

z−∞

zsβ1

ρ2

D2ρ2

Dt
dz

−Zs
1V1 +

∫ z+∞

Z1

zs

ρ1

D1ρ1

Dt
dz

,(4.21)

We assume (−1)kVk = (−1)kŻk ≥ 0 so that mixing zone is expanding. The growing
mixing zone entrains pure phase fluid into the mixture, and thus creates mixed fluid
volume for both phases. In the incompressible case, this is seen clearly from the
closed form solution

(4.22) dv
k(t) =

(
Zk′

Zk

)s ∣∣∣∣
Vk′

Vk

∣∣∣∣ .

Since we are assuming no mass transfer between the fluids, the creation of volume
does not arise from interchange of mass or volume between the fluids, but rather
from the entrainment of previously unmixed (pure phase fluid) into the mixing
zone (this effect gives rise to the Vk terms in (4.21)) and also from the relative
compression of the two fluids (a result of the logarithmic substantive derivative
terms in (4.21)).
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The ratio (4.19) satisfies the relation dv
1(t)d

v
2(t) = 1 which is equivalent to

µv
1 + µv

2 = 1. Furthermore, dv
k(t) ≥ 0 if and only if µv

k is nonnegative finite for
0 ≤ βk ≤ 1.

The p∗ closure is presented in [20].

5. Mathematical Analysis of Mixing

A bubble merger model assumes propagation of the bubbles of light fluid into
the ambient heavy fluid at the edge of the mixing zone due to combined effects of
single bubble motion, added motion due to bubble interaction, and added motion
due to systematic removal of the slower bubbles from the ensemble. This model
predicts the Rayleigh-Taylor mixing rate correctly and additionally predicts the
average bubble width and the fluctuations in the bubble heights [8]. These values
all agree with experiment.

We have reformulated the buoyancy drag equation and corrected errors in some
published versions of this equation. The equation computes the motion of the edges
Zk(t) of the RT or RM mixing zone on the basis of buoyancy and phenomenological
added mass and drag,

(5.1) (ρk + κkρk′)Z̈k(t) = (ρk − ρk′)g − (−1)k Ckρk′(Vk − vk′)2

Lk
.

Here κk is an added mass coefficient due to the existence of fluid k′, Ck is the drag
coefficient, vk′ is the velocity of fluid k′ at the mixing zone edge Zk, and the length
scale Lk is the ratio of the structure’s total volume to frontal surface area. The
choice L−1

κ = ∂β1/∂z is convenient in the context of the averaged equations of §4.
In fact, the equations of §4 are incomplete at the edges of the mixing zones, where
a count of characteristics shows a missing equation associated with the incoming
acoustic wave of the vanishing phase from the side of the single phase region. This
missing information is supplied by (5.1). The added mass coefficient κk depends
on the bubble geometry. It equals 1 for a cylindrical front bubble and 1/2 for a
spherical front bubble in three space dimensions [4, 21]. The drag coefficient for
the bubbles is fit to the growth rate for the bubble merger model, and the drag
coefficient is predicted in terms of this by a further theoretical model. Both are
then compared to all experimental data, including both RT and RM data, with
good agreement [4]. The below leading order large time asymptotic expansion has
been obtained as well [6].

The low compressibility limit of the averaged equations (Sec. 4) has been ana-
lyzed asymptotically through second order in the Mach number. Each term in the
expansion is a function of z, t, and remarkably the series terms can be computed
in closed form to give a mathematically exact answer [19, 17], going beyond the
earlier closed form solution for the incompressible equations.

6. Validation of Closure Hypotheses and the Averaged Equations

The solutions of the averaged equations, obtained numerically [18] have been
compared to the weakly compressible asymptotic solution, obtained analytically as
a closed form expression [19, 17].

Here we present work in progress on the direct validation of the closures v∗,
etc., based on analysis of the simulation data described in Sec. 3. From this study,
we select data describing three dimensional Rayleigh-Taylor mixing in the nearly
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Figure 2. Comparison of the exact and closed ratio dv
1. Left:

t = 3. Right: t = 15.
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0.5

1

1.5

2

2.5

time

Figure 3. Closed constitutive law dv
1 as defined by the low com-

pressibility ideal RT simulation data, plotted vs. time.

incompressible limit, with ideal flow conditions (no physical mass diffusion and no
surface tension) [16]. The data has been analyzed for the purpose of studying the
closure hypotheses of §4, specifically as related to the definition of v∗ and v∗∂βk/∂z.
We select a typical early and typical late time t = 3, 15 for detailed analysis. First
we compare the plots of the exact and the closed constitutive factors dv

1(z, t) and
dv
1(t) for these times in Fig. 2.

The closed dv
i , defined in terms of the simulated data, which is a function of

time only, is plotted in Fig. 3.
The result of this definition of the v∗ closure is presented in Fig. 4, in which

we compare the exact and the closed expressions for v∗1∂β1/∂z and the quantity
−∂β1(z, t)/∂t, equal to these two according to Eqs. (4.7) and (4.11).

All of this might appear overly complex for a robust multiphase flow model.
We observe that for moderate Atwood numbers, the heavy and light fluids should
behave in a nearly interchangeable manner, leading to dv

1 ≈ 1. The closure dv
k = 1

was originally proposed [3], and later set aside due to errors observed for large values
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Figure 4. Comparison closed and exact quantities representing
v∗∂β(z, t)/∂z. Left: t = 3. Right: t = 15.
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Figure 5. Sensitivity of v∗∂β(z, t)/∂z to changes in the closed
expression dv

1 up or down by factors of 2. Left: t = 3. Right:
t = 15.

of A. Thus we explore the sensitivity of v∗ to the definition of dv
1, by increasing

and decreasing dv
1 by factors of 2. The result shows very little change in the closed

expression for v∗∂β(z, t)/∂z. See Fig. 5.
We observe that while the exact and to some extent the closed expressions of

dv
1, which involve numerical derivatives of simulated quantities, are noisy, the closed

value satisfies the expected relation dv
1 ≈ 1, and the term in which this closure is

used in remarkably insensitive to changes in dv
1. This fact suggests a robustness in

the closed equations, a topic to which we will return in a later paper.
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