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Abstract

We present an overview of multiscale computations for free surface flows based on the front tracking method. Our approach combines theory,
numerical algorithm development, simulation-based scientific studies, and the analysis of experimental data.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The computation and modeling of hydrodynamics of free
surface flows are basic tasks for many applications, includ-
ing jet breakup, spray formation (Xu et al., 2006b), turbulent
mixing (George et al., 2002) and combustion (Amsden et al.,
1989). The modeling and computation of these fluid problems
at the continuum level has achieved impressive success with
the increasing capabilities of computational hardware, and new
developments for algorithms and theories. Many fluid inter-
face problems can be described at a single scale. Often, simple
boundary conditions such as Rankine–Hugoniot jump condition
at the fluid interfaces are sufficient to describe flow dynamics.

In this paper, we consider the opposite case, in which free
surfaces require a multiscale description. This multiscale re-
quirement arises for one or both of two basic reasons. The in-
terface may become unstable and occupy a sizable volume, for
which an averaged macroscale) description is useful. At a mi-
croscopic scale level, the resolution of processes internal to a
“sharp” interface, such as resolved chemistry, thermal or diffu-
sion layers, introduces a smaller spatial and temporal scale to
the problem. These small scale/(microscale) phenomena may
modify or even serve to define the interface description.
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In this paper, we present examples of the coupling of in-
terface dynamics to both macroscale and subscale phenomena.
We refer to the scale of the interface itself as the intermediate
scale. Multiscale ideas have a long history, and include such
standard tools as the multigrid method (Brandt, 1977; Hack-
busch, 1985), and adaptive mesh refinement (Berger, 1987;
Berger and Colella, 1989). There are two principal approaches
to the treatment for fluid problems involving free surfaces or
fluid interface discontinuities. The first, the front capturing ap-
proach, represents discontinuities as steep gradients resolved
over a small number of finite difference grids. The second, the
front tracking approach, treats the interface as an internal free-
moving boundary in the flow field.

The front tracking method also has a long history for the so-
lution of fluid problems involving a single scale. A front track-
ing code FronTier has been developed by Glimm’s group for
many years and has been successfully used to simulate 2D and
3D problems. We refer to Bukiet (1988), Bukiet et al. (1986),
Chern et al. (1986), and Glimm et al. (2003b) for detailed dis-
cussions of the front tracking method, its applications and the
FronTier code. Using this method in a multiscale setting, how-
ever, is relatively new. The multiscale method proposed in the
present paper goes beyond common multiscale methods includ-
ing the multigrid method which use the same mathematical
and physical model at different length scales. It is also differ-
ent from the hybrid numerical methods that couple molecular
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dynamics to a continuum formulation. In these hybrid methods,
the more accurate and detailed molecular dynamics models are
used to describe processes internal to the interface layer. For
example, Hadjiconstantinous used molecular dynamics simu-
lations to obtain the boundary conditions for computations at
the continuum level (Hadjiconstantinous, 1999). A discussion
of the general framework of these hybrid methods can be found
in Weinan and Bjorn (2003) and Weiqing and Weinan (2005)
and references there within. We believe that the issue we ad-
dress, of coupling of distinct continuum scales but with differ-
ent physics at each scale, has wide importance. There are also
other methods developed to study multiscale problems, such
as renormalization group methods (Wilson, 1975). Discussions
regarding the design of multiscale methods in a generic form
can be found in Glimm and Sharp (1997).

Two fluid problems: cavitating bubbly flow and chaotic mix-
ing, which have important multiscale aspects, are discussed in
this paper. These two fluid problems have similar as well as dif-
ferent properties. For both problems, there are complex micro-
scopic interactions, including forces driving rapid transitions
within a thin fluid layer, such as thermal or mass diffusion; re-
active chemistry resolved within a flame width raises similar
issues. We use a sharp interface model to describe fluid inter-
faces, which is defined as a front. These interactions are con-
sidered as the interior structure of the front, and thus are treated
at a microscale. They are not resolved in many simulations and
instead are modeled at a subgrid level, due to the larger scales
that have to be resolved in these simulations. In the case of cav-
itating bubbly flow, a thermal diffusion layer at the interfacial
phase transition is the microscopic scale. The state variables of
the solutions defined on the finite difference grids as well as on
the front are the intermediate scale. The statistical distribution
of bubbles defines the macroscale, and is our primary interest.
In the case of a chaotic mixing, because the interface expands
chaotically, there is an averaged scale for which a volume (the
mixing zone) is occupied by the interface. We define this scale
as the macro scale, where the statistical properties of the front
(the mixing zone) but not its detailed description are of central
interest. The front serves as a bridge (the intermediate scale) to
couple the microscale to the macroscale for both cases.

For any such multiscale problem, depending on its param-
eters, and on the length scale considered, all or only some of
these scales are resolved, while the remainders are modeled.
Similarly, the mathematical formulation and the choice of the
appropriate numerical methods depend on the parameters and
the solution scales as well. The two examples we present here
illustrate these points. The outline proceeds as follows: for
the fluid problems studied here, the model is the compressible
Navier–Stokes equations. The governing equations can be put
into the conservation form,

Ut + ∇ · F = G. (1.1)

We apply a finite difference solver at the intermediate flow
scale on the finite difference grid. On the fluid interface, the mi-
croscopic physics, which are subgrid phenomena, are modeled
through micro models or subgrid models. Moreover, our inter-
est is to resolve the dynamics of the interface at the intermediate

level in the case where the flow state variables are not specified
by the flow scale alone. We must couple the microscale model
to the intermediate scale to determine these state variables on
the fluid interface. Therefore, the information needed by the fi-
nite difference solver will be extracted from the micro models.
The updating of the flow state on the finite difference grid fol-
lows, and the front serves a freely moving boundary condition
during the update. The modeling of the subscale phenomena is
through analytic or simple numerical formulas. From the com-
putational perspective, there are two major solver components.
The first is a finite difference solver or scheme to obtain the
flow state. The second is a microscopic solver for the subgrid
model to provide the missing interface data. The implementa-
tion of these two solvers in the context of the front tracking
method will be described in Sections 2 and 3.

A further step is to solve the macroscale through direct solu-
tions of the averaged equations. We will describe this method
for chaotic fluid mixing in Section 5. Chaotic flows display a
wealth of detail which is not reproducible, neither experimen-
tally nor in simulations. Generally speaking, this detail is not
relevant, and fortunately, only the statistical averages of the de-
tail are of importance. Thus direct numerical simulation (DNS)
of mix gives more information than what is needed, information
which in detail cannot be reproduced. Of course, the statistical
averages of the details can also obtained from the Monte Carlo
simulations. Since we really want the averages of the DNS sim-
ulations which can be obtained using a Monte Carlo technique,
the natural question is to find averaged equations which will
compute the averaged quantities directly, without use of the
costly Monte Carlo step. The averaged equations can therefore
be solved efficiently since there remains only one single scale,
the macroscale. To close the system, the macroscopic interface
data will be supplied either by a closure model or by direct
Monte Carlo simulations at the microscopic level. On the other
hand, DNSs in the micro and intermediate scales can serve as
a validation tool for the macroscopic closure model.

The paper is organized as follows. Sections 2–4 are devoted
to the micro to intermediate modeling method. Section 2 de-
scribes the front tracking solvers. In Section 3, two subgrid
models are developed for interfacial phase transitions and mass
diffusion, respectively. Section 4 presents the multiscale mod-
eling of an unsteady cavitating flow, which integrates the two
different scales described in Sections 2 and 3. Section 5 is used
to describe the modeling of the chaotic mixing problem, which
presents a model for obtaining macroscopic coherent structure
within a turbulent mixing layer and solutions using both micro
to intermediate and intermediate to macro modeling. The mix-
ing edge dynamics can be supplied by either a closure model
or averaging direct numerical simulations with physical mass
diffusion. Numerical examples are presented in Section 6, in-
cluding solutions of the averaged equations.

2. The numerical algorithm

The front tracking method is an adaptive method in which
a lower dimensional moving grid is fit to and follows the dy-
namical evolution of waves or fluid interfaces in a flow. Two
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separate grids to describe the solution are a rectangular finite
difference grid and a lower dimensional grid that represents the
location of the tracked wave fronts. The solution to the system
is described by its values defined at the points of the rectangular
finite difference grid and by their limit values on both sides of
the tracked wave fronts. The tracking algorithm can be divided
into two major components: the front propagation step and the
interior state update step. The propagation of the front position
and states is performed in the front propagation step. Operator
splitting separates the front propagation step into direction nor-
mal to and tangent to the front two sub-steps. The update of the
states on the rectangular finite difference grid follows the front
propagation step. Special care is needed only when the stencil
cut by a front. In this case, the missing points of the stencil are
obtained by extrapolation.

In the multiscale setting, we still need these two components.
However, the microphysics within the interfacial layer has to
be considered. A brief description is given below.

2.1. The front propagation algorithm

The front propagation algorithm which is responsible for the
propagation of points of the front is the key step for the front
tracking method. We solve the hyperbolic conservation laws of
the form

Ut + n · [(n · ∇)F (U)] = G, (2.1)

where n is the unit vector normal to the front to obtain the new
front position and the updated limiting values of the flow states
on two sides of the front. This is called the normal propagation
step. The computation of the normal direction n in a higher
dimension is discussed in Jian et al. (2006). Eq. (2.1) is ob-
tained by operator splitting at each point on the tracked front.
Depending on the microscale physics modeled, G could repre-
sent heat flux, mass diffusion, etc. When we model compress-
ible inviscid fluids, Eq. (2.1) reduces to the Euler equations.
For the Euler equations, the point propagation algorithm first
solves Riemann problems associated with Eq. (2.1), i.e. the ini-
tial value problem of one spatial dimensional hyperbolic system
with piecewise constant initial data separated by a single jump
discontinuity. The solutions to Riemann problems predict the
new front position. This is followed by a slope reconstruction
to compute the flow gradients in the normal direction. Then
a correction step is used to account for the flow gradients on
both sides of the front, which is also a coupling between the
propagation of the front and the states on the Euclidean grid.

The normal propagation step only uses flow information in
the direction normal to the tracked front. The tangential com-
ponent of Eq. (1.1) is solved after the normal propagation step.
See Bukiet et al. (1986), Chern et al. (1986), and Glimm et al.
(2003b) for the details.

2.2. Finite difference solvers for interior states

Standard high resolution shock capturing methods are used
to update states on the Euclidean grid. The MUSCL method

(Monotonic Upstream-centered Scheme for Conservation
Laws) of Van Leer (1979), PPM (piecewise parabolic method)
(Colella and Woodward, 1984), etc. are supported in Fron-
Tier. The coupling of the states on the tracked fronts to the
interior states on the Euclidean grid uses the ghost cell (or
ghost fluid) method, which is an extrapolation method. If the
set of Euclidean grid points and states associated with these
grid points, which is called a stencil to compute the state at
a grid point is crossed by the tracked front, the stencil points
separated from this grid point by the front use the states on
the tracked front nearest to these stencil points. Therefore, the
tracked front prevents the finite difference equation from using
states on opposite sides of the tracked front, and keeps a sharp
discontinuity at the front.

From the above discussion, we can clearly see that an im-
portant component in the macroscopic flow solvers is the in-
terior free boundary condition provided by the front. We now
describe how to extract boundary conditions from the micro-
scopic interface models for different applications.

3. Microscopic interfacial dynamics

We will discuss two examples coupling microphysics (inter-
nal structure of the front) to the front propagation. The exam-
ples are the modeling of an interfacial phase transition and the
modeling of mass diffusion across a tracked (sharp) interface.
In both cases, the effects of the microphysics occurs in the
examples considered here at a scale well below the computa-
tionally resolved scales, and so the effects are introduced via a
subgrid model. For the phase transition boundary, the subgrid
physics is a thermal conduction layer, and thus the two cases
are closely related.

3.1. Interfacial phase transition

We now describe the modeling of an interfacial phase tran-
sition and the interface solver associated with it. In case of
a phase transition, thermal gradients at the interface drive the
mass transfer across the interface. The phase transition is gov-
erned by the compressible Euler equations with heat diffusion.
In one spatial dimension, it is

�U

�t
+ �F(U)

�x
= 0, (3.1)

where U = [�, �u, �E]T, F (U) = [�, �u2 + P, �uE + uP −
�(�T/�x)]T, � denotes density, u velocity, P pressure, E =
u2/2 + � is the specific total energy, � is the specific internal
energy, � is a coefficient of thermal diffusion, and T is the
temperature. Integrating the conservation equations (3.1) across
the interface, we obtain the balance equations for the mass,
momentum, and total energy, respectively,

[�u] = s[�], (3.2)

[�u2 + P ] = s[�u], (3.3)

[�uE + uP − �∇T ] = s[�E], (3.4)
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where s is the phase boundary speed. We also postulate that the
temperature is continuous across the phase boundary. There-
fore, the interfacial temperatures of the vapor and liquid are
equal

Tl = Tv = Ts , (3.5)

where Ts is the interface temperature. The subscripts “l” and
“v” refers to liquid and vapor, respectively. Eqs. (3.2)–(3.4)
can be manipulated to yield equations for the mass flux, linear
momentum flux and energy balance at the phase boundary. For
example, the mass flux is m = �v(uv − s) = �l (ul − s). To
complete the formulation we need to provide an equation for
either the interface temperature Ts or the mass flux m. Phase
change, at an atomic level, involves the interaction of vapor
molecules with the liquid surface. From a kinetic theory point
of view, the net mass flux of evaporation is

m = a
Psat(T ) − Pv√

2�RT
. (3.6)

Here, Psat(T ) is the equilibrium pressure at temperature T. a
represents the ratio of molecules condensing into liquid over
the total number hitting the phase boundary and is called the
accommodation coefficient. Its value is often experimentally
determined. For the detailed discussion, see Van Carey (1992)
and references cited there. The derivation of Eq. (3.6) follows
Alty and Mackay (1935).

3.1.1. A subgrid temperature gradient model
The phase transition problem requires a subgrid model to

describe the thermal layer at the phase transition boundary. This
is because that the width of the thermal layer of the liquid is
proportional to

√
�t/�cp, and the time step restricted by the

CFL condition is dt ≈ dx/c. It requires 103–104 steps in the
simulations we consider here for the liquid thermal layer to
expand to a micron scale grid cell. For the finite difference
scheme, if the thermal layer is thinner than a grid cell, the
temperature profile takes the form

T ≈ Ts + (T−1 − Ts) erf

(
x√
4�t

)
, (3.7)

where Ts is the phase boundary temperature, T−1 is the tempera-
ture one grid cell away from the phase boundary and �=�t/�cp.
Here the stretching of the interface is ignored for simplicity of
the numerical algorithm. Thus the temperature gradient at the
interface is approximated by

�T

�x
≈ (T−1 − Ts)√

��t
. (3.8)

The interfacial heat flux in the form of ��T/�x should be re-
placed by the above approximation. When the thermal layer
is wider than a grid cell, the conventional finite difference ap-
proximation of the temperature gradient at the interface gives
satisfactory results.

To solve this system of equations numerically, the character-
istic form of Eq. (3.1) together with the phase boundary con-
ditions (Eqs. (3.2)–(3.6)) are solved. We have developed an

iterative phase boundary propagation algorithm. It generalizes
the numerical methods for finding the contact discontinuity
of a Riemann problem, and introduces a subgrid model for
finding the interface temperature. For a detailed discussion of
this algorithm, we refer to Xu et al. (2006a).

3.2. A subgrid mass diffusion model

The conservation laws

��i

�t
+ ∇ · �iv = ∇ · �iv∇ci , (3.9)

��v

�t
+ ∇ · �vv = �g, (3.10)

��E

�t
+ ∇ · �vE = �v · g + ∇ · �

∑
i

�ihi∇ci , (3.11)

model the mixing of compressible miscible fluids with physical
mass diffusion, where �i is the ith species diffusivity, hi = ei +
pi/�i , � = ∑

i �i and ci = �i/�.
The difficulty in solving this system is to eliminate numer-

ical diffusion across an interface between distinct fluids while
allowing the correct amount of physical mass diffusion, in the
limit where � is small relative to the affordable grid resolution.
We introduce a new algorithm, building on the front tracking
method, to add small amounts of physical mass diffusion while
preserving the elimination of numerical mass diffusion across
an interface. The new algorithm, developed first in 1D, is based
on the following ideas. Untracked contact discontinuities give
rise to a blurred or smeared out front. We preserve the tracking
of a sharp front and introduce physical mass diffusion through
it as a perturbation. Thus the time step is split into two parts,
the first being the usual non-diffusive front tracking (Jian et al.,
2006; Glimm et al., 1999a), and the second a pure physical
mass diffusion step. Conceptually, the front states stored on the
tracked front represent the states at ±∞ relative to the scale
of the diffusion layer. After the diffusion layer has reached a
width of 2�x, the first algorithm is turned off and replaced with
the conventional finite difference method.

To update interior states, we use operator splitting to separate
the hyperbolic from the parabolic terms. A regular stencil is
one which does not meet the front. The diffusion term is solved
by conventional centered finite differences. For an irregular
stencil, if the front cuts a mesh cell not at the center of the
stencil, we define ghost cell extrapolation of the states on the
same side of the front as the center cell using the front states as
in Glimm et al. (1980). In case the front cuts the central cell of
the stencil, i.e. the cell that the stencil is updating, we use the
new algorithm explained below. We distribute this increment of
diffused mass (�Mn±), which is calculated from the analytical
solution of the 1D convection equation, to the two closest grid
cells which lie on each side of the center of the layer. In order
to do this, we detect the closest grid center points on either side
of the front center point Xn+1

c , namely xi and xi+1. We add to



3542 Z. Xu et al. / Chemical Engineering Science 62 (2007) 3538–3548

these cells the mass diffused from the other side:

�n+1
i = �̃n+1

i + �Mn−
�x

,

(�v)n+1
i = (�̃ṽ)n+1

i + ṽn
i �Mn−
�x

,

(�E)n+1
i = (�̃Ẽ)n+1

i + Ẽn
i �Mn−
�x

,

�n+1
i+1 = �̃n+1

i+1 + �Mn+
�x

,

(�v)n+1
i+1 = (�̃ṽ)n+1

i+1 + ṽn
i+1�Mn+

�x
,

(�E)n+1
i+1 = (�̃Ẽ)n+1

i+1 + Ẽn
i+1�Mn+

�x
. (3.12)

For the higher dimension case, we split the front into normal and
tangential directions. The subgrid algorithm is applied along
the normal direction, and no diffusion is added to the tangential
sweep. In this way, the subgrid algorithm in one dimension can
be extended easily and efficiently to the higher dimension. See
Liu et al. (2007) for a detailed discussion of the algorithm.

4. Multiscale modeling for multiphase flows

Here we study an unsteady cavitating flow. From theoretical
considerations (Landau and Lifshitz, 1980), we assume cavi-
tation results from the nucleation of a spherical bubble in the
liquid when the liquid pressure drops below the vapor pressure.
Thus we model mixed phase flow as made of small-scale vapor
bubbles. There are three active length scales, namely the scale
of the macro fluid flow, the scale of the interpenetrating mix-
ture, i.e. cavitation bubbles, and the scale of a thermal gradient
at the phase boundary interface. We resolve the two larger of
these three length scales.

Our proposed method is different from a commonly em-
ployed modeling method, which is to develop a continuum
model, or a single pseudo-fluid equation of state, of multiphase
(bubbly) flows (Schmidt et al., 1999). For this class of meth-
ods, the key issue is to develop a proper constitutive law for
the mixture (Ventikos and Tzabiras, 2000). Often the mixture
is assumed to be homogeneous and barotropic. Despite its sim-
plicity, this class of methods lacks an ability to resolve detailed
physics such as drag, surface tension, phase transitions, vis-
cous friction between two phases, and other microphysics phe-
nomena. However, for certain applications, inclusion of these
microphysics phenomena is critical in order to give a correct
description of the macroscopic flow dynamics. Example of
Section 6.1 is a simple case for these applications.

In contrast to continuum modeling methods, we have de-
veloped a discrete vapor bubble model (Xu et al., 2006b) for
the first principles simulations of these problems. The discrete
vapor bubble model describes the liquid–vapor/gas mixture as
pure phase domains separated by free interfaces, i.e. vapor bub-
bles of finite size inserted into the liquid and separated from
the liquid by interfaces. In our modeling process, we resolve

the dynamics of the individual bubbles directly by the front
tracking approach. The detailed physics such as drag, surface
tension, phase transitions between two phases are included in
our model. The dynamic states are directly computed on the
flow scale. Therefore, the task that remains at the microscopic
level is to simulate the dynamic creation of cavitation bubbles.
To model this dynamic process, cavitation parameters such as
the nuclei density for the bubble growth have to be given either
experimentally or to be determined numerically. We first give
a model to determine the cavitation parameters for the ideal
fluids. We then describe how to modify this model for the sim-
ulation of real fluids for real applications.

For an unsteady cavitating flow, vapor bubbles are formed by
liquid vaporization when the liquid pressure P fluctuates and
falls below the saturation vapor pressure Pv at constant temper-
ature. If we assume that bubble nucleation occurs completely
within a liquid, which is called homogeneous nucleation, and
define the maximum size of a nucleus by the radius Rc (critical
radius), then at equilibrium, the critical tension �Pc = Pv − P

is given by (Brennen, 1995; Landau and Lifshitz, 1980)

�Pc = 2	

Rc

, (4.1)

where 	 is the surface tension of the liquid. It should be noted
that the likelihood that nucleation will occur depends on the
kinetics of the vapor nucleus formation process. To create
such a nucleus with critical radius Rc, a critical energy Ec =
16�	3/3�P 2

c (Brennen, 1995; Landau and Lifshitz, 1980) must
be deposited into the liquid to break the barrier against nucle-
ation. This critical energy Ec accounts only for surface energy
and the gain in volume energy. Thus the nucleation probability

 in a volume V during a time period t is (Balibar and Caupin,
2003):


 = 1 − exp(−J0V t exp(−Ec/(kbT ))), (4.2)

where J0 is a factor of proportionality defined as J0 =
N(2	/�m)1/2, kb is the Boltzmann’s constant, T is the abso-
lute liquid temperature, N is the number density of the liquid
(molecules/m3) and m is the mass of a molecule. To describe
a homogeneous cavitating flow, Eqs. (4.1) and (4.2) give rela-
tions among the initial (critical) bubble radius, the bubble pop-
ulation and critical tension. However, we note that the analysis
above is applicable only to clean fluids. Due to fluid impuri-
ties, it is known that real fluids contain large concentrations
of nucleation centers that increase the cavitation probability.
Heterogeneous nucleation, which is nucleation at the interface
between the liquid and another phase that it contacts, may
also increase the cavitation probability. Thus accurate values
of critical cavitation parameters are often experimentally mea-
sured. Since we are interested in the simulation of real fluids,
we assume that (4.2) gives the functional relation between
the critical pressure, volume, and the nucleation probability,
while the absolute value of the critical volume at a specific
value of the critical pressure has to be calibrated through the
comparison of simulation results with experimental data.

For the real fluids, the value of the physical critical radius Rc

is at the order of sub-microns, which is below the grid resolution



Z. Xu et al. / Chemical Engineering Science 62 (2007) 3538–3548 3543

used for our simulations. Based on this consideration, in our
model, the radius of the numerical critical (initial) vapor bubble,
which is at the order of microns, replaces Rc. The value of the
radius of the numerical initial bubble is also on the order of the
mesh size in order to be resolved on the finite difference grids.
We note that this approximation neglects the initial growth stage
of sub-micron bubbles to a size allowed by the mesh resolution,
and the effects of local reduction in pressure that accompanies
the growth. A phenomenological bubble spacing parameter h
which is defined as distance between two centers of the bubbles
is chosen by a series of numerical experiments. By calibrating
this parameter, we account for effects of initial growth of sub-
micron bubbles and the resulting bubble population.

To simulate the dynamic creation of micro bubbles, a dy-
namic bubble creation algorithm is formulated to model this
process. This bubble creation algorithm first identifies regions
composed of cells which have pressure lower than the specified
threshold. If such a region is bigger than the critical bubble size
and has a distance to other bubbles larger than the specified
bubble spacing, a vapor bubble is created at the center of this
region. The initial vapor bubble states are computed using the
static Clausius–Clapeyron relation with the given liquid tem-
perature. To find the numerical solution at the phase boundary,
the method described in Section 3.1 is used.

We note that this model has been validated for a simple
multiphase system, a liquid containing fixed numbers of non-
dissolvable gas bubbles, using experimental data on the dis-
persion and attenuation of sound waves and profiles of shock
waves in bubbly water (Lu et al., 2005). When the experimen-
tal values for cavitation parameters are not available, the proper
values for the bubble spacing and initial radius have to be cho-
sen from numerical experiments. Very often one will find that
some statistics values of the flow are not sensitive to the cho-
sen of these values, while others are sensitive. When this is the
case, one has to determine which values are the most important
ones that define the macroscopic flow dynamics and calibrate
the cavitation parameters based on these values.

5. Turbulent mixing and averaged equations

Turbulence is the prototype multiscale problem; here we
consider an important subproblem, turbulent fluid mixing. Tur-
bulent fluid mixing arises as a result of unstable and chaotic in-
terface dynamics induced by gravitational forces, shock waves,
or a combustion process. Turbulent mixing is important to the
design of ICF devices, the modeling of diesel engines, and the
modeling of supernova, as well as many other fluid mixing
scenarios. In general the problem links three (types of) length
scales: the interior of the interface, such as the laminar resolved
flame front chemistry, the mesoscale of the mixing layer de-
fined by the spatial extent of the convoluted interface or flame
front and the macroscale of the large scale fluid flow. Dis-
tinct physics defines the flow in each regime, namely reactive
chemistry and transport phenomena within the interface, drag,
buoyancy, and the Euler or Navier Stokes balance laws in the
mesoscale mixing zone and averaged equations to describe the
evolution of flow statistics in the macro flow regime. Each of

these length scales and flow regimes poses problems; their cou-
pling into a single theory is a significant multiscale challenge
to modern science.

5.1. Stochastic mixing models

The purpose of a turbulent mix model is to give a reduced
(statistical) description of chaotic mixing. The models govern-
ing the evolution of the fluid mixing are obtained by applying
an appropriate averaging procedure to microphysical equations.
There are mainly two types of mixing models. Two-pressure
two-phase flow models are proposed by Stewart and Wendroff
(1984), Ransom and Hicks (1984), Glimm et al. (1998a), and
Abgrall and Saurel (2003). They employ distinct phase pres-
sures and lead to hyperbolic models, eliminating mathematical
difficulties of complex characteristics associated with single
pressure multiple velocity flow models. Single pressure dual
velocity models (Drew, 1983; Wallis, 1969; Keyfitz, 1991) re-
quire mass diffusion and viscosity for their stability. After a
turbulent transition, these transport parameters should be large
enough to assure stability. A promising single pressure dual ve-
locity model, (Scannapieco and Cheng, 2002), is stable even in
the absence of viscous terms. An open issue is the comparison
and assessment of these various models, in relation to direct
simulation mixing data.

We have obtained a general model (Glimm et al., 1998a,
2003a; Jin et al., 2006) for a turbulent mixing layer. We found
closed form solutions for a 1D incompressible model and for
the weakly compressible asymptotics. Properties of this model
suggest a coupling of the edge motions (bubble and spike edges)
of a mixing zone, derived from a property of positivity of en-
tropy of mixing. Numerical simulations based on this model
were validated against the closed form solution and asymptotics
we derived. Here we give a brief summary of this macroscale
model for two pressure two phase flow.

The averaging process used to define the model equations
can be thought of as a local spatial or temporal average, or as
an ensemble average, with respect to an ensemble of random
initial conditions. Several realizations lead to the consideration
of a mixed zone of fluids where, on average, one finds fluid k
at a given point p only a fraction �k =�k(t, p) of the ensemble
total. Clearly, �k = 1 corresponds to a pure fluid region, where
there is no mixture at all, a situation that happens away from
the interface of all realizations of the ensemble. Evidently, �1 +
�2 = 1.

We parametrize the fluids by the discrete index k, k = 1, 2,
and let �k , �k , �vk , pk and Ek be the volume fraction, density,
velocity, pressure and total energy of fluid k, respectively. The
model we study is defined by the system of equations:

�t�k + �v∗ · ∇�k = 0,

�t (�k�k) + ∇(�k�k �vk) = 0,

�t (�k�k �vk) + ∇(�k�k �vk ⊗ �vk)

= −∇(�k�k) + p∗∇�k + �k�k �g,
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�t (�k�kEk) + ∇(�k�kEk �vk)

= −∇(�kpk �vk) + (p�v)∗ · ∇�k + �k�k �vk · �g (5.1)

proposed in Chen et al. (1996), Glimm et al. (1997, 1998a,
1999b), Cheng et al. (1999), and Jin et al. (2006). Here, �g is the
gravity and �v∗, p∗ and (p�v)∗ represent averages to be modeled
by a closure expression,

�v∗
k = �v

1 �v2 + �v
2 �v1, (5.2)

p∗ = �p

1 p2 + �p

2 p1, (5.3)

(p�v)∗ = p∗(�E
1 �v2 + �E

2 �v1) + �v(�E
1 p2 + �E

2 p1)

− (�E
1 p2�v2 + �E

2 p1�v1), (5.4)

The coefficients �v
k , �p

k and �E
k can be proved quite generally

to define convex sums, so that �q

1 +�q

2 = 1, �q
k �0, q = v, p, E

(Glimm et al., 1998b).
The convex coefficients �q

k depend only on the volume frac-
tion in a fractional linear manner, and two of the three coef-
ficients in the fractional linear expression can be fixed from
boundary conditions at the edges of the mixing zone. The re-
maining coefficient for q = v is interpreted as the ratio of loga-
rithmic rates of mixing volume creation; in the other two cases
for q the ratio is accelerating forces and heat added for the two
fluids.

5.2. Mixing edge evolution algorithm

We regard the edge positions Zk(t)as input, or data, which
complete the specification of the model, or close it. We appeal
to the buoyancy-drag model (see Glimm et al., 1999b and ref-
erences therein) to provide the Zk(t). In this sense we decouple
the complete multiphase model into separate edge and interior
models, with the edge model completing the closure of the en-
tire model. With the mixing zone edge accelerations given and
constitutive laws, the model has no adjustable parameters.

The mixing zone edge information will be supplied through
averaging a series of direct numerical simulations with ran-
dom initial data in Monte Carlo sense or a phenomenological
buoyancy-drag ODE to specify the edge accelerations,

(−1)k
d2Zk(t)

dt2
= Ag − �k′

�k + �k′
Ck

V 2
k

|Zk| , (5.5)

where �k(Vk) is the density (edge velocity) of fluid k, (k=1, 2,
k′=3−k), the Atwood number A=(�2−�1)/(�2+�1), and Ck

is the drag coefficient. Equations of the general form (5.5) are
known as buoyancy-drag equations, and have been considered
by a number of authors (Hansom et al., 1990; Alon et al., 1994;
Cheng et al., 2000; Dimonte, 2000; Oron et al., 2001).

Here we describe the edge evolution algorithm in context of
the buoyancy-drag model.

Let Zn
1 be the bubble (vanishing light fluid) mixing zone

edge position, Zn
2 be the spike (vanishing heavy fluid) mixing

zone edge position, (vN
1 )n01, (vN

2 )n02 be the normal velocities
of fluids 1 and 2 at the corresponding positions Zn

1 and Zn
2 at

time tn. The edge position Zn+1
k at the next time level tn+1 is

updated using Zn+1
k = Zn

k + (vN
k )n0k

�Nk�t , k = 1, 2 where �N1

and �N2 are normal vectors at Zn
1 and Zn

2 , respectively.
The heavy fluid is continuous across the bubble edge and the

light fluid is continuous across the spike edge. The continuous
phase states on the front are updated by interpolation from
interior states after the interior update. Here we describe the
update of the vanishing phase on the front by applying the
method of characteristics and the buoyancy-drag law.

There is one missing characteristic at each mixing zone
boundary. The resulting missing information is supplied from
the buoyancy-drag equation for the mixing zone edge. We up-
date the normal component of the vanishing phase velocity
(vN

k )0k on the edge k by finite differencing the buoyancy-drag
equation (5.5) and noting that (vN

k )0k is the same as the edge
normal velocity Żk(t) = Vk(t):

(vN
k )n+1

0k = (vN
k )n0k + (−1)k�t

×
{

An
0kg − Cd

k

[
(�′

k)
n
0k

(�2)
n
0k + (�1)

n
0k

]
(vN

k )n0k(v
N
k )n0k

(Zk)
n

}
,

where An
0k is the instantaneous Atwood ratio at edge k, An

0k =
((�2)

n
0k − (�1)

n
0k)/(�2)

n
0k + (�1)

n
0k).

5.3. Rayleigh–Taylor mixing rate

Fluid mixing induced by Rayleigh–Taylor (RT) instability is
an important type of chaotic fluid mixing to which the above
statistical mixing model can apply. RT instability occurs at a
fluid interface whenever the density gradient is opposed to the
acceleration gradient across the interface. The drag coefficient
Ck in buoyancy-drag equation (5.5) will be fitted to the RT
mixing rate. The RT mixing rate is the dimensionless coefficient
� in the equation:

h = �Agt2 (5.6)

for the height h of the bubbles, i.e. the interpenetration dis-
tance h of the light fluid into the heavy fluid. Here A = (�h −
�l )/(�h + �l ) is the Atwood number and t is the time. Accept-
able experimental values for � are � = 0.06 ± 0.01 (Smeeton
and Youngs, 1987; Banerjee and Andrews, 2006). See Sharp
(1984) for background information. To remove effects of mass
diffusion (physical and/or numerical), we follow George and
Glimm (2005) to define a time dependent Atwood number A(t),
and the renormalized growth rate �ren,

�ren = h

2
∫ t

0

∫ S

0 A(r)g dr ds
.

Our 3D validation results are summarized in Table 1. See also
Fig. 1. Here the simulations that employed TVD (total varia-
tion diminishing) method are used for the comparison and are
referred as TVD simulations in Table 1 and Fig. 1. The word
“ideal” refers to no physical diffusion. Please refer to Liu et al.
(2006) for the details regarding these simulations. These 3D
direct numerical simulations in micro and intermediate scales
can be further used for the validation of statistical models for
macroscale mixing.
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Table 1
Mixing rates compared for an air-helium 3D Rayleigh–Taylor experiment and related simulations

Experiment simulation Comment �

Andrews Miscible (Banerjee and Andrews, 2006) 0.07
FronTier Miscible 0.069

TVD Untracked (George and Glimm, 2005), ideal 0.035
FronTier Ideal 0.09

TVD Untracked, ideal (renormalized) 0.076
FronTier Miscible, ideal (renormalized) 0.089

The simulations compare physical mass diffusion to ideal physics (no diffusion) and they compare tracked to untracked algorithms. The agreement of the
tracked simulation with physical mass diffusion with the experiment is excellent, while the ideal simulations do not agree with experiment, nor (because of
the numerical mass diffusion in the untracked ideal simulation) with each other.

Fig. 1. Left: self-similar growth of the mixing zone. Right: the same data plotted using a time dependent Atwood number, to remove the effects of numerical
or physical mass diffusion.

6. Numerical examples

In this section, we present different numerical examples to
demonstrate the importance of considering flow dynamics in a
multiscale manner.

6.1. Phase transition coupled with acoustic waves

In this test problem, we show that when acoustic waves and
thermal diffusion are both present, the evolution of the phase
boundary is determined by the coupled hydro and thermal
dynamics, and therefore must be considered in a multiscale
manner. We simulate the condensation of water vapor in the
presence of an acoustic wave. The computation domain is from
−1 to 1 cm, which is discretized into 2000 grid cells. The phase
boundary is initially set at the origin with vapor on the left
side and water on the right side. Both phases start at rest and
have common temperature 293 K. The initial vapor pressure
is 93 mbar, whose saturation temperature is 343 K. The water
pressure is 193 mbar. A reflection boundary condition is used
on both ends of the domain.

When the water vapor interface was treated as a pure contact
discontinuity, the water first expands due to its higher pressure,

Fig. 2. The evolution of the interface separating water and water vapor. The
double width solid line is for the phase boundary. The solid line is for the
contact discontinuity.

then shrinks and expands periodically as the pressure wave
propagates back and forth in the liquid. When the water vapor
interface was treated as a phase boundary, the liquid volume still
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Fig. 3. Plot of jet interface at late time.

Fig. 4. The fluid velocities of the two-dimensional simulations. Left frame: light (upper) fluid velocity v1y at t = 0. Center frame: light (upper) fluid velocity
v1y at t = 3.0. Right frame: heavy (lower) fluid velocity v2y at t = 3.0.

oscillates, but the oscillation was superposed upon an expansion
due to condensation as the vapor was over-saturated.

Fig. 2 compares the evolution of a water vapor interface with
and without phase transitions. The double width solid line rep-
resents the phase boundary. The single width solid line repre-
sents the contact discontinuity. It is clear from Fig. 2 that phase
transitions play an important role in the interface dynamics.

6.2. Unsteady cavitating flow and jet atomization

Simulations of liquid cavitation and jet atomization, i.e. jet
breakup and spray formation arising from high speed nozzle
flows are presented here. We simulate a flow through a noz-
zle with a diameter 0.178 mm and a length 1 mm. In 0.3 ms,
the pressure of injected fuel rises linearly from 1 to 500 bar.
Cavitation bubbles are formed due to the sharp inlet corner of
the nozzle and a “vena contracta”, i.e. the flow “sticks” to the
edges of the opening, thus effectively reducing the size of the
opening, inside the nozzle (Bergwerk, 1959). For the literature

review of jet atomization mechanisms, see Reitz and Bracco
(1982, 1986) and Liu and Reitz (1998).

From a computational point of view, we argue that cavitation
and spray formation should be treated as multiscale phenom-
ena. Macroscopic flow parameters, such as the spray opening
angle and the volume fractions of liquid within the spray are
on the scale of centimeter. The finite vapor bubble size, which
is essential for the spray formation in our simulations, is on the
scale of microns. The dynamics of the moving phase bound-
ary, with mass transfer across the phase boundary, depends on
a thermal diffusion layer, having width of the order of nanome-
ters.

We used the model described in Section 4 to resolve the dy-
namics of cavitation bubbles in the simulations of atomization
of a high speed jet within a 2D symmetric geometry. The details
of the description of the problem and the numerical methods
are presented in Xu et al. (2006b). We only report some of the
important results here. A plot of the jet interface at late time
is shown in Fig. 3. This flow is strongly compressible and va-
por bubbles are created constantly. Thus capabilities developed
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here are required to carry out the simulation. From the simu-
lation of flow in the nozzle, the void fraction which is defined
as the ratio of the vapor volume to the volume of the nozzle is
not sensitive to the choice of the critical bubble radius. On the
other hand, the simulations of flow in the nozzle exhibit some
sensitivity to the bubble spacing parameter in terms of the void
fraction of the flow inside the nozzle. However, jet atomiza-
tion, which is the breakup of the downstream flow, was always
predicted for various spacing parameters.

6.3. Coherent mixing layer

The purpose of averaged equations for coherent layer of
turbulent mixing is to eliminate most of the geometrical
complexity through averaging. All fine scale geometrical de-
tails associated with complex interface positions are eliminated,
and only large scale effects remain. Accordingly, applying
stochastic models (Section 5.1) and the mixing edge evolution
algorithm (Section 5.2) our two-dimensional study is initialized
as a single sine wave perturbation to a planar mixing layer. In
Fig. 4 we present results, plotting v1y and v2y , in their depen-
dence on the space variables x, y. Note that the light fluid is on
the top, and so v1y is undefined in the (lower) region occupied
exclusively by the heavy fluid while v2y is undefined in the
upper region. In the left frame, we display the initial conditions
for v1y . In the center frame, we show v1y for a later time de-
velopment of the instability. The influence of the macroscopic
perturbation of the interface is evident. All v1y velocities are
negative, the blue being more strongly negative. Thus the light
fluid is flowing most strongly into a dip on the lower edge of
the mixing zone. The lower edge is the bubble edge. We inter-
pret the macro disturbance as bubble and spike type structures
on the bubble edge (and also the upper spike edge). In this ter-
minology, the macro light fluid velocity is flowing into a macro
bubble disturbance on the bubble edge of the mixing zone.

In the right frame of Fig. 4, we present the late time heavy
fluid v2y velocity. This velocity is everywhere positive, and is
most strongly positive at the upper edge in the center. Using a
similar terminology and analysis to that used for v1y , we can
say that the heavy fluid is flowing most strongly into a macro
spike type disturbance of the spike (upper) edge of the mixing
zone.

7. Conclusions

We have proposed using the front tracking method as a tool
for the multiscale modeling and computation. The introducing
of “intermediate scale” of the interfacial layer allows us to de-
scribe the interface dynamics accurately and to couple the mi-
croscale and the macroscale phenomena. The emphasis here is
to use different continuum models to describe different scales.
The interfacial physics are considered for a variety of problems,
and the complex fluids are modeled in the multiscale setting.
The proposed multiscale method allows us to deal with im-
portant physics at another flow scale. We see that this method
makes accurate predictions for various test problems.
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