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a b s t r a c t

The proper orthogonal decomposition (POD) method has been widely used to construct
efficient numerical surrogate models for computationally intensive applications in control
and optimization. An inherent challenge with this method is that POD basis generation can
be computationally expensive due to thehuge size of the input snapshot data obtained from
typical high-fidelity, large-scale dynamic system simulations. However, if the process can
be distributed into much smaller tasks over multiple processors in parallel, computational
time can be drastically reduced. In this paper, we put forth a novel partitioned method
for generating the POD basis from snapshot data. This method preserves the distributed
nature of the data and takes advantage of parallelism for computation. Additionally, it
greatly reduces subtask communication volume. Two numerical examples are presented
that demonstrate the effectiveness of the new method.

Published by Elsevier B.V.

1. Introduction

The requirement for repeated numerical simulations of large-scale dynamical systems presents immense challenges in
many scientific and engineering applications. To alleviate the tremendous computational cost of such numerical simulations,
the proper orthogonal decomposition (POD) method has seen wide use to produce computationally efficient reduced-order
models (ROMs). The method extracts a set of POD basis functions from given data (a so-called snapshot matrix), and uses a
small subset of leading basis functions to construct state variable approximations.

The snapshot data feeding a POD basis are usually collected from one or several runs of high-fidelity numerical sim-
ulations of the original system. Due to the complexity of such a system, the number of degrees of freedom (DOF) in the
simulations can be extremely large. For instance, to resolve the entire spatio-temporal range of scales in 3D turbulent flows,
O(Re9/4) grid points are needed, where Re is the Reynolds number [1]. Hence, the number of DOF is already on the order
of millions even for a moderate Re = 103. Therefore, parallel programs are usually designed to break such a large-scale
problem into discrete ‘‘chunks’’ of work and allocate them to multiple tasks, which can be implemented simultaneously in
a multiprocessor environment. As one of the most popular ways to partition the work, the domain decomposition method
(DDM) has beenwidely studied [2,3]. Instead of solving the original problem directly on thewhole domain, the DDM consid-
ers modified problems over small (overlapping or non-overlapping) subdomains. Each subdomain problem runs separately
and only small-scale problems with few unknowns per subdomain are used to coordinate solutions among the adjacent
subdomains. In other words, this method allows each processor of a parallel computer to independently/simultaneously
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handle individual subdomains and integrate in time locally. Once the time integration is complete, the simulation data is
then distributed over the multiprocessors. To fully represent the typical complex dynamical system, tens of thousands of
snapshots must be selected. For a parametric system, the number of snapshots can be much larger in order to describe
various behavior of the system as the physical parameters vary [4]. As a result, after the numerical simulations, the final
snapshot data, distributed across multiple processors, can become unmanageably vast.

The POD basis typically comprises the left singular vectors of the snapshot matrix, which can be obtained by singular
value decomposition (SVD) [5]. When the snapshot matrix is tall and skinny (the number of DOF is much greater than that
of selected snapshots), the method of snapshots (MOS) is an efficient alternative way to compute the POD basis [6]. This
method, instead of computing an SVD of the snapshotmatrix, computes the eigenvectors of the snapshot covariancematrix.
The POD basis is then calculated by post-multiplying the snapshot matrix with these eigenvectors.

In the domain decomposition setting, both the SVD andMOS can become computationally impractical (if not impossible)
for generating POD basis functions of complex systems because of memory management issues. First, assembly of the
snapshots requires heavy communication between the processor managing aggregation and the subdomain processors.
Second, the large size and density of the resulting snapshot matrix can cause these methods to burden a single processor
with an excessively heavy load. Therefore, several algorithms have been developed to alleviate these difficulties.

At present, several parallel SVD algorithms have been developed [7,8], but their utility is limited to sparse matrices. A
partitioned SVD approach was proposed in [9], which first extracts a small number of dominant right singular vectors from
each local data set (i.e. subdomain). These vectors are aggregated from each processor to produce a small matrix on a single
processor. The right singular vectors of this newmatrix are used to approximate those of the original snapshot matrix based
on a hypothesis that right singular vectors of the local data tend to stay the same as those of the full snapshot matrix, which
is questionable in general. To remove this discrepancy, a filtered subspace iteration is used in [9]. However, this iterative
algorithm still introduces a step that applies SVD on a global matrix (with the same number of rows as DOF in the snapshot
matrix).

In this work, we propose a new partitioned method of snapshots for the POD computation, which preserves the
distributed nature of the snapshot data in the multiprocessor environment and requires low communication overhead.
Compared with the partitioned SVD algorithm in [9], the new method does not rely on any assumptions of a relationship
between local singular vectors and global singular vectors, and still yields an accurate POD basis approximation.

The rest of this paper is organized as follows: In Section 2, we summarize the existing tools for generating the POD basis
and propose a newpartitionedmethod of snapshots. Numerical tests are presented in Section 3,where two sample problems
(Burgers equation and gravity current) are considered to verify the effectiveness of the new method. Concluding remarks
are made in Section 4.

2. The POD basis

Suppose the numerical simulation of a large-scale dynamical system has been executed by parallel computing in a
distributed memory computer system. The partition of computational work is based on a domain decomposition and the
resulting subdomain information is allocated over p processors. The system is integrated in time locally on each processor
during the simulations. At the end of the time integration, the snapshot matrix remains distributed over the p processors.

Define by Si the ni × m matrix representing the time history of the state variables on the ith processor, where ni is the
number of local DOF and m is the number of snapshots. We assume each DOF is native to exactly one processor, i.e., no
overlap DOF is shared among processors. If an overlapping domain decomposition method is considered, a straightforward
mapping can be applied to extract Si from the local data. The full snapshotmatrix S can be assembled from the localmatrices,
that is,

S =

Sᵀ
1, S

ᵀ
2, . . . , S

ᵀ
p

ᵀ
,

whose shape is n × m with n =
p

i=1 ni.
Given the snapshot matrix, the POD method seeks a low-dimensional basis that could be used to well-approximate the

state variables. POD basis functions are typically the left singular vectors of the matrix [10], which can be computed by SVD
directly. However, with the data distributed over multiple processors, a brute force approach requires moving all the local
data onto a single processor to assemble the large, dense snapshot matrix and perform the SVD on it.

In distributed memory parallel computers, distinct memory is allocated to each processor which has fast access only
to its own local memory. Communication is required for a processor to access data stored on another processor’s local
memory. Such communication takes s + ran time, where s is the latency, n is the number of bytes being transferred, and
ra is the incremental time per 1 byte. For example, in a typical workstation cluster, s = 950 µs and ra = 7 µs/word
(see [11, Table 2.1]). Communication cost can be even greater when emerging architectures, e.g. GPUs, are employed, where
there is a significant cost in communicating data between the host and device. Indeed, any process that requires massive
processor–processor communication creates a heavy time burden.

Therefore, efficient algorithms need to be developed that avoid such dramatic computational cost and communication
effort to generate the POD basis. To this end, we develop a new partitioned method of snapshots, which takes advantage of
the parallelism of the simulations. In the following, we first review several existing methods, then present a new approach.



376 Z. Wang et al. / Journal of Computational and Applied Mathematics 307 (2016) 374–384

For comparison, two criteria are considered: (i) computational complexity in terms of floating-point operations (flops); and
(ii) communication effort in terms of floating points to be transferred.

2.1. Existing techniques

Singular value decomposition [12]. In general, when the matrix size is small, one can use SVD directly for generating the POD
basis. The SVD of the snapshot matrix S is expressed as

S = U6Vᵀ,

where U, V are unitary and 6 is diagonal. The POD basis is composed of column vectors, where the jth basis function ϕj is
the jth column of U.
Method of snapshots [6]. In most cases, the snapshot matrix is tall and skinny (m ≪ n) representing many more DOF than
snapshots. Instead of applying SVD directly (which is computationally expensive), one can utilize the method of snapshots.
This method manipulates a small eigenvalue problem first as follows:

SᵀS zj = λj zj, for j = 1, . . . , r, (1)

where SᵀS is known as the snapshot covariance matrix with sizem × m. Note that

SᵀS = V62Vᵀ
⇔ (SᵀS)V = V62. (2)

Comparing (2) with (1), we see that the right singular vectors of S are the same as the eigenvectors of SᵀS; and the singular
values of S are the positive square roots of the eigenvalues of SᵀS. Once the eigenvector zj in (1) is obtained, the jth POD basis
function ϕj is determined by

ϕj =
1
λj

m
ℓ=1

(zj)ℓ S(·,ℓ), 1 ≤ j ≤ r, (3)

where (zj)ℓ is the ℓ-th component of the jth eigenvector zj of SᵀS and S(·,ℓ) is the ℓ-th column of S.
Partitioned singular value decomposition [9]. Based on the assumption that right singular vectors of the local data tend to stay
the same as those of the full snapshot matrix, the partitioned singular value decomposition (PSVD) method was developed
by Beattie et al. in [9]. First, instead of assembling the full snapshot matrix, their method computes an SVD of local data Si
on each processor, that is,

Si = Ui6iV
ᵀ
i . (4)

A matrix V is then constructed by putting together leading right singular vectors of Si over all processors

V =

Vq
1,V

q
2, . . . ,V

q
p


,

where Vq
i = Vi(·,1:q) consists of q dominant right singular vectors. It was argued in [9] that V is a good sample set for the

right singular vectors of the full data S, since it contains the leading right singular vectors on all subdomains. Therefore, the
left singular vectors of V ,V, can be regarded as an approximation of V. Note that because the size of V is small,m× pq, the
SVD of V can be completed at a low computational cost. Take the first r columns ofV,Vr with q ≤ r ≤ 2q. The POD basisU
is approximated by the left singular vectors of SVr .

Algorithm 1: Partitioned Singular Value Decomposition (Non-iterative)
Let Si be local data on the ith processor.
for i = 1 to p do

[Ui, 6i,Vi] = svd(Si) locally;
put Vq

i in V;
end
do [V, ∼, ∼] = svd(V);
takeVr

=V(·, 1 : r);
calculate SVr

= [S1Vr , . . . , SpVr
] locally;

do [U, ∼, ∼] = svd(SVr ).

Since in general there exist discrepancies between the right singular vectors of the local data and those of the full snapshot
data, in order to improve the method, Beattie et al. designed in [9] a filtered subspace iteration algorithm.
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Partitioned method of snapshots. Consider the snapshot covariance matrix

SᵀS =

p
i=1

Sᵀ
i Si. (5)

Taking advantage of the parallelism of the simulations, to generate this matrix, one can first compute Di = Sᵀ
i Si on each

processor, then transfer Di to a single processor for addition followed by solution of the eigenvalue problem (1). The
components of POD basis functions on each subdomain are computed by vector multiplications of the eigenvectors V and
the local data Si on each processor:

ϕi
j(·) =

1
λj

m
ℓ=1

(vj)ℓ Si,(·,ℓ), 1 ≤ j ≤ r, 1 ≤ i ≤ p. (6)

The process is outlined in Algorithm 2.

Algorithm 2: Partitioned Method of Snapshots (PMOS)
Let Si be local data on the ith processor.
for i = 1 to p do

Evaluate Di = Sᵀ
i Si locally;

end
do D =

p
i=1 Di;

do [V, 6] = eig(D);
choose r s.t. 1 −

r
i=1 λi/

d
i=1 λi < ϵ1;

for i = 1 to p do
for j = 1 to r do

calculate POD basis functions ϕi
j =

1√
λj
SiV(·,j) locally;

end
end

This partitioned method yields the same basis functions as the standard MOS but makes use of the distributed nature of
the snapshots so that some dot products or matrix–vector products can be performed in parallel. This idea is common in
modern linear algebra frameworks such as PETSc or Trilinos and has been implemented in several open-source applications,
for example, Feel++ and rb00mit.
Comparisons among existing approaches. To measure computational cost of the preceding algorithms, we compare the
number of flops needed in each process. In this study, we denote by flop a single elementary floating-point operation
including sum, subtraction, multiplication or division. We also express complexity by ignoring low-order terms when
counting flops in a given algorithm.

Assumption 2.1. Assume the following relationships hold for POD basis number r , subdomain number p, and local DOF
number ni:

rp ≪

p
i=1

ni and (rp)2 ≪

p
i=1

n2
i .

It is known that computing the SVD of an n × m matrix has complexity O(n2m + nm2
+ m3) (see, e.g., [12,13]). The

computational complexity of MOS is O(nm2
+ rnm + m3), where O(nm2) flops are needed for evaluating SᵀS, O(m3) flops

for the eigen-decomposition of SᵀS (see, e.g., [12,14]) andO(rnm) flops for the calculation of the POD basis by Eq. (3). For the
PSVD, we only estimate the non-iterative version (Algorithm 1). Note that in order to improve POD accuracy for PSVD, the
iterative method must be utilized [9], which increases the computational cost. The computational complexity of the non-
iterative algorithm is O

p
i=1(n

2
i m + nim2

+ m3
+ nirm)


+ O


r3p3 + n2r + nr2 + r3


, where q ≤ r ≤ 2q: the execution

of SVD on local matrices Si in parallel requires O
p

i=1(n
2
i m + nim2

+ m3)

flops in total, the computational cost of SVD

on V is O

m2rp + mr2p2 + r3p3


, the matrix multiplication for SVr needs O

p
i=1 nirm


flops, and the SVD of SVr on a

single processor at the last step of the algorithm needs O

n2r + nr2 + r3


flops. Note that we ignore O


m2rp + mr2p2


in

the total complexity based on Assumption 2.1. In each of the above cases, the existing algorithm leads to computational
complexity proportional to the number of DOF or even the square of the number of DOF. Much of the PMOS process has
similar computational complexity to the standardMOS. For the first step, evaluatingDi = Sᵀ

i Si has complexityO(
p

i=1 nim2)

and D =
p

i=1 Di has complexity O((p − 1)m2). For the second step, evaluating the eigenvalue decomposition of D has
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complexity O(m3). In the third step, calculating the POD basis has complexity O(
p

i=1 nirm). Note that p ≪
p

i=1 ni by
Assumption 2.1 and we have complexity O(

p
i=1 nim2

+
p

i=1 nirm+m3). Despite such similarities, the first and last steps
of the PMOS are implemented locally on multiple processors for significant savings in processing time.

To estimate the communication effort in the SVD, MOS and PSVD algorithms, we count the number of floating points in
the matrices to be transferred among multiple processors.

In SVD and MOS, the full snapshot matrix must be assembled. Because the snapshot matrix Sn×m is large and dense,
the assembling process is time consuming. For example, for a complex system with 106 DOF and 10 distinct parameters,
if 103 snapshots are collected for each parameter, then the size of the snapshot matrix will be 106

× 104. If entries of the
matrix are double-precision floating points in the computer system, the amount of data transferred to assemble the matrix
is approximately 70 GB. The non-iterative PSVD method requires the dominant right singular vectors Vq

i , the dominant left
singular vectorsVr and the matrices SiVr to be transferred among multiple processors. The total number of entries in these
matrices is nr + mr + mpq. When r = 50, the size of this data is approximately 3.7 GB. When iterative PSVD is used, the
amount of data transferred increases significantly. While the standard MOS requires that all local snapshot matrices Si be
moved to a single processor, PMOS only requiresDi andVr to be transferred among processors. Furthermore, the total size of
Di and Vr is pm2

+mr , which is much smaller than the size of all local matrices, nm in the typical case of very large number
of DOF n. Therefore, the PMOS is often more efficient in processor-to-processor communication than the standard MOS.
However, when the number of snapshotsm becomes large (on order of n), this method still imposes a heavy communication
burden (on order ofm2 flops for fixed r and p).

In summary, when DOF and snapshot counts are large, the existing algorithms are burdened with either high computa-
tional complexities or high-volume data communications. Since the efficiency of computations and communications in POD
basis generation has a significant impact on the applications of ROMs in the domain decomposition setting, we propose a
novel partitioned method of snapshots, which reduces data transfer beyond PMOS (Algorithm 2) while achieving desirable
accuracy.

2.2. Approximate partitioned method of snapshots

This approach is motivated by the following observations: Based on the SVD of a local snapshot matrix Si, the covariance
matrix can be expressed as

SᵀS (5)
=

p
i=1

Vi6
2
i V

ᵀ
i

=

V16

ᵀ
1,V26

ᵀ
2, . . . ,Vp6

ᵀ
p


61V

ᵀ
1

62V
ᵀ
2

...
6pVᵀ

p


= WWᵀ, (7)

where

W =

V16

ᵀ
1,V26

ᵀ
2, . . . ,Vp6

ᵀ
p


.

Clearly, the eigenvectors of SᵀS coincidewith the left singular vectors ofW. Thus, we propose a new approximate partitioned
method of snapshots, outlined in Algorithm 3.

Here the SVD of local data Si is first performed on each processor and ri is chosen such that the singular value σ
ri+1
i is

less than a prescribed tolerance ϵ0, i.e.,

σ
ri+1
i < ϵ0, for i = 1, . . . , p.

Let Vri
i be the first ri columns of Vi and 6

ri
i be the upper-left ri × ri block matrix of 6i. Define

Wr
=


Vr1
1 (6

r1
1 )ᵀ,Vr2

2 (6
r2
2 )ᵀ, . . . ,Vrp

p (6
rp
p )ᵀ

.

Note that Wr(Wr)ᵀ
=
p

i=1 V
ri
i (6

ri
i )2(Vri

i )ᵀ is a good approximation of WWᵀ for a small tolerance ϵ0. Thus, its eigenvectors
and eigenvalues emerge as good approximations of the eigenvectors and eigenvalues of WWᵀ and SᵀS. The eigenvectors of
Wr(Wr)ᵀ can be obtained by taking the SVD ofWr ,

Wr
= X3Yᵀ,

where 3 = diag(λ1, . . . , λd). The right singular vectors and singular values of the full snapshot matrix S can then be
approximated by

V ≈ X and 6 ≈ 3.
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Algorithm 3: Approximate Partitioned Method of Snapshots (APMOS)
Let Si be local data on the ith processor.
for i = 1 to p do

[Ui, 6i,Vi] = svd(Si) locally;
select ri, s.t., σ

ri+1
i < ϵ0;

take Vri
i = Vi, (·, 1:ri) and 6

ri
i = 6i, (1:ri, 1:ri) ;

end

assemble Wr
=


Vr1
1 (6

r1
1 )ᵀ, . . . ,Vrp

p (6
rp
p )ᵀ

;

do [X, 3, Y] = svd(Wr );
choose r , s.t. 1 −

r
i=1 λi/

d
i=1 λi < ϵ1;

for i = 1 to p do
for j = 1 to r do

calculate POD basis functionsϕi
j =

1√
λj
SiX(·,j) locally;

end
end

The components of POD basis functions on each subdomain are computed by vector multiplications of the left singular
vectors in X and the local data Si on each processor,

ϕi
j(·) =

1
λj

m
ℓ=1

(xj)ℓ Si,(·,ℓ), 1 ≤ j ≤ r, 1 ≤ i ≤ p. (8)

Thismethod provides an opportunity for nearly end-to-end distributed/parallel data processing. Each processor performs
an SVD on its local data. Only a small amount of data must be transferred from the local data processors to a single
processor for SVD computation of a relatively small matrix, Wr . The final POD basis components are then calculated by
local matrix/vector multiplication.

Assumption 2.2. Assume the following relationships hold:

p
i=1

ri ≪

p
i=1

ni,

p
i=1

r2i ≪

p
i=1

n2
i , and


p

i=1

ri

2

≪

p
i=1

n2
i .

In Algorithm 3, the first step requires an SVD of local data Si with complexity O(
p

i=1(n
2
i m+ nim2

+m3)). Then Vri
i 6

ri
i is

evaluatedwithO(
p

i=1 mr2i ) flops. The second step requires an SVDofWr with the complexityO(m2p
i=1 ri+m(

p
i=1 ri)

2
+

(
p

i=1 ri)
3). The third step computes the POD basis components with cost O(

p
i=1 nirm). Based on Assumption 2.2, we may

ignore O(
p

i=1 mr2i + m2p
i=1 ri + m(

p
i=1 ri)

2) in the total computational cost leaving the complexity of Algorithm 3 to
be O(

p
i=1(n

2
i m + nim2

+ m3
+ nirm) + O(

p
i=1 ri)

3). Furthermore, as discussed, the first and last steps of this algorithm
are executed in parallel.

The dominant communication cost for this approach comes from the assembly of Wr , where the matrix Vri
i (6

ri
i )ᵀ is sent

from each ith local processor to a single processor, and an m × r matrix X r along with an r × r diagonal matrix Λr are
transferred back to each processor. The total size of these matrices ism

p
i=1 ri + mr + r .

Note that, compared with Algorithm 2, the number of floating points to be transferred is reduced to O(m
p

i=1 ri) from
O(m2). When m is large as in many ROMs for complex systems, this new partitioned method of snapshots will greatly
decrease the communication cost because

p
i=1 ri is often much smaller thanm.

Remark 2.1. When computing Vri
i 6

ri
i , one can choose either SVD or MOS depending on the dimension of the local data. To

shorten the presentation, we assume the SVD is used for all local data.

Using perturbation theory, we now show that APMOS produces an arbitrarily close approximation to SᵀS.

Theorem 2.1. Let λj be the jth largest eigenvalue of Wr(Wr)ᵀ and λj the jth largest eigenvalue of W(W)ᵀ. For 1 ≤ j ≤ m,

|λj − λj| ≤ p ϵ2
0 . (9)
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Table 1
Comparison of computational complexity and communication effort. Terms in curly brackets represent operations to be executed
in parallel.

Method Complexity (flops) Communication

SVD O(n2m + nm2
+ m3) nm

MOS O(nm2
+ rnm + m3) nm

PSVD (non-iterative)

O
p

i=1(n
2
i m + nim2

+ m3
+ nirm)


+ O


r3p3 + n2r + nr2 + r3


nr + mr + mpq

PMOS

O(
p

i=1 nim2
+
p

i=1 nirm)


+ O(m3) m2p + mr

APMOS

O
p

i=1(n
2
i m + nim2

+ m3
+ nirm)


+ O


(
p

i=1 ri)
3


m
p

i=1 ri+mr+r

Proof. Let A = Wr(Wr)ᵀ and δK = W(W)ᵀ
− Wr(Wr)ᵀ. Since A and δK are m × m symmetric matrices, by Corollary 8.1-3

in [12], the distance between individual eigenvalues of A and A + δK can be bounded as follows:

λm(δK) ≤ λj(A) − λj(A + δK) ≤ λ1(δK).

Then

|λj(A) − λj(A + δK)| ≤ ∥δK∥2,

as the 2-norm of the symmetric matrix δK is equal to its spectral radius, which is the maximum value of |λ1(δK)| and
|λm(δK)|. Since λj = λj(A + δK), we have |λj − λj| ≤ ∥δK∥2. Based on the construction ofWr , we have

δK =

p
i=1

Vc
i (6

c
i )

2(Vc
i )

ᵀ,

where Vc
i = Vi − Vri

i and 6c
i = 6i − 6

ri
i . Since ∥Vc

i (6
c
i )

2(Vc
i )

ᵀ
∥2 ≤ ϵ2

0 , we have

∥δK∥2 ≤ p ϵ2
0 ,

which implies

|λj − λj| ≤ p ϵ2
0 .

This completes the proof. �

Remark 2.2. Even on serial computers, the proposed partitioned MOS can provide flexibility in treating potential memory
issues that may arise when processing large snapshot data.

2.3. Comparison

We now tabulate the computational complexity and communication effort associated with each algorithm we have
discussed (Table 1).

Clearly, the partitioned methods of snapshots (Algorithms 2 and 3) are highly parallel, potentially distributing the bulk
of their computation tasks over multiple local processors. When the number of snapshots m is large, Algorithm 3 requires
a much lower communication effort than the other approaches. In general, choosing between one of these two algorithms
should improve the efficiency of producing ROMs for complex dynamical systems modeled on distributed memory parallel
computers.

3. Numerical tests

In this section, we illustrate the proposed method in two different test cases: (i) the one-dimensional (1D) Burgers
equation; and (ii) a two-dimensional (2D) gravity current model that exhibits complex flow structures. Since Algorithm
2 outputs exact POD basis functions, we only provide examples that demonstrate the performance of Algorithm 3.

3.1. Burgers equation

We first consider the Burgers equationut − ν uxx + u ux = f in Ω × (0, T ],
u(x, 0) = u0(x) in Ω,
u(x, t) = 0 on ∂Ω × (0, T ],

(10)
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Fig. 1. The first, fifth and tenth POD basis functions for the 1D Burgers equation with p = 4. The exact POD basis functions (blue) and the POD basis
generated by APMOS (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
The 1D Burgers equation. Errors in the POD basis functions generated by
APMOS with p = 4 and different values of tolerance ϵ0 .

Error ϵ0 = 0.1 ϵ0 = 0.01 ϵ0 = 0.001

∥ϕ1 −ϕ1∥ 1.4466e−10 5.5463e−13 3.3858e−15
∥ϕ2 −ϕ2∥ 1.8714e−09 6.6758e−12 7.8371e−14
∥ϕ3 −ϕ3∥ 1.6335e−08 4.0637e−11 5.0690e−13
∥ϕ4 −ϕ4∥ 4.5670e−08 3.3525e−10 1.8772e−12
∥ϕ5 −ϕ5∥ 9.0292e−08 8.5365e−10 6.2636e−12
∥ϕ6 −ϕ6∥ 2.8252e−07 1.6294e−09 1.0054e−11
∥ϕ7 −ϕ7∥ 4.5482e−07 2.5468e−09 1.8999e−11
∥ϕ8 −ϕ8∥ 6.2751e−07 2.6742e−09 1.2333e−11
∥ϕ9 −ϕ9∥ 1.4773e−06 2.0758e−09 4.3521e−11
∥ϕ10 −ϕ10∥ 9.5416e−07 8.4396e−09 2.0516e−10

Table 3
The 1D Burgers equation. Maximum errors in the eigenvalues of snapshot
covariance matrix generated by APMOS with p = 4 and different values of
tolerance ϵ0 .

Error ϵ0 = 0.1 ϵ0 = 0.01 ϵ0 = 0.001

maxj∈[1,10] |λj − λj| 3.8796e−04 1.9605e−06 3.1010e−08

where Ω = [0, 1] and T = 1. We specify a small diffusion parameter ν = 1 × 10−3 and the discontinuous initial condition

u0(x) =


1 if x ∈


0,

1
2


0 if x ∈


1
2
, 1


.

(11)

The domain decomposition simulation is first performed to obtain snapshots over 4 processors, in which the backward
Euler method (time step 1t = 1 × 10−3) and linear finite elements (mesh size h = 1/1024) are chosen for time and space
discretization, respectively. Snapshots are collected at every time step. Thus, the size of the snapshotmatrix S is 1025×1001.

For comparison, we first compute the POD basis from the full snapshot matrix. The first r0 = 10 POD basis functions
capture 99.14% of the system’s kinetic energy. We then perform Algorithm 3, where we select ri right singular vectors from
the local data such that σ

ri+1
i < ϵ0 on each subdomain, generate Wr and do SVD on Wr . After that, subdomain-specific

components of the POD basis functions on each subdomain are computed respectively. To test the new algorithm, we vary
the values of ϵ0. When ϵ0 = 10−1, the shape of Wr is 1001 × 142; ϵ0 = 10−2, the shape of Wr is 1001 × 203; ϵ0 = 10−3,
the shape ofWr is 1001 × 262.

The first, fifth and tenth approximate POD basis functions when ϵ0 = 10−1 are plotted in Fig. 1 along with the corre-
sponding exact POD basis functions. The L2-norms of the differences between the first ten basis functions from APMOS and
the exact basis functions are listed in Table 2. These comparisons demonstrate that the outcomes of APMOS (Algorithm 3)
yield accurate basis function approximations for all ϵ0 values. As expected, the accuracy increases with decreasing ϵ0.

The maximum error in the top ten eigenvalues of the snapshot covariance matrices generated by APMOSwith p = 4 and
different ϵ0 are listed in Table 3. It is seen that maxj∈[1,10] |λj −λj| is bounded by pϵ2

0 , which is consistent with the conclusion
drawn in Theorem 2.1.

When we vary the number of processors used in the numerical simulations, the difference between the exact POD basis
and APMOS results when ϵ = 10−2 are listed in Table 4, which demonstrates that the approximation errors maintain
consistent order as the number of processors increases.
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Table 4
The 1D Burgers equation. Errors in the POD basis functions generated by
APMOS when ϵ0 = 0.01 and the number of subdomains p varies.

p 2 3 4

∥ϕ1 −ϕ1∥ 1.6247e−13 4.7123e−13 5.5463e−13
∥ϕ2 −ϕ2∥ 8.0568e−12 1.2579e−11 6.6758e−12
∥ϕ3 −ϕ3∥ 6.6596e−11 8.2510e−11 4.0637e−11
∥ϕ4 −ϕ4∥ 8.9645e−11 3.2307e−10 3.3525e−10
∥ϕ5 −ϕ5∥ 5.5112e−10 3.3758e−10 8.5365e−10
∥ϕ6 −ϕ6∥ 9.3517e−10 1.5524e−09 1.6294e−09
∥ϕ7 −ϕ7∥ 1.8012e−09 1.8414e−09 2.5468e−09
∥ϕ8 −ϕ8∥ 3.0421e−09 4.2488e−09 2.6742e−09
∥ϕ9 −ϕ9∥ 4.5354e−09 9.0200e−09 2.0758e−09
∥ϕ10 −ϕ10∥ 6.6651e−09 1.2987e−09 8.4396e−09

Fig. 2. Gravity current. The temperature snapshot at the final time.

3.2. Gravity current

A gravity current is the flow exhibited in two different fluids driven by the gravitational force acting on the density
difference between the fluids. Such a current naturally occurs in the atmosphere and oceans. For example, gravity currents
flow down a sloping sea floor in the Strait of Gibraltar and the Denmark Strait. They are key components of thermohaline
circulation, which in turn is important to climate and weather studies. Numerical studies of ocean gravity currents based on
a nonhydrostatic approximation have been performed in [15]. Themathematicalmodel uses the Boussinesq approximation:

∂u
∂t

− 1u + (u · ∇)u + ∇p − Ra Tk = 0,

∇ · u = 0,
∂T
∂t

+ (u · ∇)T − Pr−11T = 0,

(12)

where u = (u, v, w) is the velocity vector, p is the pressure, T is the temperature deviation from a background value,
and k is the unit normal vector in the vertical direction. The Rayleigh number, Ra = (gβ1TH3)/ν2, measures the ratio of
buoyancy and viscous forces, where g is the gravitational acceleration, β is the temperature contraction coefficient, 1T is
the amplitude of the temperature range, and H is the domain depth. Pr = ν/K is the Prandtl number, which measures the
ratio of viscosity and temperature diffusivity.

In the 2D numerical simulations carried out in [15], Ra = 5 × 106 and Pr = 7. The spatial domain is configured with
a horizontal length of L = 10 km. The depth of the water column ranges from K = 400 m at x = 0 to H = 1000 m at
x = 10 km over a constant slope. The slope angle is θ = 3.5°, which is within the general range of oceanic overflows, such as
the Red Sea overflow entering the Tadjura Rift. The velocity has a homogeneous Dirichlet boundary condition on the bottom,
nonhomogeneous Dirichlet at the inlet, free slip on top, and zero normal flux at the outlet. The model is driven by velocity
and temperature forcing profiles at the inlet. The spectral element method is used for the spatial discretization where the
mesh contains n = 14 400 grid points and the time step is 1t = 10−6. The data set containsm = 900 snapshots (see Fig. 2).

For comparison purposes, we first compute the POD basis from the full snapshot matrix. The first r0 = 10 POD basis
functions capture 88.10% of the kinetic energy in the simulation. We next use the APMOS method (Algorithm 3) on 10 sub-
domains. We select ri right singular vectors from the local data such that σ

ri+1
i < ϵ0 on each subdomain, generate Wr and

do an SVD of Wr . As in the first example, components of the first 10 POD basis functions on each subdomain are computed
respectively. To test Algorithm 3, we vary the values of ϵ0. The shapes of Wr are 900 × 357 when ϵ0 = 10−1, 900 × 389
when ϵ0 = 10−2, and 900 × 406 when ϵ0 = 10−3.

The first, fifth and tenth POD basis functions obtained from Algorithm 3 when ϵ0 = 10−1 are plotted in Fig. 3. The errors
in the POD basis approximated by APMOS are listed in Table 5 as ϵ0 changes. Again, we observe that APMOS yields accurate
basis function approximations for all ϵ0 values. As expected, the accuracy increases with decreasing ϵ0.

Maximum eigenvalue errors of the APMOSmethod when p = 10 are listed in Table 6. Again, we see that maxj∈[1,10] |λj −

λj| is bounded by pϵ2
0 , supporting the conclusion drawn in Theorem 2.1.

Similarly, when we vary the number of processors used in the numerical simulations, the difference between the exact
POD basis functions and results of APMOS when ϵ = 10−2 (listed in Table 7) show retention of high accuracy. This time we
see that the approximation accuracy degrades somewhat compared to p = 2 or even p = 6 but still holds an accuracy on
the order of 10−8 when the number of processors increases to 10.
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Fig. 3. Gravity current. From the top: the first, fifth and tenth POD basis functions of the temperature generated by APMOS.

Table 5
Gravity current. Errors of the POD basis functions generated by APMOS with
p = 10 and different values of ϵ0 .

Error ϵ0 = 0.1 ϵ0 = 0.01 ϵ0 = 0.001

∥ϕ1 −ϕ1∥ 1.3773e−07 1.4887e−10 8.0819e−13
∥ϕ2 −ϕ2∥ 3.1577e−07 3.9002e−09 1.3181e−11
∥ϕ3 −ϕ3∥ 8.4477e−07 1.6343e−08 8.4092e−11
∥ϕ4 −ϕ4∥ 1.5442e−06 5.1908e−08 2.0944e−10
∥ϕ5 −ϕ5∥ 1.9823e−06 6.5121e−08 2.7802e−10
∥ϕ6 −ϕ6∥ 2.3384e−06 4.5175e−08 5.5131e−10
∥ϕ7 −ϕ7∥ 4.5517e−06 2.9049e−08 2.6552e−09
∥ϕ8 −ϕ8∥ 2.2137e−05 3.9492e−08 2.9162e−09
∥ϕ9 −ϕ9∥ 2.3534e−05 4.2363e−08 1.1833e−09
∥ϕ10 −ϕ10∥ 5.0482e−06 2.5171e−08 3.1499e−10

Table 6
Gravity current. Errors of the eigenvalues of snapshot covariance matrix
generated by APMOS with p = 10 and different values of ϵ0 .

Error ϵ0 = 0.1 ϵ0 = 0.01 ϵ0 = 0.001

maxj∈[1,10] |λj − λj| 3.9457e−03 2.3582e−05 1.3043e−07

Table 7
Gravity current. Errors of the POD basis functions generated by APMOS when
ϵ0 = 0.01 and the number of subdomains p varies.

p 2 6 10

∥ϕ1 −ϕ1∥ 1.0371e−13 1.6918e−10 1.4887e−10
∥ϕ2 −ϕ2∥ 2.0435e−12 2.0478e−09 3.9002e−09
∥ϕ3 −ϕ3∥ 9.7710e−13 1.0361e−08 1.6343e−08
∥ϕ4 −ϕ4∥ 1.3924e−11 1.7824e−08 5.1908e−08
∥ϕ5 −ϕ5∥ 1.4073e−11 2.1721e−08 6.5121e−08
∥ϕ6 −ϕ6∥ 7.1811e−11 8.6786e−09 4.5175e−08
∥ϕ7 −ϕ7∥ 2.5553e−10 6.7104e−09 2.9049e−08
∥ϕ8 −ϕ8∥ 3.8947e−10 2.0783e−08 3.9492e−08
∥ϕ9 −ϕ9∥ 3.8889e−10 2.2909e−08 4.2363e−08
∥ϕ10 −ϕ10∥ 2.6685e−10 2.0106e−08 2.5171e−08

4. Conclusions

In summary, we have presented a novel partitionedmethod of snapshots, APMOS (Algorithm3), for efficiently generating
a PODbasis. Comparedwith PMOS (Algorithm2), the newalgorithmyields an accurate approximation of the PODbasiswhile
reducing the communication load. Since it considers distributed features of the snapshot data over multiple processors
in a parallel computing environment, the main computational cost of POD basis generation is simultaneously distributed
across multiple local processors, which allows it to be executed in parallel for potentially dramatic time savings. The APMOS
is certainly very well-suited to simulations typically run in a domain decomposition setting. Furthermore, even on serial
computers, this approach can provide flexibility in overcoming potential memory issues caused by large snapshot data. In
the future, wewill investigate whether the new APMOSmethod can significantly reduce the CPU time and storage costs [16]
of standard POD-ROM numerical discretizations of more realistic complex fluid flows. We note that the DDM has recently
been combined with various model reduction techniques, e.g., balanced truncation model reduction [17–19], POD [20–23],



384 Z. Wang et al. / Journal of Computational and Applied Mathematics 307 (2016) 374–384

reduced basis method and related variations [24–31]. We will also investigate whether the synthesis of APMOS with POD
and DDM can yield further reductions in computational costs of POD-ROMs.
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