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Abstract. We propose an evolutionary dynamics for population games with discrete
strategy sets, inspired by optimal transport theory and Mean field games. The proposed
dynamics is the Smith dynamics with strategy graph structure, in which payoffs are
modified by logarithmic terms. The dynamics can be described as a Fokker-Planck
equation on a discrete strategy set. For potential games, the dynamics is a gradient
flow system under a Riemannian metric from optimal transport theory. The stability of
the dynamics is studied through optimal transport metric tensor, free energy and Fisher
information.

1. Introduction

Population games are introduced as a framework to model population behaviors and
study strategic interactions in populations by extending finite player games [34, 42, 47].
It has fundamental impact on game theory related to social networks, evolution of biology
species, virus and cancer, etc [23, 32, 40, 48]. Nash equilibrium (NE) describes a status
that no player in population is willing to change his/her strategy unilaterally. To inves-
tigate stabilities of NEs, evolutionary game theory [35, 39, 42] has been developed in the
last several decades. Researchers from various fields (economics, biology, etc) design dif-
ferent dynamics, called mean dynamics or evolutionary dynamics [20, 37], under various
assumptions to describe population behaviors. Important examples include Replicator,
Best-response, Logit and Smith dynamics [30, 40, 43], just to name a few. A special class
of games, named potential games [19, 33, 38] are widely considered. Heuristically, po-
tential games describe the situation that all players face the same payoff function, called
potential. Thus maximizing each player’s own payoff is equivalent to maximizing the po-
tential. In this case, NEs correspond to maximizers of the potential, which gives natural
connections between mean dynamics and gradient flows obtained from minimizing the
negative potential. An important example is the Replicator dynamics, which is a gradient
flow of the negative potential in the probability space (simplex) with a Shahshahani metric
[1, 31, 41].

To study evolutionary dynamics, modeling uncertainties in individual players’ decision
processes plays vital roles. Usually such uncertainties are introduced by the notion of
noisy potential, i.e. the expected payoff added with Shannon-Boltzmann entropy. One
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well-known example is the Logit dynamics [18, 21, 22, 36], whose solution is forced to
converge to critical points of the noisy potential. On the other hand, for population
games with continuous strategy sets, there is a natural way to introduce uncertainties
by adding white noise, see Mean field games introduced by Larsy and Lions [6, 24] and
Best-reply dynamics [15]. Their results relate to Smith dynamics (1984) originated from
studying traffic flows [43] by the fact that the Smith dynamics can be viewed as a discrete
continuity equation. Mean field games have continuous strategy sets [4, 5]. Each player
is assumed to make decisions according to a stochastic process instead of making a one-
shot decision. More specifically, individual players change their pure strategies locally and
simultaneously in a continuous fashion according to the direction that maximizes their
own payoff functions most rapidly, and randomness is introduced in the form of white
noise perturbation. The resulting dynamics for individual players forms a mean field type
stochastic differential equation, whose probability density function evolves according to
the Fokker-Planck equation, i.e. continuity equation with diffusion processes. Here mean
field serves as a mediator for aggregating individual players’ behaviors. For potential
games [15], Fokker-Planck equations can also be viewed as gradient flows of negative noisy
potential in the probability space.

The aim of this paper is to further the mathematical understandings of optimal trans-
port theory in mean field games and populations games, especially when the strategy set
is discrete. We propose an evolutionary equation via gradient flow in discrete optimal
transport metric tensor. We note that it is not a straightforward task to transform the
theory on games with continuous strategy set directly to discrete settings. This is due
to the fact that the discrete strategy set is no longer a length space, a space that one
can define length of curves, and morph one curve to another in a continuous fashion. To
proceed, we employ key tools developed in [12, 13, 25] (Similar topics are discussed in
[9, 16, 29]). More specifically, we impose a Riemannian metric tensor on the probability
space of the strategy. With the Riemannian structure in probability simplex, we derive
the gradient flow of the negative noisy potential as mean dynamics.

In detail, let us consider a population game with finite discrete strategy set S =
{1, · · · , n}. Denote the set of population state

P(S) = {(ρi)ni=1 ∈ Rn :
n∑
i=1

ρi = 1 , ρi ≥ 0 , i ∈ S} ,

and payoff function Fi : P(S)→ R, for any i ∈ S. The derived mean dynamics is given by

dρi
dt

=
∑
j∈N(i)

1

dj
ρj [Fi(ρ)− Fj(ρ) + β(log ρj − log ρi)]+

−
∑
j∈N(i)

1

di
ρi[Fj(ρ)− Fi(ρ) + β(log ρi − log ρj)]+ ,

(1)

where β ≥ 0 is the strength of uncertainty1, ρi(t) is the probability at time t of strategy
i ∈ S, [·]+ = max{·, 0}, j ∈ N(i) if j can be achieved by players changing their strategies

1β represents the inverse of temperature.
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from i and di =
∑

j∈N(i) 1 represents the degree of graph at note i. We call (1) Fokker-

Planck equation of a game.

Dynamics (1) has many appealing features. For potential games, the dynamics is shown
to be a gradient flow, whose equilibria are discrete Gibbs measures. Their stability proper-
ties can also be studied by leveraging two notions, namely, relative free energy and relative
Fisher information [17, 46]. Through their relations with optimal transport metric tensor,
we show that the relative entropy converges to 0 as t goes to infinity, and the solution
converges to the Gibbs measure exponentially fast. For general games, (1) is not a gradient
flow, which may exhibit complicated limiting behaviors including Hopf bifurcations. And
the noise level becomes a natural parameter to introduce such bifurcations.

When β = 0 and the strategy graph is complete, then dynamics (1) is exactly the Smith
dynamics. When β > 0, (1) still fits into the Smith dynamics framework with modified
payoff functions. From this viewpoint, many mathematical properties of dynamics (1),
including the convergence to NEs, can be derived using existing methods for Smith dy-
namics [36]. In addition, one byproduct of our model is that the Smith dynamics can be
viewed as gradient flows of negative potentials under a optimal transport metric tensor. So
many studies in [36] has natural analog or extensions in optimal transport. On the other
hand, while both Logit dynamics and the proposed model converge to Gibbs measures,
they differ in the following aspects: (i) For Logit dynamics of potential games, the noisy
potential is the Lyaponov function while for (1), it is the objective function of a gradient
flow. This additional property gives rise to the exponential convergence results; (ii) in
the formulation, the Logit dynamics depends on the information of all strategies (all Fis)
while (1) only depends on the local information (neighboring Fis). Last but not least, the
proposed dynamics depends on the graph structure of strategy set, which is different from
the Replicator dynamics [14, 28], in which all discrete strategies are treated equally.

The arrangement of this paper is as follows. In section 2, we give a brief introduction
to population games on discrete sets. In section 3, we derive (1) by an optimal transport
metric defined on the simplex set, and introduce the Markov process associated with (1)
from the modeling perspective. In section 4, we study (1)’s long time behavior by relative
free energy and relative Fisher information. In section 5, we discuss the application of our
dynamics by working on some well-known population games.

2. Preliminaries

Consider a game played by a continuum of players. Each player in the population selects
a pure strategy from the discrete strategy set S = {1, · · · , n}. The aggregated state of
the population can be described by the population state ρ = (ρi)

n
i=1 ∈ P(S), where ρi

represents the proportion of players choosing pure strategy i and P(S) is a probability
space (simplex):

P(S) = {(ρi)ni=1 ∈ Rn :

n∑
i=1

ρi = 1 , 0 ≤ ρi ≤ 1 , i ∈ S} .
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The game assumes that each player’s payoff is independent of his/her identity (autonomous
game). Thus all players choosing strategy i have the continuous payoff function Fi :
P(S)→ R.

A population state ρ∗ ∈ P(S) is a Nash equilibrium of the population game if

ρ∗i > 0 implies that Fi(ρ
∗) ≥ Fj(ρ∗) , for all j ∈ S .

The following type of population games has particular importance, in which NEs enjoys
various prominent properties.

A population game is named a potential game, if there exists a differentiable potential
function F : P(S) → R, such that ∂

∂ρi
F(ρ) = Fi(ρ), for all i ∈ S. It is a well known fact

that the NEs of a potential game are the stationary points of F(ρ).

Example: Suppose that a unit mass of agents are randomly matched to play symmetric
normal-form game with payoff matrix A ∈ Rn×n. At population state ρ, a player choosing
strategy i receives payoff equal to the expectation of the others, i.e. Fi(ρ) =

∑
j∈S aijρj .

In particular, if the payoff matrix A is symmetric, then the game becomes a potential
game with potential function F(ρ) = 1

2ρ
TAρ, since ∂

∂ρi
F(ρ) = Fi(ρ).

Given a potential game with potential F , define the noisy potential

F̄(ρ) := F(ρ)− β
n∑
i=1

ρi log ρi , β > 0 ,

which is the summation of potential and Shannon-Boltzmann entropy. In information
theory, it has been known for a long time that the entropy is a way to model uncertainties
[17]. In the context of population games, such uncertainties may refer to players’ irrational
behaviors, making mistakes or risk-taking behaviors. In optimal transport theory, the
negative noisy potential is usually called the free energy [45, 46].

The problem of maximizing each player’s payoff with uncertainties is equivalent to
maximizing the noisy potential (minimizing the free energy)

min{−F̄(ρ) : ρ ∈ P(S)}.

We call the stationary points ρ∗ of the above minimization the discrete Gibbs measures,
i.e. ρ∗ solves the following fixed point problem

ρ∗i =
1

K
e
Fi(ρ
∗)

β , for any i ∈ S, where K =

n∑
j=1

e
Fj(ρ

∗)
β . (2)

3. Evolutionary dynamics via discrete optimal transport

In this section, we first introduce an optimal transport metric for population games.
Based on the metric, we derive a new interpretation of Smith dynamics with modified
payoff function. For potential games, the Smith dynamics can be viewed as gradient
flows.
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3.1. Optimal transport metric for games. We first introduce the optimal transport
metric tensor in probability simplex.

We start with the construction of strategy graphs. A strategy graph G = (S,E) is a
neighborhood structure imposed on the strategy set S = {1, · · · , n}. Two vertices i, j ∈ S
are connected in G if players who currently choose strategy i is able to switch to strategy
j. Denote the neighborhood of i by

N(i) = {j ∈ S : (i, j) ∈ E} .

For many games, every two strategies are connected, making G a complete graph. In other
words, N(i) = S \ {i}, for any i ∈ S. For example, the strategy set of Prisoner-Dilemma
game is either Cooperation (C) or Defection (D), i.e. S = {C,D}. Thus, the strategy
graph is

DC

FD(ρ)FC(ρ)

For any given strategy graph G, we can introduce an optimal transport metric on the
simplex P(S). Denote the interior of P(S) by Po(S).

Given a function Φ: S → R, define ∇Φ: S × S → R as

∇Φij =

{
Φi − Φj if (i, j) ∈ E ;

0 otherwise .

Let m : S × S → R be an anti-symmetric flux function such that mij = −mij . The
divergence of m, denoted as div(m) : S → R, is defined by

div(m)i = −
∑
j∈N(i)

mij .

For the purpose of defining our distance function, we will use a particular flux function

mij := θij(ρ)∇Φij ,

where θij(ρ) represents the discrete probability on edge (i, j), defined by

θij(ρ) =


1
dj
ρj F̄j(ρ) < F̄i(ρ) ;

1
di
ρi F̄j(ρ) > F̄i(ρ) ;

1
2(ρidi +

ρj
dj

) F̄j(ρ) = F̄i(ρ) .

(3)

Here di =
∑

j∈N(i) 1 is the degree of graph at node i and F̄i(ρ) = Fi(ρ)− β log ρi.

Given two potential vector fields ∇Φ, ∇Φ̃, define

(∇Φ,∇Φ̃)ρ :=
1

2

∑
(i,j)∈E

(Φi − Φj)(Φ̃i − Φ̃j)θij(ρ) , (4)

where 1
2 is applied because each edge is summed twice, i.e. (i, j), (j, i) ∈ E. The above

definitions provide the following distance function on Po(S).
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Definition 1. Given two discrete probability functions ρ0, ρ1 ∈ Po(S), the Wasserstein
metric W is defined by:

W (ρ0, ρ1)2 = inf{
∫ 1

0
(∇Φ(t),∇Φ(t))ρ(t)dt :

dρ

dt
+ div(ρ∇Φ) = 0 , ρ(0) = ρ0, ρ(1) = ρ1} .

(5)
Here the infimum is taken over pairs (ρ(t),Φ(t)) with ρ ∈ H1((0, 1),Rn) and Φ: [0, 1]→ Rn
measurable.

The Wasserstein metric induce a Riemannian metric tensor in the interior of probability
simplex. Consider the tangent space at a point ρ ∈ Po(S):

TρPo(S) = {(σi)ni=1 ∈ Rn :
n∑
i=1

σi = 0} .

We next identify a potential vector Φ ∈ Rn with a tangent vector σ ∈ Po(S).

Lemma 2. For given σ ∈ TρPo(S), there exists a unique function Φ, up to a constant
shift, such that

σ = −div(ρ∇Φ).

Proof. We prove the result by rewriting the operator −div(ρ∇) into a matrix form. Denote

L(ρ) = DTΘ(ρ)D ∈ Rn×n,

where D ∈ R|E|×n is the discrete gradient operator

D(i,j)∈E,k∈V =


√
ωij , if i = k, i > j

−√ωij , if j = k, i > j

0, otherwise;

−DT ∈ Rn×|E| is the discrete divergence operator, and Θ(ρ) ∈ R|E|×|E| is a weight matrix

Θ(ρ)(i,j)∈E,(k,l)∈E =

{
θij(ρ) if (i, j) = (k, l) ∈ E
0 otherwise.

Using this matrix notation, we prove that −div(ρ∇Φ) = L(ρ)Φ = σ has a unique solution
for Φ up to a constant shrift.

If ρ ∈ Po(G), all diagonal entries of the weight matrix Θ(ρ) are nonzero. Consider

ΦTL(ρ)Φ =
1

2

∑
(i,j)∈E

ωij(Φi − Φj)
2θij(ρ) = 0.

Since ρi > 0 for any i ∈ V and the strategy graph is connected, Φ1 = · · · = Φn is the only
solution of above equation. Thus 0 must be the simple eigenvalue of L(ρ) with eigenvector
(1, · · · , 1)T. Since Ker

(
L(ρ)

)
= {(1, · · · , 1)T},

Rn/ker(L(ρ)) ∼= Ran(L(ρ)) = TρPo(G).

Thus there exists a unique solution of Φ up to a constant shrift. �
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Based on Lemma 2, we write

L(ρ) = T


0

λsec(L(ρ))
. . .

λmax(L(ρ))

T−1 ,

where 0 < λsec(L(ρ)) ≤ · · · ≤ λmax(L(ρ)) are eigenvalues of L(ρ) arranged in ascending
order, and T is its corresponding eigenvector matrix. We denote the pseudo-inverse of
L(ρ) by

L(ρ)−1 = T


0

1
λsecL(ρ)

. . .
1

λmaxL(ρ)

T−1 .

Here the matrix L(ρ)−1 endows an inner product on TρPo(G).

Definition 3. For any two tangent vectors σ1, σ2 ∈ TρPo(S), define the inner product
gW : TρPo(S)× TρPo(S)→ R by

gWρ (σ, σ̃) := σTL(ρ)−1σ̃ = ΦTL(ρ)Φ̃ =
1

2

∑
(i,j)∈E

θij(ρ)(Φi − Φj)(Φ̃i − Φ̃j) ,

where σ = L(ρ)Φ and σ̃ = L(ρ)Φ̃.

Under this inner product, we can formulate the Wasserstein metric (5) as a geometric
action function

W (ρ0, ρ1)2 = inf
ρ(t)∈C

{
∫ 1

0
ρ̇TL(ρ)−1ρ̇dt : ρ(0) = ρ0, ρ(1) = ρ1} , (6)

where C is the set of all continuously differentiable curves in Po(S). Thus (Po(S), gW )
is a finite dimensional Riemannian manifold [26]. In particular, we call gWρ the optimal
transport metric tensor.

3.2. Fokker-Planck equations as evolutionary dynamics. We shall derive (1) as a
gradient flow of the free energy on the Riemannian manifold (Po(S), gW ).

Theorem 4. Given a potential game with strategy graph G = (S,E), potential F(ρ) ∈
C2(Rn) and a constant β ≥ 0. Then the gradient flow of free energy

−F(ρ) + β

n∑
i=1

ρi log ρi

on the Riemannian manifold (Po(S), gW ) is the Fokker-Planck equation

dρi
dt

=
∑
j∈N(i)

1

dj
ρj [Fi(ρ)− Fj(ρ) + β(log ρj − log ρi)]+

−
∑
j∈N(i)

1

di
ρi[Fj(ρ)− Fi(ρ) + β(log ρi − log ρj)]+ ,
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for any i ∈ S. In addition, for any initial ρ0 ∈ Po(S), there exists a unique solution
ρ(t) : [0,∞) → Po(S). And the free energy is a Lyapunov function. Moreover, if ρ∞ =
limt→∞ ρ(t) exists, ρ∞ is one of the Gibbs measures satisfying (2).

Remark 1. We note that if β = 0 and G is a complete graph, the derived Fokker-Planck
equation is the Smith dynamic [43] by dividing a constant ratio n.

Remark 2. The strategy graph G is different from the one in evolutionary graph games
studied in [2, 27, 44]. They mainly consider a spatial space as the graph while our graph
relates to the strategy set.

Proof. We show that (1) is a gradient flow. For any σ ∈ TρPo(S), there exists Φ, such

that σ = −div(ρ∇Φ). Since dρ
dt = (dρidt )ni=1 is in TρPo(S). By definition 3, we have

gWρ (
dρ

dt
, σ) =

n∑
i=1

dρi
dt

Φi . (7)

On the other hand, we have

dF̄(ρ) · σ =
n∑
i=1

∂

∂ρi
F̄(ρ) · σi = −

n∑
i=1

F̄i(ρ)div(ρ∇Φ)i

=(∇F̄ (ρ),∇Φ)ρ = −
n∑
i=1

Φidiv(ρ∇F̄ (ρ))i .

(8)

Combining (7) and (8), and the definition of gradient flow of −F̄(ρ) on the manifold, we
obtain

0 =gWρ (
dρ

dt
, σ)− dF̄(ρ) · σ

=

n∑
i=1

{dρi
dt

+ div(ρ∇F̄ (ρ))i}Φi .

Since the above formula is true for all (Φi)
n
i=1 ∈ Rn,

dρi
dt

+
∑
j∈N(i)

θij(ρ)
(
F̄j(ρ)− F̄i(ρ)

)
= 0

holds for all i ∈ V . Substituting θij defined in (3) into the above formula, we derive (1).
The rest of the proof are in [12, 25], see details there. �

We can further extend (1) as mean dynamics to model general population games without
potential. Although (1) can no longer be viewed as gradient flows of any sort in this case,
yet it is a system of well defined ordinary differential equations in P(S).

Corollary 5. Given a population game with strategy graph G = (S,E) and a constant
β ≥ 0. Assume payoff function F : P(S)→ Rn are continuous. For any initial condition
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ρ0 ∈ Po(S), the Fokker-Planck equation

dρi
dt

=
∑
j∈N(i)

1

dj
ρj [Fi(ρ)− Fj(ρ) + β(log ρj − log ρi)]+

−
∑
j∈N(i)

1

di
ρi[Fj(ρ)− Fi(ρ) + β(log ρi − log ρj)]+ ,

is a well defined flow in Po(S).

The proof is similar to that of Theorem 4 and hence omitted.

It is worth mentioning that, for potential games, there may exist multiple Gibbs mea-
sures as equilibria of (1). For non-potential games, there exist even more complicated
phenomena than equilibria, for example, invariant sets. We illustrate this by a modified
Rock-Scissors-Paper game in Section 5, for which Hopf bifurcation exists with respect to
the parameter β.

Remark 3 (Links with existing dynamics). In literature, there are discussions of the re-
lation between the dynamics’ rest points and Gibbs measure for various evolutionary
dynamics, see [36]. For example, Leslie and Collins [28] study perturbed Best-response
dynamics, and Coucheney, Gaujal and Mertikopoulos [14] discuss the issue for perturbed
replicator dynamics. In these dynamics, the perturbations are driven by entropy.

We compare the proposed dynamics (FPE) with some existing game dynamics (entropy
perturbed Replicator dynamics and Logit dynamics). Firstly, the rest points of FPE,
entropy perturbed replicator dynamics [14] and logit dynamics are the same, i.e. Gibbs
measures. Secondly, the dynamical property of these dynamics are different. For potential
games, (i) The FPE, Replicator dynamcis are gradient flows while the Logit is not; (ii) If
the potential is given by entropy only, the replicator dynamics is the Hessian flow (Newton
method) in the probability set while the FPE is not. This comes from the difference of the
geometry of Shahshahani (Fisher-Rao) metric and Wasserstein metric. The Shahshahani
metric is given by Hessian operator of entropy. It is a symmetric metric tensor treating all
discrete strategy states equally. The Wasserstein metric is built on the transportation of
measures on graphs. If the graph is not a complete graph, the Wasserstein metric tensor
is not symmetric for discrete strategies, which results in asymmetrical dynamics.

We give an example for illustrating these differences. Let n = 3. Denote F(ρ) =

−
∑3

i=1 ρi log ρi and the Gibbs measure ρ∗ = (1
3 ,

1
3 ,

1
3). The Logit dynamics satisfies

ρ̇i =
1

3
− ρi, i = 1, 2, 3.

The Replicator dynamics is given by

ρ̇i = ρi(log ρi + 1−
n∑
i=1

ρi log ρi), i = 1, 2, 3.
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The FPE follows
ρ̇1 = 1

2(log ρ2 − log ρ1)+ρ2 − (log ρ1 − log ρ2)+ρ1

ρ̇1 = (log ρ1 − log ρ2)+ρ1 + (log ρ3 − log ρ2)+ρ3

−1
2

(
(log ρ2 − log ρ1)+ + (log ρ2 − log ρ3)+

)
ρ2

ρ̇3 = 1
2(log ρ2 − log ρ3)+ρ2 − (log ρ3 − log ρ2)+ρ3

.

for the following asymmetrical strategy graph

1 2 3

The vector fields of the three equations are plotted in the following figures. We observe
that the vector fields of Logit and Replicator dynamics are symmetric while the vector
field of FPE depends on the structure of strategy graph. In this case, because strategy (1)
and strategy (3) are disconnected, the vector field of FPE is not symmetric, i.e. strategy
2 behaves differently from strategy 1, 3. This demonstrates how the behavior of the
dynamics is affected by the underlying strategy graph.
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Figure 1. Comparison of vector fields in different dynamics.

Likewise, the structure of the strategy graph determines the behavior of Smith dynamics
as well, even if all states’ payoff are given equally. See more examples in section 5.

3.3. Markov process. In this subsection, we look at Fokker-Planck equation (1) from the
probabilistic viewpoint. More specifically, we present a Markov process whose transition
function is given by (1). From the modeling perspective, such a Markov process models
individual player’s decision process that is myopic, irrational and locally greedy. The
Markov process Xβ(t) is defined as

Pr(Xβ(t+ h) = j | Xβ(t) = i)

=


1
dj

(F̄j(ρ)− F̄i(ρ))+h+ o(h) , if j ∈ N(i) ;

1−
∑

j∈N(i)
1
di

(F̄j(ρ)− F̄i(ρ))+h+ o(h) , if j = i ;

0 , otherwise ,

(9)
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where F̄i(ρ) = Fi(ρ)− β log ρi and limh→0
o(h)
h = 0. It can be easily seen that the proba-

bility evolution equation of Xβ(t) is exactly (1).

Process Xβ(t) characterizes players’ decision making process. Intuitively, players com-
pare their current strategies with local strategy neighbors. If the neighboring strategy
has payoff higher than their current payoffs, they switch strategies with probability pro-
portional to the difference between the two payoffs. In addition, Xβ(t) represents an
individual player’s irrational behavior. This irrationality may be due to players’ mistake
or willingness to take risk. The uncertainty of strategy i is quantified by term log ρi. The
monotonicity of this term intuitively implies that the fewer players currently select strat-
egy i, the more likely players are willing to take risks by switching to strategy i. For this
interpretation, we call Fi(ρ)− β log ρi the noisy payoff of strategy i, where β is the noise
level.

4. Stability

In this section, we discuss the long time behavior of (1) for potential games. We shall
study the convergence properties of the dynamics (1). Our derivation is based on two
concepts, discrete relative free energy and relative Fisher information [8]. They are used
to measure the closeness between two discrete measures ρ and ρ∞, the Gibbs measure
defined by (2).

The first concept is the discrete relative free energy (H)

H(ρ|ρ∞) := β(F̄(ρ∞)− F̄(ρ)) .

The other is the discrete relative Fisher information (I)

I(ρ|ρ∞) :=
∑

(i,j)∈E

(log
ρi

eFi(ρ)/β
− log

ρj

eFj(ρ)/β
)2
+

1

di
ρi .

We remark that in finite player games, where the potential is a linear function of ρ,
H and I coincide with the classical relative entropy (Kullback-Leibler divergence) and

relative Fisher information respectively. E.g., let F(ρ) =
∑n

i=1 viρi with
∑n

i=1 e
− vi
β = 1,

then ρ∞i = e
− vi
β ,

H(ρ|ρ∞) =β
n∑
i=1

ρi log
ρi
ρ∞i

=β

n∑
i=1

ρi log ρi − β
n∑
i=1

ρi log e
− vi
β

=β
n∑
i=1

ρi log ρi +
n∑
i=1

viρi.

We shall show that H(ρ(t)|ρ∞) converges to 0 as t goes to infinity. We will also estimate
the speed of convergence and characterize their stability properties. Before that, we state
a theorem that connects H and I via gradient flow (1).
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Theorem 6. Suppose ρ(t) is the transition probability of Xβ(t) of a potential game. Then
the relative entropy decreases as a function of t. In other words,

d

dt
H(ρ(t)|ρ∞) < 0 .

And the dissipation of relative entropy is β times relative Fisher information

d

dt
H(ρ(t)|ρ∞) = −βI(ρ(t)|ρ∞) . (10)

Proof. The proof is based on the fact that H (the difference between noisy potentials)
decreases along the gradient flow with respect to time. Namely,

d

dt
H(ρ(t)|ρ∞) =− β d

dt
F̄(ρ(t)) = β(∇F̄ ,∇F̄ )ρ

=β
∑

(i,j)∈E

[(F̄j(ρ)− F̄i(ρ))+]2
1

di
ρi

=β
∑

(i,j)∈E

[(log
ρi

eFi(ρ)/β
− log

ρj

eFj(ρ)/β
)+]2

1

di
ρi .

(11)

�

This shows that the noisy potential grows at the rate equal to the relative Fisher infor-
mation. In other words, the population as a whole always seeks to improve the average
noisy payoff at the rate equal to the expected squared benefits. Based on Theorem 6, we
show that the dynamics converges to the equilibrium exponentially fast. Here the conver-
gence is in the sense of H going to zero. Such phenomenon is called entropy dissipation.

Theorem 7 (Entropy dissipation). Let F ∈ C2(P(S)) be a concave potential function (not
necessary strictly concave) for a given game. Then there exists a constant C = C(ρ0, G) >
0 such that

H(ρ(t)|ρ∞) ≤ e−CtH(ρ0|ρ∞) . (12)

The proof of Theorem 7 is readily available by noticing the fact that

I(ρ|ρ∞) ≤ CβH(ρ|ρ∞) ,

and an application of Grownwall inequality. See details in [12, 25]. In fact, the exponen-
tial convergence is naturally expected because (1) is the gradient flow on a Riemannian
manifold (Po(S), gW ).

In fact, a more precise characterization on the convergence rate C in (12) can be made.
This characterization enables us to address the stability issues of Gibbs measures. Define

λ(ρ) = min
Φ

div(ρ∇Φ)T ·Hess(−F̄(ρ)) · div(ρ∇Φ) , (13)

where the infimum is among all (Φi)
n
i=1 ∈ Rn, such that (∇Φ,∇Φ)ρ = 1 and Hess repre-

sents the Hessian operator in Rn.
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Theorem 8 (Stability and asymptotic convergence rate). For a potential game with po-
tential F(ρ) ∈ C2. Denote its Gibbs measure ρ∞ by (2). If λ(ρ∞) > 0, then ρ∞ is an
asymptotic stable equilibrium for (1). In addition, for any sufficiently small ε > 0, there
exists a time T > 0, such that when t > T ,

H(ρ(t)|ρ∞) ≤ e−2(λ(ρ∞)−ε)(t−T )H(ρ0|ρ∞) . (14)

Theorem 8 can be proved by utilizing standard techniques from dynamical systems.
Namely,

(i) Calculate the second order derivative of F(ρ(t)) with respect to time t.

d2

dt2
F̄(ρ(t)) = 2div(ρ∇F̄ (ρ))T ·HessF̄(ρ) · div(ρ∇F̄ (ρ)) + o(

d

dt
F(ρ(t))) . (15)

(ii) Compare the first and second derivative to have

d2

dt2
F̄(ρ(t)) ≤ −λ(ρ∞)

d

dt
F̄(ρ(t)) + o(

d

dt
F̄(ρ(t))) ,

and apply Gronwall’s inequality to show (14) and (12).

The crucial part of the proof is to establish (15), which is given below. For complete
details, see [12].

Proof of (15). The first derivative of the free energy along (1) is

d

dt
F̄(ρ(t)) =

∑
(i,j)∈E

[(F̄j − F̄i)+]2
1

di
ρi .

The second derivative of the free energy can be calculated by using the product rule:

d2

dt2
F̄(ρ(t)) =

∑
(i,j)∈E

[(F̄j − F̄i)+]2
dρi
dt

(T1)

+ 2
∑

(i,j)∈E

(
dF̄j
dt
− dF̄i

dt
)(F̄j − F̄i)+

1

di
ρi . (T2)

Since ρ(t) is assumed to converge to an equilibrium ρ∞ and the boundary is a repeller

(Theorem 4), we know that dρ
dt → 0 while ρi(t) ≥ c(ρ0) > 0. Hence T1 is a high order

term of the first derivative, i.e.

T1 = o(
d

dt
F̄(ρ(t))) .
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On the other hand,

T2 =2
∑

(i,j)∈E

(
dF̄j
dt
− dF̄i

dt
)(F̄j − F̄i)+

1

di
ρi

=2
∑

(i,j)∈E

dF̄j
dt

(F̄j − F̄i)+
1

di
ρi − 2

∑
(i,j)∈E

dF̄i
dt

(F̄j − F̄i)+
1

di
ρi

=2
∑

(j,i)∈E

dF̄i
dt

(F̄i − F̄j)+
1

dj
ρj − 2

∑
(i,j)∈E

dF̄i
dt

(F̄j − F̄i)+
1

di
ρi

=2

n∑
i=1

dF̄i
dt

∑
j∈N(i)

{(F̄i − F̄j)+
1

dj
ρj − (F̄j − F̄i)+

1

di
ρi}

=2
n∑
i=1

dF̄i
dt

dρi
dt

= 2
dF̄

dt
· dρ
dt

=2 · (dρ
dt

)T ·HessF̄(ρ) · dρ
dt

=2 · div(ρ∇F̄ (ρ))T ·HessF̄(ρ) · div(ρ∇F̄ (ρ)) ,

where the third equality is by relabeling i and j and the last equality is from the alternative
representation of (1), i.e.

dρi
dt

= −div(ρ∇F̄ (ρ)) .

�

The rest of proof is to compare (T1) and (T2), see details in [12].

Remark 4 (Link with current works). It is known that the Smith dynamics converge to
equilibrium in potential games. See [36] and references therein. We demonstrate that how
the convergence rate depends on the graph structure. This result shares many similar
properties with continuous cases.

5. Examples

In this section, we investigate (1) by applying it to several well-known population games.
Example 1: Stag Hunt. The point we seek to convey in this example is that the noisy
payoff reflects the rationality of the population. The symmetric normal-form game with
payoff matrix

A =

(
h h
0 s

)
is known as Stag Hunt game. Each player in a random match needs to decide whether to
hunt for a hare (h) or stag (s). Assume s ≥ h, which means that the payoff of a stag is
larger than a hare. This population game has three Nash equilibria: two pure equilibria
(0, 1), (1, 0), and one mixed equilibrium (1− h

s ,
h
s ).
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In particular, let h = 2 and s = 3. The population state is ρ = (ρh, ρs)
T with payoff

Fh(ρ) = 2ρh and Fs(ρ) = 3ρs. Then Fokker-Planck equation (1) becomes{
ρ̇s = ρs[2ρh − 3ρs + β log ρs − β log ρh]+ − ρh[−2ρh + 3ρs + β log ρh − β log ρs]+

ρ̇s = ρh[3ρs − 2ρh + β log ρh − β log ρs]+ − ρs[−3ρs + 2ρh + β log ρs − β log ρh]+ .

The numerical results are in Figure 2. One can easily see that if the noise level β is
sufficient small, the perturbation doesn’t affect the limit behavior of the mean dynamics.
On the other hand, if noise level β is large enough, (1) settles around (1

2 ,
1
2). Lastly, if the

noise level is moderate, Equation (1) has (1, 0) as the unique equilibrium.

The above observation has practical meanings. Namely, if the perturbation is large
enough, it turns out that people always choose to hunt hare (NE (1, 0)). This is a safe
choice as players can get at least a hare, no matter how the others behave. This appears
even more so if comparing with the state (0, 1) for which the player receives nothing. If
the perturbation is small and initial population appears to be more cooperative, people
will choose to hunt the stag. This is a rational move because stag is definitely better than
hare.
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Figure 2. Stag and Hare

Example 2: Rock-Scissors-Paper game. Rock-Scissors-Paper has payoff matrix

A =

 0 1 −1
−1 0 1
1 −1 0

 .

The strategy set is S = {r, s, p}. The population state is ρ = (ρr, ρs, ρp)
T and the payoff

functions are Fr(ρ) = ρs − ρp, Fs(ρ) = −ρr + ρp and Fp(ρ) = ρr − ρs. By solving (1), we
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find that there is one unique Nash equilibrium around ρ∗ = (1
3 ,

1
3 ,

1
3) for various βs. The

result can be found in Figure 3.
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(b) β = 0.1

Figure 3. Rock-Scissors-Paper

Example 3. We show an example with Hopf Bifurcation. Consider a modified Rock-
Scissors-Paper game with payoff matrix

A =

 0 2 −1
−1 0 2
2 −1 0

 .

Different from the previous example, the payoff functions are Fr(ρ) = 2ρs − ρp, Fs(ρ) =
−ρr + 2ρp and Fp(ρ) = 2ρr − ρs. We find that there is Hopf bifurcation for Equation (1).
If β is large, there is a unique equilibrium around (1

3 ,
1
3 ,

1
3)T . If β goes to 0, the solution

approaches to a limit cycle. The results are in Figure 4.

Also, we illustrate the effect of graph structure in proposed FPEs. In Figure 5, we
consider two strategy graphs: one is the complete graph; the other is the lattice graph

R P S

In other words, we cut off one edge for the complete strategy. This consideration results
in the asymmetric property of vector fields. It shows the difference among FPEs, Logit
and perturbed Replicator dynamics with β = 0.1.

0

0.2

0.4

0.6

0.8

11

0.8

0.6

0.4

0.2

0

0.1

0.2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0

(a) β = 0.5

0

0.2

0.4

0.6

0.8

11

0.8

0.6

0.4

0.2

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

(b) β = 0.1

0

0.2

0.4

0.6

0.8

11

0.8

0.6

0.4

0.2

0.1

0.2

0.5

0

0.3

0.4

1

0.9

0.8

0.7

0.6

0

(c) β = 0

Figure 4. Modified Rock-Scissors-Paper.
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Figure 5. Left: Fokker-Planck equation on a complete strategy graph;
Right: Fokker-Planck equation on a lattice graph.
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Figure 6. Left: Replicator dynamics with entropy perturbation; Right:
Logit dynamics.

Example 4. We show an example with multiple Gibbs measures. Consider a potential
game with payoff matrix

A =

1 0 0
0 1 1
0 1 1


Denote the strategy set as S = {1, 2, 3}. The population state is ρ = (ρ1, ρ2, ρ3)T and the
payoff functions are F1(ρ) = ρ1, F2(ρ) = ρ2 + ρ3 and F3(ρ) = ρ2 + ρ3. We consider three
sets of Nash equilibria :

{ρ | ρ1 =
1

2
} ∪ {(1, 0, 0)} ∪ {ρ | ρ1 = 0} ,

where the first and third ones are lines on the probability simplex P(S). By applying (1)
on a complete graph, we obtain two Gibbs measures

{(0, 1

2
,
1

2
)} ∪ {(1, 0, 0)}

as β → 0. The vector field is shown in Figure 7. Similarly, we illustrate the effect of graph
structure for potential games. We also consider two strategy graphs: one is the complete
graph, the other is the lattice graph

1 2 3
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We observe the asymmetric property of vector fields. This property shows the difference
among FPEs, Logit and perturbed Replicator dynamics with β = 0.1. See Figure 8 and
9.
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Figure 7. Multiple Gibbs measures
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Figure 8. Left: Fokker-Planck equation on a complete strategy graph;
Right: Fokker-Planck equation on a lattice graph
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Figure 9. Left: Replicator dynamics with entropy perturbation. Right:
Logit dynamics.

Example 5. As a completion, we introduce a game with unique Gibbs measure. Let’s
consider another potential game with payoff matrix

A =

1
2 0 0
0 1 1
0 1 1

 .
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Here the strategy set is S = {1, 2, 3}, the population state is ρ = (ρ1, ρ2, ρ3)T and the
payoff functions are F1(ρ) = 1

2ρ1, F2(ρ) = ρ2 + ρ3 and F3(ρ) = ρ2 + ρ3. There are three
sets of Nash equilibria

{ρ | 1− 1

2
ρ1 = ρ2 + ρ3} ∪ {(1, 0, 0)} ∪ {ρ |1 = ρ2 + ρ3} ,

By applying Fokker-Planck equation (1) on a complete graph, we have a unique Gibbs
measure

(0,
1

2
,
1

2
)

as β → 0. See Figure 10 for the vector fields.
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Figure 10. Unique Gibbs measures

6. Conclusion

In this paper, we proposed a dynamics for population games utilizing optimal transport
theory and Mean field games. Comparing to existing models, it has the following desirable
features. Firstly, the dynamics is the gradient flow of the noisy potential in the probability
space endowed with the optimal transport metric. The dynamics can also be seen as the
mean field type Fokker-Planck equations. Secondly, the dynamics is the probability evo-
lution equation of a Markov process. Such processes model players’ myopicity, greediness
and irrationality. In particular, the irrational behaviors or uncertainties are introduced
via the notion of noisy payoff. This shares many similarities with the diffusion or white
noise perturbation in continuous cases. Last but not least, for potential games, Gibbs
measures are equilibria of the dynamics. Their stability properties are easily obtained by
the relation between relative free energy and Fisher information. In general, the dynamics
may exhibit more complicated limiting behaviors, including Hopf bifurcations.

We would continue to bridge the communities between optimal transport and popula-
tion games. On the one hand, the evolutionary game theory provides broad application
fields for optimal transport. It introduces various modeling perspective. On the other
hand, optimal transport introduces the other mathematical structures for games. It gives
the game-dependent Riemannian metric tensor. The metric tensor relies on the graph
structure of discrete strategy set. Many questions intersecting both communities arise.
E.g., what are dynamical properties of FPEs related to this metric? What is the effect
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of the strategy graph for the stability issues of NEs? We will continue to work on these
problems in future.

Acknowledgement: This paper is based on Wuchen Li’s thesis [25].
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Appendix

In this section, we briefly review the Best-reply dynamics and its connection with op-
timal transport theory. These serve the motivations of the dynamics considered in this
paper. For more details see [15, 46].
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Best-reply dynamics and Fokker-Planck equations. We first consider a game con-
sisting N players i ∈ {1, · · · , N}. Each player i chooses a strategy xi from a same Borel
strategy set S. For concreteness, we consider S = Td, which is a d dimensional torus.
Suppose each player receives a payoff function Fi ∈ C∞(S). For notation connivence, we
denote Fi(xi, x−i) = Fi(x1, · · · , xN ), where we abuse the notation by

x−i = {x1, · · · , xi−1, xi+1, · · · , xN} .

We model players’ decision-making processes in a game by stochastic process xi(t), t ∈
[0,+∞). Here t is an artificial time variable, at which player i selects his/her decision
based on the current strategies of all other players x−i(t). We note that all players make
their decisions simultaneously and without knowing others’ decisions. Each player selects
his or her strategy that increases the player’s payoff most rapidly. In other words, we
model the game by the following stochastic differential equations (SDEs)

dxi = ∇xiFi(xi, x−i)dt+
√

2βdBi
t , (16)

where the independent Brownian motion (Bi
t)
N
i=1 is added to model the uncertainty of

each player and β > 0 controls the magnitude of the noise.

Under the standard assumptions in population games, i.e. the game is autonomous and
the players are symmetric, one can simply encode all the information of players into one
probability density ρ ∈ P(S) by taking N → ∞. In this limiting processes, each player’s
cost function is rewritten as F : S ×P(S)→ R, and the limiting stochastic process forms
the following mean field SDE

dXt = ∇XtF (Xt, ρ)dt+
√

2βdBi
t , (17)

where Xt has probability law ρ(t, x).

In [15], the SDE (17) is called the Best-reply dynamics, and Xt is the Best-reply decision
process. Here the transition density function ρ(t, x) of the stochastic process X(t) satisfies
the FPE

∂ρ(t, x)

∂t
= −∇ · (ρ(t, x)F (x, ρ)) + β∆ρ(t, x) . (18)

The game is called a potential game if there exists a potential function F : P(S)→ R,
such that δ

δρ(x)F(ρ) = F (x, ρ). For potential games, the Best-reply SDE (17) becomes

dXt = ∇ δ

δρ(t,Xt)
F(ρ)dt+

√
2βdBt ,

which is a perturbed gradient flow and whose transition equation (FPE) forms

∂ρ(t, x)

∂t
= −∇ · (ρ(t, x)∇ δ

δρ(t, x)
F(ρ)) + β∆ρ(t, x) . (19)

From the theory of optimal transport, Equation (19) can be interpreted as a gradient
ascend flow of the free energy

F̄(ρ) = F(ρ)− β
∫
S
ρ(x) log ρ(x)dx . (20)
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Optimal transport and density manifold. We next review the geometry of optimal
transport on the continuous strategy set S.

Consider the set P2(S) of Borel measurable probability density functions on S with
finite second moment. Given ρ0, ρ1 ∈ P2(S), the L2-Wasserstein distance between ρ0 and
ρ1 is denoted by W : P2(S)×P2(S)→ R+. There are two equivalent ways of defining this
distance.

The first definition is the following linear programming formulation:

W (ρ0, ρ1)2 = inf
π∈Π(ρ0,ρ1)

∫
Ω×Ω

dΩ(x, y)2π(dx, dy) , (21)

where the infimum is taken over the set Π of joint probability measures on Ω × Ω that
have marginals ρ0, ρ1.

The second definition considers a probability path ρ : [0, 1] → P2(S) connecting ρ0,
ρ1. And the distance is defined by a variational problem known as the Benamou-Brenier
formula:

W (ρ0, ρ1)2 = inf
Φ

∫ 1

0

∫
Ω

(∇Φ(t, x),∇Φ(t, x))ρ(t, x)dxdt , (22a)

where the infimum is taken over the set of Borel potential functions [0, 1]× S → R. Each
potential function Φ determines a corresponding density path ρ as the solution of the
continuity equation

∂ρ(t, x)

∂t
+ div(ρ(t, x)∇Φ(t, x)) = 0 , ρ(0, x) = ρ0(x) , ρ(1, x) = ρ1(x) . (22b)

Here div and ∇ are the divergence and gradient operators in Ω. The continuity equation
is known as the probability density transition equation according to the given vector field.

The equivalence between the static (21) and dynamical (22) formulations is well known.
Moreover, the variational formulation (22) entails a similar Riemannian structure used
in this paper. For simplicity, we only consider the set of smooth and strictly positive
probability densities

P+(S) =
{
ρ ∈ C∞(Ω): ρ(x) > 0 ,

∫
Ω
ρ(x)dx = 1

}
⊂ P2(S) .

Denote F(S) := C∞(S) the set of smooth real valued functions on S. The tangent space
of P+(S) is given by

TρP+(S) =
{
σ ∈ F(S) :

∫
S
σ(x)dx = 0

}
.

Given Φ ∈ F(S) and ρ ∈ P+(S), define

VΦ(x) := −div(ρ(x)∇Φ(x)) .

Thus VΦ ∈ TρP+(S). The elliptic operator ∇· (ρ∇) identifies the function Φ on S modulo
additive constants with the tangent vector VΦ of the space of densities. This gives an
isomorphism

F(S)/R→ TρP+(S); Φ 7→ VΦ .
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Define the Riemmannian metric (inner product) on the tangent space of positive densities
gW : TρP+(S)× TρP+(S)→ R by

gWρ (VΦ, VΦ̃) =

∫
S

(∇Φ(x),∇Φ̃(x))ρ(x)dx ,

where Φ(x), Φ̃(x) ∈ F(S)/R. The inner product endows P+(S) with an infinite di-
mensional Riemannian metric tensor. In other words, the variational problem (22) is a
geometric action energy in (P+(S), gW ).

We are now ready to present the gradient operator of free energy w.r.t. L2-Wasserstein
metric tensor. Following

gW (gradW F̄(ρ), VΦ) =

∫
S

δ

δρ(x)
F̄(ρ)VΦdx

and δ
δρ(x)F(ρ) = F (x, ρ), and noticing δ

δρ(x)

∫
S ρ(x) log ρ(x)dx = log ρ(x) + 1, we obtain

gradW F̄(ρ) = −∇ · (ρ∇(F (x, ρ)− β log ρ(x))) .

From the fact that ∇· (ρ∇ log ρ) = ∇· (∇ρ) = ∆ρ, we derive the FPE (19) by the gradient
flow of the free energy

∂ρ

∂t
= gradWF(ρ) = −∇ · (ρ∇F (x, ρ)) + β∆ρ .


