
Method of evolving junctions: A new
approach to optimal path-planning in 2D
environments with moving obstacles

Journal Title
XX(X):1–9
c©The Author(s) 0000

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Wuchen Li 1, Shui-Nee Chow 1, Magnus Egerstedt 2, Jun Lu 1 and Haomin Zhou1

Abstract
We propose a novel algorithm to find the global optimal path in 2D environments with moving obstacles, where the
optimality is understood relative to a general convex continuous running cost. By leveraging the geometric structures
of optimal solutions and using gradient flows, we convert the path-planning problem into a system of finite dimensional
ordinary differential equations (ODEs), whose dimensions change dynamically. Then a stochastic differential equation
(SDE) based optimization method called intermittent diffusion is employed to obtain the global optimal solution. We
demonstrate, via numerical examples, that the new algorithm can solve the problem efficiently.

Keywords
Path-planning, dynamic environment, optimal control, constraints, stochastic differential equations

Introduction
Finding optimal paths in dynamic environments has attracted
significant attention in the robotics community (See Latombe
(1990); LaValle (1999); Lu et al (2015); Jur (2007) and

the references therein). The problem is to navigate a robot
from a starting point to a destination, avoiding collisions with
moving obstacles while minimizing a cost functional, such as
the energy consumption.

Even in static environments, optimal path planning is a
challenging task. For example, finding the shortest path for
a point robot in 3D with polyhedral obstacles is NP hard,
see Canny and Reif (1987). Recently, many path-centric∗

algorithms have been introduced in two categories: (i) Grid
based planners, such as A*, D* and D* Lite. See Koening
and Likhachev (2002); Koening et al (2004); Koening and
Likhachev (2005); Stenz (1994); Stentz (1995); Ferguson
et al (2005); Likhachev et al (2008). (ii) Sample based
planners, such as PRM* (Probabilistic Road Maps) and
RRT* (Rapidly exploring Random Tree). See Fiorini and Zvi
(1998); Park et al (2013); Karaman and Frazzoli (2011);

Kavraki et al (1996); LaValle (1998); Hsu (2002); Zucker
et al (2007) for more information. In this paper, we take
a fundamentally different approach to design a path-centric
algorithm to find the optimal solution for a point robot in
dynamic environments.

In the existing literature, special cases, such as optimality
being restricted to minimal arrival time and obstacles being
limited to polygons or disks, have been studied when
environmental dynamics are predictable. For example, if the
dynamic environment only contains moving polygons or
disks with constant speed, an algorithm has been proposed
in Fujimura and Samet (1993) with complexityO(n2 log n),
where n is the total number of vertices. Key to this method
is that when the minimal arrival time is the objective, a robot
must traverse with maximal speed along straight lines and
go from one vertex to another. This observation reduces the
minimal arrival time problem into a shortest path problem

on a graph with finitely many nodes, so that well known
algorithms can be applied directly. A similar idea was used
in Jur and Mark (2008), which considers environments
consisting of expanding or shrinking disks of constant speed.
Other studies aiming to achieve minimal arrival time have
been reported in Narayanan et al (2012); Phillips and
Likhachev (2011); Nieuwenhuisen et al (2007).

In this paper, we consider a 2D dynamic environment
in which the motions of obstacles are known a priori. The
cost functional is quadratic in speed variable. The arrival
time may or may not be part of the cost functional. The
obstacles can have general shapes with their boundaries
being characterized by unions of a finite number of convex
or concave curves. In this case, the optimal path-planning
problem can be posed in the framework of optimal control,
see Bobrow (1988, 1985); Shin and Mckay (1985). Hence it
can be solved by three general numerical methods. (1) State
space. One solves Hamilton-Jacobi-Bellman equations, see
Yershov and Frazzoli (2015), which deals with nonlinear
partial differential equations; (2) Indirect method. One
employs the Pontryagin’s maximal principle, which leads
to a system of boundary value ODEs Ghasemi et al
(2011); and (3) Direct method. One discretizes the state
and control variables directly, and then finds the path by

1 School of Mathematics, Georgia institute of technology
2 School of Electrical and Computer Engineering, Georgia institute of
technology.
The work is partially supported by NSF Award DMS 1419027 and ONR
Award N000141310408.

Corresponding author:
Wuchen Li, 686 cherry street, Atlanta, Georgia, 30332, USA.
Email: wli83@gatech.edu
∗The path-centric algorithm finds the minimal cost path from the initial
position to its destination. It contrasts with the policy-centric algorithm
which computes the optimal cost-to-go function by solving Hamilton-
Jacobi-Belleman equation, see Yershov and Frazzoli (2015).

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 Journal Title XX(X)

solving a large dimensional optimization, see Posa et al
(2014). However, the dynamic environment introduces time
dependent continuous constraints, and this is hard to treat
numerically in general, see Liu et al (2001), especially when
the number of moving obstacles is large.

Following the idea in Chow et al (2016); Lu et al (2014)†,
we adopt a recently developed algorithm, namely method
of evolving junctions (MEJ). The method is motivated by
the following facts: All local and global optimal paths
share a similar geometric structure called “Separability”,
meaning the path can be partitioned into a finite number
of segments over which the constraints are either active
(robot moving along the boundary of an obstacle, and/or
at its maximum speed) or inactive (robot moving freely).
We call the partition points junctions. Using those junctions,
we can reduce the optimal control, which typically cast
as an infinite dimensional problem in Banach space, to a
finite dimensional optimization problem. Such a reduction
allows us to find global optimal path(s) by initial value
problems of SDEs. Compared to existing methods, the new
algorithm has the following advantages: (i) it leverages
the geometric structure of the dynamic environments, and
transfers the optimal control into a finite dimensional
optimization without compromising the accuracy of the
path. (ii) the main computation is to solve initial value
stochastic differential equations (SDEs) derived from the
finite dimensional optimizations, which is easy to implement
numerically. (iii) it can find the global optimal path with a
high probability, and also obtain a series of local minimizers.

The paper is arranged as follows: In Section 2, we set up
the mathematical description of the problem. In Section 3, we
present the new algorithm. Several experiments are shown in
Section 4.

Problem Description
We shall consider a predictable environment with N
obstacles moving in R2. We assume that the workspace of
the robot is the same as the configuration space. Initially,
each obstacle is represented by a connected compact set
Pk, k ∈ {1, · · · , N}, whose boundary ∂Pk is a union of a
finite number of convex and concave curves, which satisfy
Lipschitz condition with Lipschitz parameter bounded by a
constant.

And we assume that each obstacle Pk moves at a constant
velocity vk. Thus the dynamic obstacle can be expressed by
a time-dependent set given by

Pk(t) = {x+ vkt | x ∈ Pk}, k ∈ {1, · · · , N}.

We also assume that a robot is considered as a point, whose
path is denoted by a curve γ(t) : [0, T]→ R2. Here T is the
terminal time, which is unknown in general.

We call γ(t) a feasible path if

(i) the robot moves from a starting point X to a target
point Y ,

γ(0) = X, γ(T) = Y ;

(ii) the robot avoids collisions with all moving obstacles
during its course,

γ(t) ∈ R2 \ ∪kPk(t),

for any 0 ≤ t ≤ T ;
(iii) the robot travels with a speed restriction,

al(γ(t1), γ(t2)) ≤ vm(t2 − t1),

for any 0 ≤ t1 ≤ t2 ≤ T , where vm is a positive
constant indicating the maximal allowable speed for
the robot, and al(γ(t1), γ(t2)) is the arc length of the
path between the two points.

Denote the set of all feasible paths by

A = {γ(t) ∈ AC[0, T] | (i), (ii), (iii) holds},

where AC[0, T] represents the set of absolutely continuous
curves.

To model the energy consumption of the robot as well as
the arrival time, we introduce the following cost functional,

J(γ) =

∫ T

0

L(t, γ(t), γ̇(t))dt,

where L(t, γ, γ) = γ̇2 + c, c > 0 is a given constant. The
reason to use a quadratic function here is that the robot
expends more energy for fast speeds while stalled (or slow)
motion is also deemed inefficient.

The goal is finding a global optimal path γopt to attain

γopt = arg min
γ∈A

J(γ).

For convenience, we adopt a level set expression to
represent (ii). It is to define φk as a signed distance function
between a point y and the obstacle boundary set at time t

φk(t, y) =

{
dist(y, ∂Pk(t)), if y ∈ Pk(t);
−dist(y, ∂Pk(t)), if y ∈ R2 \ Pk(t),

with dist(y, ∂Pk(t)) = infx∈∂Pk(t) dist(x, y). Then the sec-
ond requirement-no collision with obstacles-can be rewritten
as

φk(t, γ(t)) ≤ 0, t ∈ [0, T].

As mentioned in the introduction, the above problem can
be reformulated as an optimal control problem.

min
γ,v

∫ T

0

v2dt+ cT (1)

where the state γ(t) and control v(t) are subject to

γ̇ = v, t ∈ [0, T]; γ(0) = X, γ(T) = Y ;

φk(t, γ(t)) ≤ 0, ||v(t)|| ≤ vm.

The Algorithm
To solve (1), we adopt a new computational framework,
called method of evolving junctions (MEJ), which aims at
rewriting (1) as a finite dimensional optimization problem by
leveraging the geometric structure of the optimal path given
in the following definition.

†Comparing with Lu et al (2014), where the authors only deal with the
shortest path problem (time independent), we find a similar method for a
broader class of optimal path planning problems, in which the time variable
is built in.

Prepared using sagej.cls

Optimal path-planning 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1. Example of Junctions. The red trajectory is the path
in the free space, while the blue part indicates the path travels
along the boundary of the moving obstacle (grey). Junctions are
the switch points (including time and position) between red and
blue trajectories.

Definition 1. A path γ(t) is said to be separable if there
exists a finite partition: t0 < t1 < t2 < · · · < tN < tN+1 =
T such that γ(t)|[ti,ti+1] alternates between segments where
constraints are either active or inactive.

Here we denote x̃i := (ti, x(ti), u(ti)) and call them
junctions. A consecutive junction pair x̃i, x̃i+1 determines a
trajectory connecting them, which solves the optimal control
either in the free space or with active constraints, denoted
by γ0(x̃i, x̃i+1) or γc(x̃i, x̃i+1) respectively. The separability
allows us to restrict the search of optimal trajectories to a
subset H defined by

H := {γ : γ is determined by finite junctions}.

More precisely, if γ ∈ H , there exists a sequence
of junctions on the boundary of the constraints,
(x̃0, · · · , x̃N , x̃N+1), such that γ can be represented
as

γ1(x̃0, x̃1) · γ2(x̃1, x̃2) · · · γN (x̃N , x̃N+1),

where γi is either γ0 or γc and γi · γi+1 denotes the
concatenation of two trajectories. And γi solves one of
the following sub-optimal control problems: When we have
inactive constraints,

γi(t) = arg min
γ
{
∫ ti+1

ti

L(t, γ(t), γ̇(t))dt :

γ(ti) = xi, γ(ti+1) = xi+1}.
(2)

When we have active constraints,

γi(t) = arg min
γ
{
∫ ti+1

ti

L(t, γ(t), γ̇(t))dt :

γ(ti) = xi, γ(ti+1) = xi+1,

γ(t) ∈ ∂Pk(t) for some k
or ‖γ̇‖ = vm}.

(3)

One can find the analytical solution for γi, which are shown
in the following two lemmas.

Lemma 2. The optimal path γi(t) connecting a junction pair
(x̃i, x̃i+1) with inactive constraint is a line with constant
speed given by vi = ‖xi+1 − xi‖/(ti+1 − ti) .

Lemma 3. The optimal path γi(t) connecting a junction
pair (x̃i, x̃i+1) with active constraints must be one of the
following cases:

(a) γi(t) is a line with constant speed vm;
(b) γi(t) is a geodesic on the moving obstacle with a

relative constant speed;
(c) γi(t) is a geodesic on the moving obstacle with the

maximal speed vm.

Proofs of the lemmas can be found in the Appendix.
From Lemmas 2 and 3, we know that γi can be rewritten

as a function of a junction pair. So we can represent (1) by a
finite dimensional optimization of junctions. More precisely,
the cost functional of γ can be reformulated as,

J(x̃) =
∑
i∈I

Ji(x̃) +
∑
i∈A

Ji(x̃).

where x̃ = {x̃0, · · · , x̃N+1} , Ji(x̃) is the cost of γi solving
either (2) or (3), i.e.

Ji(x̃) =

∫ ti+1

ti

L(t, γi(t), γ̇i(t))dt.

If γi solves (2), we say i ∈ I , otherwise, i ∈ A.
Moreover, γi must not violate the constraints of (1). We

define

V (x̃) = max
i∈I

max
ti≤t≤ti+1

φ(t, γi(t)) = 0

to ensure that γi(t) satisfies condition (ii), and

S(x̃) = max
i∈I∪A

max
ti≤t≤ti+1

‖γ̇i(t)‖ ≤ vm

for condition (iii).
With the above reformulations, (1) is rewritten as

min
x̃
J(x̃), s.t. V (x̃) = 0, S(x̃) ≤ vm. (4)

And this is the optimization we solve numerically. In this
way, we transfer the optimal control problem (1) to a
finite dimensional optimization (4), for which we gain a
tremendous dimension reduction.

To compute (4), we adopt a global optimization technique,
called Intermittent Diffusions (ID), see Chow et al (2012).
The key idea of ID is to add white noise (diffusion)
to the gradient flow (gradient descent method) of J(x̃)
intermittently.

Namely, we solve the following SDEs on a constrained set

dx̃ = Px̃[−∇J(x̃)dθ + σ(θ)dW (θ)], (5)

where x̃ = (x̃0, x̃1, · · · , x̃N , x̃N+1), θ is an artificial time
variable different from t, W (θ) is the standard Brownian
motion, and Px̃ is the orthogonal projection onto the tangent
plane at x̃ for the constraint set in (4). If we denote the set of
feasible directions at x̃ as

F(x̃) = {q |∇V (x̃i, x̃i+1) · q = 0,

∇S(x̃i, x̃i+1) · q ≤ 0, ‖q‖ = 1},

then Px̃(p) is defined by

− Px̃(p)

‖Px̃(p)‖
= arg min

q∈F(x̃)
q · p, ‖Px̃(p)‖ = min

q∈F(x̃)
|q · p|.

The above two equations are the standard projection operator
in constrained optimization, where the first and second

Prepared using sagej.cls

4 Journal Title XX(X)

equation give direction and magnitude of the projected
vector respectively. For convenience, we denote ∇cJ(x̃) :=
Px̃(∇J(x̃)), which is the projected gradient vector.

The function σ(θ) is piecewise constant, controlling
the amount of noise added intermittently. More precisely,
σ(θ) =

∑m
j=1 σjχ[Sj ,Tj](θ), where {[Sj , Tj]}mj=1 are dis-

joint intervals, and χ[Sj ,Tj] is the characteristic function
on [Sj , Tj]. If σ(θ) = 0, we obtain the projected gradient
flow, whose solution converges to a minimizer. If σ(θ) 6= 0,
(5) is a SDE, whose solution has a positive probability to
escape any attraction basins of minimizers. The theory of ID
suggests that solutions of SDEs visit the global minimizers
with probability arbitrarily close to 1, if |Tj − Sj | is large
enough. We illustrate how the ID algorithm works by the
following theorem in Chow et al (2012).

Theorem 4. Given any real number δ > 0, there exists
constants σ > 0, τ > 0, and integer m > 0, such that if
Ti − Si > τ , σi < σ (for i = 1, · · · ,m), then equation (5)
finds the global minimizer of (4) with probability at least
1− δ.

To solve SDE (5) numerically, we discretize it by Euler-
Maruyama scheme:

x̃k+1 = x̃k + Px̃k [−∇J(x̃k)h+ σk
√
hξk], (6)

where h is the step size for the gradient descent method.
What this means is that we sample a set of standard
Gaussian random variables ξk ∼ N(0, 1), and add them to
each projected gradient descent step. Coefficient σk is chosen
as a piecewise constant, which represents that noises are
added intermittently. The turning parameter m is the number
of intervals that we turn on and off the noise. Heuristically,
the larger the m is, the larger the probability of finding the
global minimizer. One can prove mathematically that the
global optimal solution can be achieved with the probability
1 if m tends to infinity. In practice, this is not the case. In
fact, we find a set of local minimizers and pick the one with
the smallest objective value as the best solution.

It is also worth mentioning that the number and locations
of junctions may vary when solving (5). We propose a
heuristic way to deal with appearing and disappearing
junctions. We add new junctions when a straight line
trajectory x̃1x̃2 intersects with a moving obstacle. For
example, insert the intersection points (including both
position and time), denoted as ỹ, into the sequence of
junctions, as in Figure 2 .

x̃1

ỹ

x̃2

Figure 2. Add junction step

When two straight segments x̃1x̃2 and x̃2x̃3 share a
common junction x̃2, as depicted in Figure 3, a smaller cost
functional can be obtained by connecting x̃1x̃3 directly if the
path x̃1x̃3 does not intersect another moving obstacle during
its course. We remove x̃2 from the set of junctions.

x̃1 x̃2

x̃3

Figure 3. Remove junction step

We summarize the steps into the following algorithm.

Algorithm 1.

Input: Constraint φk, vm,
starting and ending points X and Y ,
running cost L,
number of intermittent diffusion intervals m.

Output: The optimal set: γopt and junctions.

1. Initialization. Find an initial path γ(0); the initial
junctions are intersections of γ(0) with the moving
obstacles;

2. Select duration of diffusion ∆Tl, l ≤ m;
3. Select diffusion coefficients σl, l ≤ m;
4. for l = 1 : m
5. γ(l) = γ(l−1);
6. for j = 1 : ∆Tl
7. Find ∇cJ(γ(l)).
8. Update γ(l) according to (5) with σ(θ) = σl;
9. Remove junctions from or add junctions

to γ(l) when necessary;
10. end
11. while ‖∇cJ(γ(l))‖ > ε
12. Update γ(l) according to (5) with σ(θ) = 0;
13. end
14. end
15. Compare J(γ(l)), l ≤ m and

set γopt = argminl≤m J(γ(l));

Remark 1. Here m represents the number of artificial time
intervals, which is different from the number of junctions N .
m is used for adding or removing white noises in gradient
descent steps, while N is changed when adding or removing
junctions is needed for keeping the path feasible. In some
situations, N can be fixed, see a simple case in the next
section.

Theorem 5. Algorithm 1 solves problem (1) almost surely.

The proof directly follows from (4) and Theorem 4.
However, there is a distinction between the theoretical
guarantees and numerical implementation of the algorithm.
In practice, we often choose a suitable upper bound for the
number of time intervals in intermittent diffusion.

The proposed algorithm solves 2D problem efficiently.
This is due to the fact the geodesic of 2D obstacles has an
analytical solution. For problems with higher dimensions,
the geodesic is usually not simple to calculate. This
difficulty may prevent us from obtaining analytic or semi-
analytic formulas of γi(t) in (3) and consequently Ji(x̃)

Prepared using sagej.cls

Optimal path-planning 5

for the corresponding constrained segment of the trajectory.
That limits the application of the proposed algorithm in
those challenging cases. On the other hand, one may use
polygons to approximate (piecewise linearly) the boundaries
of obstacles. In this way, the geodesic on the plane is still
easy to calculate analytically in general. So the proposed
method can be applied, while the accuracy of the optimality
is limited by the approximation error. In addition, our
algorithm find the global optimal solution in a probability
sense. In practice, the algorithm returns a set of minimizers,
and we pick the one with the smallest cost functional as
the global solution. The complexity of the algorithm scales
linearly with the number of obstacles n, and it depends on the
approximation error tolerance ε and the probability tolerance
δ. In fact, one can prove that the complexity is of order
O(n log(1/ε) log(1/δ)) (see the proof in Lu at (2014)).

Numerical experiments
In this section, we illustrate the performance of the algorithm
by several numerical experiments.

A simple case
We use the following example to illustrate, step by step, how
to implement our algorithm.

We consider an environment containing one obstacle P1,
which is a disk initially centered at (0, 0) and with radius 1,
moving at a constant velocity v1 = (0,−0.1). The starting
and ending points are X = (−2, 0), Y = (2, 0) respectively.
The terminal time is fixed at T = 1. In addition, we assume
that there is no speed constraint. Then the optimal control
problem (1) becomes

min{
∫ 1

0

γ̇2dt : γ(0) = X, γ(1) = Y, φ1(t) ≤ 0},

where φ1(t, γ(t)) = 1− ‖γ(t)− v1t‖.
Proposition: There are at most two junctions on P1.
The proof of this proposition is given in the Appendix. To

represent the two junctions, we denote α(u) = (cosu, sinu)
as the parametrization of ∂P1, where u is an arc-length
parameter. Hence a junction ũi = (ti, ui) represents a point
on the moving obstacle, whose position is denoted as
R(ũi) = α(ui) + v1ti, i = 1, 2.

Two junctions ũ1 and ũ2, denoted as ũ = (ũ1, ũ2) for
convenience, partition the trajectory into three segments

γ(t) = γ0(t) · γ1(t) · γ2(t),

where γ1(t) is the optimal path along ∂P1, and γ0(t), γ2(t)
are the optimal paths in the free space respectively. From
Lemma 1, we know that γ0, γ2 are straight lines with
constant speed,

γ0(t) =
R(ũ1)−X

t1
t+X, t ∈ [0, t1]

and

γ2(t) =
Y −R(ũ2)

T − t2
(t− t2) +R(ũ2), t ∈ [t2, T]

and the cost is

J0(ũ) =
‖R(ũ1)−X‖2

t1
, J2(ũ) =

‖R(ũ2)− Y ‖2

T − t2
.

From Lemma 2, γ1(t) is a path along the boundary ∂P1

with a constant speed relative to the moving obstacle, and it
can be written as

γ1(t) = α(u(t)) + v1t,

where u(t) is the relative position on the boundary. There
are two possibilities for u(t), the clockwise and counter-
clockwise, and we denote them as u+ and u− respectively.
The constant speed suggests that u+(t) = u1 + (u2 −
u1)/(t2 − t1)(t− t1), and u−(t) = 2π − u+(t). Then u(t)
takes the one with lower cost, i.e.

u(t) = arg min
{u+,u−}

{J1(u+), J1(u−)},

where

J1(u+) =
(u2 − u1)2

t2 − t1
+ (sinu1 − sinu2) + v21(t2 − t1),

and

J1(u−) =
(2π − (u2 − u1))2

t2 − t1
+ (sinu2 − sinu1)

+v21(t2 − t1).

Using the junctions, we transfer the optimal control into a
four dimensional optimization:

min
(t1,u1,t2,u2)

2∑
i=0

Ji(ũ)

such that

max
0≤t≤t1

φ1(t, γ0(t)) = max
t2≤t≤1

φ1(t, γ2(t)) = 0. (7)

Notice that (7) actually gives constraints on ũ1, ũ2. For
example, max0≤t≤t1 φ1(t, γ0(t)) = 0 implies that (γ0(t)−
v1t)

2 ≥ 1, for any t ∈ [0, t1]. If we denote γ0(t)− v1t :=
at+ b, where a = (R(ũ1)−X)/t1 − v1 and b = X . Then
(7) is

g(t) := a2t2 + 2a · bt+ b2 − 1 ≥ 0, for any t ∈ [0, t1].

Because g(t) is a quadric function of t and g(t1) = 0 (ũ1 lies
on the moving obstacle), the above constraint is equivalent to

g′(t)|t=t1 = 2a2t1 + 2a · b ≤ 0,

which gives an explicit constraint on ũ1. Similarly, we can
get an explicit constraint on ũ2 as well.

Through the intermittent diffusion process (6), using
m = 40, σ2k = 0.2, k ≤ 20, we obtain two minimiz-
ers (there are only two minimizers for this example)
satisfying stopping criterion ‖∇cJ‖ ≤ 10−4. One is an
optimal path determined by junctions (u1, u2, t1, t2) =
(1.0493, 2.0732, 0.3885, 0.6179), and the other by junctions
(2.1240, 5.2527, 0.3802, 0.6127). By comparing their costs,
the former is the global minimizer with cost 19.9130, and
the later is a local one with cost 20.8160. Among 20 ID
intervals, the global optimal path is found 18 times, while
the local minimizer is visited 2 times, indicating the proposed
algorithm finds a global solution with a larger probability.

Prepared using sagej.cls

6 Journal Title XX(X)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4. The above figure demonstrated the paths of two
minimizers. The left one is the global minimizer, while the right
one is the local minimizer.

In the following examples, a maximal speed constraint
vm = 20 is imposed and the number of junctions are not
known a priori.

Multiple obstacles and fixed terminal time
The environment consists of six disks initially centered at
(0, 0), (4.5, 3), (8,−3), (10, 4), (12,−3), (15,−4), with
radii 1, 1, 1, 1.2, 1, 1, and moving at constant velocities
(3, 5), (−2,−5), (−2, 4.5), (0,−5.5), (1, 5.5) and (1, 5.5)
respectively. The starting and ending points are X =
(−2, 0.5) and Y = (20, 0.5).

In this scenario, we set the terminal time T = 1. Since we
don’t know the number of junctions and their locations, we
start the algorithm by connecting X and Y with a straight
path of constant speed. Its intersections with the moving
obstacles are the initial values for the junctions. In fact, this
is our general way to initialize the algorithm.

We run the proposed algorithm with m = 6 and
find two minimizers. The first one, the global optimal
path, intersects with four obstacles resulting in a total
cost 510.353, as shown in Figure 6 and a movie
is available at https://youtu.be/ziq0GQZGVeE. The other
is a local minimizer with total cost 535.273, whose
trajectory encounters five obstacles, see a movie in
https://youtu.be/AO3Cy5J1-Rg.

We remark that these two optimal paths have different
numbers of junctions corresponding to different dimensions
in the optimization. The computation is efficient, the average
time to obtain a solution is around 20 seconds, which is done
by Matlab on a laptop with core i5, 1.5GHZ and 4GB RAM.

Unknown terminal time
The terminal time T in this example is assumed unknown.
The proposed method can handle it with a minor
modification of the previous example, namely treating
(T, Y) as a new junction. This new junction does not
move spatially, but its time is undetermined. With this
consideration, we re-cast the finite dimensional optimization
as

min
ũ

∑
i

Ji(ũ), where ũ = (ũ1, · · · , ũN , T),

with the constraint set similar in (7).
To illustrate, we consider a moving environment with two

disks of radii 1 and 1, initially centered at (0, 0), (6.5, 3)
respectively. They move at constant velocities (5, 0), (−5, 0).
All paths start at X = (−2, 0.5), and end at Y = (10, 0.5).
The running cost is L = γ̇2 + 200.

-3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

Figure 5. This is an illustration of the moving obstacle (grey)
and junctions. The new junction pair is the inner switch points
between red and blue paths.

Taking m = 2 in the proposed method (finding one
minimizer with this selection according to the theory of
intermittent diffusion), we find an optimal path shown in
Figure 7, in which the terminal time is T = 0.895 and the
total cost is 353.16, see https://youtu.be/KDKLCW1bFYw
for a movie.

Non-convex obstacles
In the last example, we demonstrate that the algorithm
has the ability to automatically handle obstacles of general
shapes, including non-convex and non-smooth ones. As
shown in Figure 5, a new junction pair is added automatically
to treat the concave part of the obstacle boundary.

We takem = 2 in the algorithm and find a local minimizer
with cost functional 70.3605. see Figure 8. Similar results
can been seen in movies at https://youtu.be/7vgy0fxXoC8 or
https://youtu.be/J0wW2j0ZTQU. It is also worth mentioning
that in Figure 8 the straight line of the computed path is
not tangent to the boundary of obstacle. This scenario is
possible for a optimal path in dynamical environment. This
is different from the case in statical environment.

To sum up, we have shown that Algorithm 1 has the
ability to effectively deal with a variety of 2D environments,
including the undetermined terminal time (Example 3), non-
convex, non-smooth obstacles (Example 4). In addition, we
are able to obtain the global minimizer (Example 1) with a
high probability.

Conclusions
In this work, we propose a new numerical algorithm for
optimal path planning in 2D environments with moving
obstacles. By leveraging the separable structure of optimal
paths, we transfer the problem into a finite dimensional
optimization problem which is solved numerically by initial
value SDEs. We illustrate that our algorithm can efficiently
find a series of minimizers, including the global one. The
accuracy is high while the computation cost is relative low.

Appendix
In this appendix, we give proofs for several properties related
to the Algorithm 1.

Proof of Lemma 2. (2) is a classical problem in calculus of
variation. Since the optimal path satisfies the Euler-Lagrange
equation

∇γL(t, γ, γ̇)− d

dt
∇γ̇L(t, γ, γ̇) = 0⇒ −2

d

dt
(γ̇) = 2γ̈ = 0,

Prepared using sagej.cls

Optimal path-planning 7

which implies that the optimal trajectory is with zero
acceleration. Hence

γi(t) =
xi+1 − xi
ti+1 − ti

(t− ti) + xi

with

Ji(x̃) =
(xi+1 − xi)2

ti+1 − ti
+ c(ti+1 − ti).

Proof of Lemma 3. Indeed, (3) contains three cases:

(a) The speed constraint is active while the path constraint
is not.

‖γ̇(t)‖ = vm, t ∈ [ti, ti+1];

(b) The path constraint is active while the speed constraint
is not. There exists an obstacle Pk, such that

γ(t) ∈ ∂Pk(t), t ∈ [ti, ti+1];

(c) Both path and speed constraints are active. There
exists an obstacle Pk, such that

γ(t) ∈ ∂Pk(t), ‖γ̇(t)‖ = vm, t ∈ [ti, ti+1].

The proofs for cases (a), (c) can be found in li (2016). Here
we only prove case (b). In this case, the control problem (3)
becomes

min

∫ ti+1

ti

(γ̇2(t) + c)dt, (8)

subject to

γ(ti) = xi, γ(ti+1) = xi+1, φk(t, γ(t)) = 0.

(8) can be solved explicitly. We parametrize the boundary
of obstacle Pk by α(u), where u ∈ [0, lk] is an arc-length
parameter and lk is the perimeter of ∂Pk. Hence γ(t) is
represented by its relative position u(t) on the obstacle

γ(t) = α(u(t)) + vk · t.

In this setting, (8) is equivalent to a new form

min{
∫ ti+1

ti

L1(t, u, u̇)dt | u(ti) = ui, u(ti+1) = ui+1},

where

L1(t, u, u̇) = u̇(t)2 + 2(αu(u(t)) · vk)u̇(t) + v2k + c, (9)

and xi = α(ui) + vk · ti, xi+1 = α(ui+1) + vk · ti+1.
Notice that

∂

∂u
L1 = 2(αuu · vk)u̇,

∂

∂u̇
L1 = 2u̇+ 2(αu · vk),

and
d

dt

∂

∂u̇
L1 = 2ü+ 2(αuu · vk)u̇.

From the Euler-Lagrange equation, we have

∂

∂u
L1(t, u, u̇)− d

dt

∂

∂u̇
L1(t, u, u̇) = 0⇒ ü = 0,

which implies that the optimal path has a relative constant
speed.

Finally, we prove that the optimal path in the sample
example contains at most two junctions.

Proof of Proposition. We only need to show that the
optimal path γ∗(t) connecting (t1, x1), the first junction on
P1, and (t2, x2), the last junction on P1, must lie on ∂P1

entirely. Assume this is not true, γ∗ does not lie on ∂P1

entirely, we must have

max
t∈[t1,t2]

φ1(t, γ∗(t)) > 0.

If we denote θ0 = argmaxt1≤t≤t2 φ1(t, γ∗(t)), then θ̃0 =
(θ0, γ

∗(θ0)) is at the outside of ∂P1. Combine the fact that
each optimal sub-arc is also optimal and Lemma 1, there
must exist a line segment, which is part of γ∗ pass though
point θ̃0. In other words, there exists two points θ̃1, θ̃2 on
∂P1, where

θ1 = sup{ t ∈ [t1, t2] | γ∗(t)γ∗(θ0) ⊂ γ∗ },

θ2 = inf{ t ∈ [t1, t2] | γ∗(θ0)γ∗(t) ⊂ γ∗ },

where ab represents a line connecting points a, b with
constant velocity.

For convenience, we denote θ̃1 = (θ1, γ
∗(θ1)), θ̃2 =

(θ2, γ
∗(θ2)). The optimal path can be decomposed as

γ∗ = γ∗(t1, θ1) · θ̃1θ̃0 · θ̃0θ̃2 · γ∗(θ2, t2),

where γ∗(t1, θ1), γ∗(θ2, t2) refers trajectories of γ∗ from
time intervals (t1, θ1), (t2, θ2).

Since θ̃1θ̃0, θ̃0θ̃2 is in the free space and P1(t) is a convex
set in R3 (P1(t) is a cylinder in time-spatial space), then
one can find two points θ̃3 = (θ3, γ

∗(θ3)) ∈ θ̃1θ̃0 and θ̃4 =

(θ4, γ
∗(θ4)) ∈ θ̃0θ̃2, such that θ̃3θ̃4 is also in the free space.

Therefore we can construct another feasible path γ̄,

γ̄ = γ∗(t1, θ1) · θ̃1θ̃3 · θ̃3θ̃4 · θ̃4θ̃2 · γ∗(θ2, t2).

Since the difference of two paths are the triangular which
passes three points θ̃3, θ̃0 and θ̃4,

J(θ̃1θ̃3 · θ̃3θ̃4 · θ̃4θ̃2) < J(θ̃1θ̃0 · θ̃0θ̃2).

Hence
J(γ̄) < J(γ∗),

which contradicts the fact that γ∗ is the optimal path.

References

James E Bobrow (1998). Optimal robot path planning using
the minimum-time criterion. Robotics and Automation, IEEE
Journal of, 4(4):443–450, 1988.

James E Bobrow, Steven Dubowsky, and JS Gibson (1985). Time-
optimal control of robotic manipulators along specified paths.
The international journal of robotics research, 4(3):3–17,
1985.

J. Canny and J. Reif. New lower bound techniques for robot motion
planning problems. In 28th Annual Symposium on Foundations
of Computer Science. IEEE, 49–60, 1987.

Prepared using sagej.cls

8 Journal Title XX(X)

-2 0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 6. Fixed terminal time. These are snapshots of the
global optimal path in an environment with 6 moving obstacles
(grey). The red trajectory represents the optimal path in the free
space, while the blue part indicates that the path travels along
the moving obstacle boundary.

-2 0 2 4 6 8 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 0 2 4 6 8 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 0 2 4 6 8 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 0 2 4 6 8 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 7. Undetermined terminal time. These are snapshots of
the local optimal path in an environment with 2 moving
obstacles. The red trajectory represents the optimal path in the
free space, while the blue part indicates that the path travels
along the moving obstacle boundary.

-3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

Figure 8. Non-convex boundary obstacles. These are
snapshots of the global optimal path. The red part represents
the path in the free space, while the blue part indicates that the
path travels along the moving obstacle boundary.

Shui-Nee Chow, Tzi-Sheng Yang, and Haomin Zhou (2012).
Global Optimizations by Intermittent Diffusion. accepted by
International Journal of Bifurcation and Chaos, 2012.

Shui-Nee Chow, Wuchen Li, Jun Lu, and Haomin Zhou (2015).
Method of evolving junctions: A new approach to optimal
control with constraints. , Automatica, 2017.

Shui-Nee Chow, Wuchen Li, and Haomin Zhou (2016). A Newton-
like algorithm for the shortest path based on the method of
evolving junctions. Communications in mathematical sciences,
14: 1169–1180, 2016.

Dave Ferguson, Maxim Likhachev, and Anthony Stentz (2005). A
guide to heuristic-based path planning. WS6, page 9, 2005.

Paolo Fiorini and Zvi Shiller (1998). Motion planning in dynamic
environments using velocity obstacles. In The International
Journal of Robotics Research. SAGE Publications, 1998.

Kikuo Fujimura and Hanan Samet (1993). Planning a time-minimal
motion among moving obstacles. Algorithmica, 10(1):41–63,
1993.

MH Ghasemi, N Kashiri and M Dardel (2011). Time-optimal
trajectory planning of robot manipulators in point-to-point
motion using an indirect method. In The International Journal
of Robotics Research. SAGE Publications, 2011.

David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen
Rock (2002). Randomized kinodynamic motion planning
with moving obstacles. The International Journal of Robotics
Research, 21(3):233–255, 2002.

Sertac Karaman and Emilio Frazzoli (2011). Sampling-based
algorithms for optimal motion planning. The International
Journal of Robotics Research, 30(7):846–894, 2011.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars
(1996). Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Robotics and Automation,
IEEE Transactions on, 12(4):566–580, 1996.

Sven Koenig and Maxim Likhachev (2002). D* lite. In AAAI
Conference of Artificial Intelligence, 2002.

Sven Koenig and Maxim Likhachev (2005). Fast replanning for
navigation in unknown terrain. Robotics, IEEE Transactions
on, 21(3):354–363, 2005.

Sven Koenig, Maxim Likhachev and David Furcy. Lifelong
planning A* Artificial Intelligence, 155(1): 93–146, 2004.

J.-C. Latombe (1990). Robot motion planning. 1990.
Steven M LaValle (1998). Rapidly-exploring random trees a ew

tool for path planning. 1998.
Steven M LaValle (1999). Planning algorithms. 1999.
Wuchen Li. A study of stochastic differential equations and Fokker-

Planck equations with applications. Phd thesis, 2016.
Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz,

and Sebastian Thrun (2008). Anytime search in dynamic
graphs. Artificial Intelligence, 172(14):1613–1643, 2008.

Y Liu, S Ito, Hwj Lee, and Kl Teo (2001). Semi-infinite
programming approach to continuously-constrained linear-
quadratic optimal control problems. Journal of Optimization
Theory and Applications, 108(3):617–632, 2001.

Jun Lu. Method of evolving junctions: a new approach to path
planning and optimal control. Phd thesis, 2014.

Jun Lu, Yancy Diaz-Mercado, Magnus Egerstedt, Haomin Zhou,
and Shui-Nee Chow (2014). Shortest Paths Through 3-
Dimensional Cluttered Environments. In the proceeding of
International Conference on Robotics and Automation (ICRA),
Hong Kong, 2014.

Yanyan Lu, Zhonghua Xi, and Jyh-Ming Lien (2015). Online
collision prediction among 2d polygonal and articulated
obstacles. The International Journal of Robotics Research,
page 0278364915603225, 2015.

Prepared using sagej.cls

Optimal path-planning 9

Venkatraman Narayanan, Mike Phillips, and Maxim Likhachev
(2012). Anytime safe interval path planning for dynamic
environments. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 4708–
4715. IEEE, 2012.

Dennis Nieuwenhuisen, Jur Van den Berg and Mark Overmars
(2007). Efficient path planning in changing environments.
Intelligent Robots and Systems, 2007, IROS 2007. IEEE/RSJ
International Conference on.

Michael Otte and Emilio Frazzoli (2015). RRTX: Asymptotically
optimal single-query sampling-based motion planning with
quick replanning, In The International Journal of Robotics
Research. SAGE Publications, 2015.

Chonhyon Park, Jia Pan, and Dinesh Manocha (2013). Real-
time optimization-based planning in dynamic environments
using GPUs. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 4090–4097. IEEE, 2013.

Mike Phillips and Maxim Likhachev (2011). SIPP: Safe interval
path planning for dynamic environments. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on,
pages 5628–5635. IEEE, 2011.

Michael Posa, Cecilia Cantu and Russ Tedrake (2014). A direct
method for trajectory optimization of rigid bodies through
contact. In The International Journal of Robotics Research.
SAGE Publications, 2014.

John Reif and Micha Sharir (1994). Motion planning in the
presence of moving obstacles. Journal of the ACM (JACM),
41(4):764–790, 1994.

Kang G Shin and Neil D McKay (1985). Minimum-time control
of robotic manipulators with geometric path constraints.
Automatic Control, IEEE Transactions on, 30(6):531–541,
1985.

Anthony Stentz (1994). Optimal and efficient path planning for
partially-known environments. In Robotics and Automation,
1994. Proceedings., 1994 IEEE International Conference on,
pages 3310–3317. IEEE, 1994.

Anthony Stentz (1995). The focussed Dˆ* algorithm for real-time
replanning. In IJCAI, volume 95, pages 1652–1659, 1995.

Klaus Sutner and Wolfgang Maass (1988). Motion planning among
time dependent obstacles. Acta Informatica, 26(1-2): 93–122,
1988

Jur van den Berg and Mark Overmars (2008). Planning time-
minimal safe paths amidst unpredictably moving obstacles. The
International Journal of Robotics Research, 2008.

Jur van den Berg (2007). Path planning in dynamic environments.
Phd thesis, 2007.

Dmitry S Yershov and Emilio Frazzoli (2015). Asymptotically
optimal feedback planning using a numerical Hamilton-
Jacobi-Bellman solver and an adaptive mesh refinement.
In The International Journal of Robotics Research. SAGE
Publications, 2015.

Matthew Zucker, James Kuffner, and Michael Branicky (2007).
Multipartite RRTs for rapid replanning in dynamic environ-
ments. In Robotics and Automation, 2007 IEEE International
Conference on, pages 1603–1609. IEEE, 2007.

Prepared using sagej.cls

	Introduction
	Problem Description
	The Algorithm
	Numerical experiments
	A simple case
	Multiple obstacles and fixed terminal time
	Unknown terminal time
	Non-convex obstacles

	Conclusions
	Appendix

