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For nonlinear reduced-order models (ROMs), especially for those with high-order polynomial nonlineari-
ties or nonpolynomial nonlinearities, the computational complexity still depends on the dimension of the
original dynamical system. To overcome this issue, we develop an efficient finite element (FE) discretiza-
tion algorithm for nonlinear ROMs. The proposed approach approximates the nonlinear function by its FE
interpolant, which makes the inner product evaluations in generating the nonlinear terms computationally
cheaper than that in the standard FE discretization. Due to the separation of spatial and temporal variables in
the FE interpolation, the discrete empirical interpolation method (DEIM) can be directly applied on the non-
linear functions in the same manner as that in the finite difference setting. Therefore, the main computational
hurdles for applying the DEIM in the FE context are conquered. We also establish a rigorous asymptotic
error estimation, which shows that the proposed approach achieves the same accuracy as that of the standard
FE method under certain smoothness assumptions of the nonlinear functions. Several numerical tests are
presented to validate the proposed method and verify the theoretical results. © 2015 Wiley Periodicals, Inc.
Numer Methods Partial Differential Eq 31: 1713–1741, 2015

Keywords: discrete empirical interpolation method; finite element method with interpolated coefficients;
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I. INTRODUCTION

Control and optimization problems in realistic engineering applications often require repeated
numerical simulations of large-scale dynamical systems. If a fast or real-time control strategy is
desired, a brute force direct numerical simulation is impractical. Therefore, the proper orthogonal
decomposition (POD) method has been frequently used to generate a reduced-order model (ROM)
that can be utilized as an alternative of the original dynamical system (hereinafter referred to as
the full-order model) [1]. Such a ROM only contains a handful of degrees of freedom (DOF), yet
is computationally feasible and free of storage issues. The POD method has been successfully
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applied in many scientific and engineering problems (see, e.g., a brief summary in [2]). However,
for complex dynamical systems, the original promise of the POD as an efficient yet accurate
approximation remains to be fulfilled. On the one hand, it may achieve erroneous results even
when POD basis functions capture most of the system energy [3]. On the other hand, the efficiency
is severely limited by the nonlinearity of the system [4]. For treating the first issue, research has
been done in two main directions: (i) to improve the POD basis functions [5–15]; (ii) to improve
the ROM by modeling the effect of discarded POD basis [2, 16–40]. To our knowledge, the
research for seeking a reliable reduced-order modeling approach for general complex systems is
still active, however, beyond the scopes of this article. Instead, we will focus on the second issue
and develop an efficient algorithm for the nonlinear ROM.

Indeed, the computational efficiency of POD-ROMs relies on two key components: (i) the
dimension of the ROM is extremely small; (ii) the vectors and matrices in the reduced system
have small sizes and can be precomputed. For linear systems or nonlinear systems with low order
polynomial nonlinearities, both ingredients are satisfied. However, for highly nonlinear dynamical
systems, the second one does not hold any more because matrices associated with the nonlinear
terms have to be evaluated and assembled at each time step or iteration. As POD basis functions
are global, the evaluation would depend on the dimension of the full-order model, and, therefore,
greatly increase the computational cost. Several methods have been proposed to resolve this issue.

The two-level algorithms proposed in [2] are motivated by the observation that only a small
number of leading POD basis functions are kept in the ROM, and they have larger length scales
than the discarded ones. If a computation on a fine mesh is used to obtain all the POD basis,
one should be able to use a much coarser mesh to represent the leading POD basis. Therefore,
in two-level algorithms, nonlinear closure terms are computed on the coarse mesh. This way can
decrease the computational cost by an order of magnitude, while achieving the same level of
accuracy as the simulation on the fine mesh. However, the optimal choice of the coarse mesh still
needs to be investigated.

Much work devotes to approximate nonlinear terms at a few selected spatial points or within the
neighborhoods around the points. The trajectory piecewise-linear method, presented in [41, 42],
reduces a nonlinear model to a weighted sum of linearized models at selected points along a state
trajectory. The missing points estimation method was developed in [43–45]. In that approach, the
full-order system was first reduced by choosing equations only associated with selected spatial
points, restricting the POD basis onto these points, and then projecting the extracted system onto
the space spanned by the POD basis. The empirical interpolation method (EIM) was first proposed
in [46] for approximating nonaffine parameter dependence functions to enable an efficient offline-
online computational strategy, and then was further applied to approximate nonlinear functions
in [47]. The method selects interpolation points by greedy algorithms that are guided by a pos-
teriori error estimates. However, in certain problems, even the most optimal basis set is of large
size [48], which reduces the efficiency of the algorithm. Thus, several improved greedy algo-
rithms have been proposed in [49]. The best-points interpolation method was introduced in [50],
which determines interpolation points from a least-square minimization problem. The discrete
empirical interpolation method (DEIM) was introduced in [4] and analyzed in [51]. The method
combines projection with interpolation and chooses interpolation points from the POD basis of
the nonlinear functions. As certain coefficient matrix can be precomputed when approximating
nonlinear functions, the complexity of the POD-ROM reduces to be proportional to the number
of selected spatial indices.

Another method is the group POD method (GPOD) proposed in [52], which extends the group
finite element (FE) method to the POD setting. In that paper, the authors considered dynamical
systems with polynomial nonlinearities, such as the Burgers equations. The POD approximation
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of the quadratic nonlinear term was rewritten in a group format. If r POD basis functions are used
in the ROM, the GPOD requires r3 − 1

2 r
2 − 1

2 r flops less than the standard POD implementa-
tion in the computation of the nonlinear term. However, the approach is limited to polynomial
nonlinearities.

In this report, we focus on developing an efficient FE discretization algorithm for nonlinear
ROMs. In particular, we are interested in applying the DEIM to reduce the intensive computa-
tional efforts for evaluating the nonlinear terms. However, in the FE setting, there are two major
issues that degrade the effectiveness of the DEIM: (i) generating nonlinear snapshots, which are
to be used for seeking the nonlinear POD basis, requires calculations of the inner product in the
nonlinear terms, which costs lots of offline computation time; (ii) the online simulation needs eval-
uations of the inner product over the elements sharing selected DEIM points. Repeated numerical
integrations will increase the online simulation time, especially, in cases such as complex flow
simulations when many DEIM points are required to achieve a good approximation.

To address the second issue, a modified DEIM was proposed in [53] and further investigated for
nonlinear and parametric systems in [54]. It uses an unassembled FE mesh for the nonlinear term
discretization so that each selected DEIM point only relates to one element. Thus, the number of
element function calls is reduced during the simulation. However, it enlarges the size of nonlin-
ear snapshots, which increases the offline computational cost. In this article, to overcome both
hurdles, we develop the finite element method with interpolated coefficients (FEIC) for nonlinear
POD-ROMs. This method is also known as the group FE method or the product approximation,
which has been successfully applied to find numerical solutions to nonlinear partial differential
equations (PDEs) [55–64]. Indeed, we replace the nonlinear function in the POD-ROM with
its FE interpolant directly. This simple change leads to great savings in the computation: first,
the calculation of the inner product in nonlinear terms becomes a product of a precomputable
coefficient matrix and a vector of the nonlinear function values at the FE nodes, which is compu-
tationally cheaper than that in the standard FE discretization; second, for the ROMs discretized
by the new approach, the DEIM can be directly applied in the same manner as that in the finite
difference (FD) method setting. In fact, the nonlinear snapshots become a collection of vectors of
nonlinear function values, therefore, the nonlinear data generation does not require any numerical
integrations. The accuracy of this approach is, of course, restricted to the smoothness of the non-
linear functions. However, when the nonlinear functions possess certain smoothness ((H2) and
(H3) in Section IV), the FEIC can achieve the same accuracy as the standard FE discretization of
the ROM. Therefore, the advantages of the new approach over the standard FE discretization of
nonlinear POD-ROMs cannot be over-emphasized: (i) the FEIC is easier to implement and com-
putationally more efficient; (ii) the FEIC achieves the same accuracy when nonlinear functions
satisfy smoothness assumptions; and (iii) the FEIC is more suitable for combining with the DEIM
to further reduce the computational complexity.

Note that the GPOD method is based on a similar idea. Distinguishing from it, the proposed
method in this article does not group any variables in terms of the POD basis. Therefore, it fits
well for ROMs with polynomial or nonpolynomial nonlinearities. We present the method in the
context of time-dependent semilinear parabolic equations in this article and derive a priori error
estimates for the approximate solutions. However, the proposed method also works for semilinear
parametric equations. Extensions of the method to quasilinear and fully nonlinear systems are
under investigation.

The rest of this article is organized as follows: a brief introduction to the POD method is pre-
sented in Section II; the FEIC of POD-ROMs for semilinear parabolic equations is proposed in
Section III; a rigorous asymptotic error estimate is developed in Section IV; several examples are
tested in Section V to numerically demonstrate the accuracy and efficiency of the new approach.
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Wherein, the first two examples are used for validation and the third example is for verification.
The combination of the proposed approach with the DEIM is discussed in Section VI, whose
effectiveness is then illustrated by revisiting the first two examples used in Section V. A few
conclusions are drawn in the last section with several ongoing research directions we are pursuing
listed.

II. THE POD METHOD

In this section, we briefly introduce the (time-continuous) POD method. For detailed discussions,
the reader is referred to [65–70].

Let H be a real Hilbert space endowed with inner product (·, ·)H and norm ‖ · ‖H. Assume the
dataV (so-called snapshots), which is a collection of time-varying functionsy(x, t) ∈ L2(0, T ; H),
the POD method seeks a low-dimensional basis, ϕ1(x), . . . , ϕr(x) ∈ H, that optimally approx-
imates the data. Mathematically speaking, for any positive r, the POD basis is determined by
minimizing the error between the data and its projection onto the basis, that is,

min
{ϕj }r

j=1

∫ T

0

∥∥∥∥y(·, t) −
r∑

j=1

(
y(·, t), ϕj (·)

)
Hϕj (·)

∥∥∥∥
2

H

dt , (1)

subject to the conditions that (ϕi , ϕj )H = δij , 1 ≤ i, j ≤ r , where δij is the Kronecker delta. To
solve (1), one can consider the eigenvalue problem

Kvj = λjvj , (2)

where K is a compact linear operator that satisfies Kvj(s) = ∫ T

0 (y(·, t), y(·, s))Hvj (t)dt , vj is
the jth eigenvector, and λj ≤ · · · ≤ λ2 ≤ λ1 are positive eigenvalues.

It can be shown that the solution of (1) is given by

ϕj (·) = 1√
λj

∫ T

0
vj (t)y(·, t)dt , 1 ≤ j ≤ r . (3)

Proposition 2.1 ([67]). Let the POD basis ϕj be given by (3), the POD projection error satisfies

∫ T

0

∥∥∥∥y(·, t) −
r∑

j=1

(
y(·, t), ϕj (·)

)
Hϕj (·)

∥∥∥∥
2

H

dt =
∑
j>r

λj (4)

Remark 2.1. In practice, discrete data has to be considered. The POD basis for an ensemble of
snapshots, V = span{y(x, t1), . . . , y(x, tM)}, is to minimize the projection error

min
{ϕj }r

j=1

M∑
�=1

∥∥∥∥y(·, t�) −
r∑

j=1

(
y(·, t�), ϕj (·)

)
Hϕj (·)

∥∥∥∥
2

H

. (5)

The solution can be obtained by solving the eigenvalue problem Kvj = λjvj first, where
K ∈ R

M×M is the snapshot correlation matrix with K�k = (y(·, t�), y(·, tk))H and 1 ≤ �, k ≤ M ,
then the POD basis is given by ϕj (·) = 1√

λj

∑M

�=1 (vj )�
y(·, t�), 1 ≤ j ≤ r .

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Remark 2.2. FE solutions are commonly utilized as the snapshots, that is, the data y(x, t) =∑ndof
ι=1 Yι(t)hι(x), where Y(t) is the approximation solution vector at time t, hι(x) is the ιth FE

nodal basis, and ndof is the number of DOF in the spatial discretization. Then, the POD basis can
be written as

ϕj (x) =
ndof∑
ι=1

Qιj hι(x), (6)

where the coefficient matrix Q is with the entry Qιj = 1√
λj

∫ T

0 vj (t)Yι(t)dt for time-continuous

data or Qιj = 1√
λj

∑M

�=1 (vj )�
Yι(t�) for time-discrete data. For a detailed discussion on

implementing the POD method in the FE setting, readers are referred to [71].

III. THE POD-ROM AND FE DISCRETIZATIONS

Let � be a convex domain in R
d with the smooth boundary ∂�, d = 1, 2, 3. Also let Th be a

collection of quasiuniform elements that partitions the domain. The elements are line segments
if d = 1, triangles if d = 2, and polyhedra if d = 3. The parameter h is the maximal diameter of the
elements. Denoted by X the space L2(�) equipped with the inner product (·, ·) and norm ‖ · ‖; by
V the Sobolev space H 1

0 (�) = {v|v ∈ H 1(�), v|∂� = 0} with H1 seminorm | · |1 and H1 norm
‖ · ‖1; and by Vh the space of piecewise continuous functions on � that reduce to polynomials of
degree ≤ m on each element of Th, which satisfies V h ⊂ V . We assume the semilinear problems
that we will consider in this section admit a unique solution u = u(x, t) on the time interval
[0, T ], which ranges in V.

We consider the equivalent variational problems of semilinear parabolic equations with
homogeneous boundary conditions: To find u(x, t) ∈ V , such that, either(

∂u

∂t
, v

)
+ a (u, v) + (N(u), v) = (f , v), ∀v ∈ V , (7)

or (
∂u

∂t
, v

)
+ a (u, v) + (N(u), ∇v) = (f , v), ∀v ∈ V , (8)

with the initial condition

u(x, 0) = u0(x), ∀x ∈ �.

Where f = f (x, t) is the source term independent with u, the bilinear form a(·, ·) : V × V → R

is continuous and coercive, that is, there exist constants α and β such that

|a(u, v)| ≤ α‖u‖1‖v‖1, ∀u, v ∈ V , (9)

|a(u, u)| ≥ β‖u‖2
1, ∀u ∈ V . (10)

N(u) is a nonlinear function of u. In particular, we are interested in cases in which N(u) possesses
either a nonpolynomial nonlinearity or a high order polynomial nonlinearity. Due to the similar-
ity between (7) and (8), to shorten the presentation, we only discuss (7) in the sequel, but will
comment a theoretical result of (8) in Remark 4.2 and test a problem governed by (8) in Section V.
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Many well-established methods can be used for seeking a numerical solution to Eq. (7).
However, when repeated numerical simulations are required, direct simulations result in a huge
computational cost and become infeasible. Therefore, the POD method has been widely used for
generating a ROM.

A. The POD-ROM

Given snapshots consisting of either numerical solutions or experimental data, the POD basis
functions {ϕ1(x), . . . , ϕr(x)} are determined by (1)–(3), where H = L2 in our considerations.
The associated POD approximation of u(x, t) is given by

ur(x, t) ≡
r∑

j=1

ϕj (x)aj (t), (11)

where {aj (t)}r

j=1 are the sought time-varying POD basis coefficient functions. Substituting the
POD approximation (11) into (7), applying the Galerkin method, and considering the POD basis
functions are orthonormal, we obtain the Galerkin projection-based POD-ROM (POD-G-ROM):
to find ur(x, t) ∈ Vr = span {ϕ1, . . . , ϕr}, such that,

(
∂ur

∂t
, vr

)
+ a (ur , vr) + (N(ur), vr) = (f , vr) , ∀vr ∈ Vr , (12)

and

ur(x, 0) = u0,r (x) ∈ Vr ∀x ∈ �.

Let a(t) = [a1(t), . . . , ar(t)]ᵀ, the POD-G-ROM can be rewritten in terms of POD basis functions
as:

.
a= A + Ba + C(a), (13)

with, for example,

a(0) = (u0(x), ϕ(x)) .

Where Ak = (f , ϕk), Bjk = −a(ϕj , ϕk), (C(a))k = − (N(
∑r

j=1 ϕjaj (t)), ϕk

)
, for k = 1, . . . , r ,

and ϕ = [ϕ1, . . . , ϕr ]ᵀ. The resulted dynamic system (13) is of dimension r, which is much smaller
than the number of DOF in the full-order model. Once a is obtained, the POD approximation
solution ur can be recovered by (11).

The most significant advantage of the ROM is its computational efficiency. Indeed, the matrix
B can be precomputed. In certain cases, we can also compute matrices in C beforehand. For exam-
ple, in Navier–Stokes equations, one can write (C(a))k = aᵀCka, where [Ck]ij = −(ϕi ·∇ϕj , ϕk),
and i, j , k = 1, . . . , r . The matrices only need to be computed once and can be used repeatedly
in online simulations. However, this attractive property does not hold when the nonlinear func-
tion N(u) is with a higher order polynomial nonlinearity or a nonpolynomial one. As a result,
the computational efficiency of the ROM decays. Especially, when the FE is used for a spatial
discretization. Therefore, in the rest of this article, we restrict ourselves to the FE methods of the
nonlinear ROMs (12) and develop a new efficient FE discretization algorithm.
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B. FE Discretizations

Let V h
r = span

{
ϕh

1 , . . . , ϕh
r

}
, where ϕh

j is the FE discretization of ϕj , j = 1, . . . , r . The standard
FE discretization of the POD-G-ROM (12) (POD-FEM) is to find ũh

r (x, t) ∈ V h
r , such that,

(
∂ũh

r

∂t
, vh

r

)
+ a
(
ũh

r , vh
r

)+ (N(ũh
r ), v

h
r

) = (f , vh
r ), ∀vh

r ∈ V h
r , (14)

and

ũh
r (x, 0) = uh

0,r (x) ∈ V h
r , ∀x ∈ �.

Represented by NFE the nonlinear term in (14), whose kth entry is as follows.

(NFE)k = (N (ũh
r (x, t)

)
, ϕh

k (x)
)

=
(

N

(
r∑

j=1

ndof∑
ι=1

Qιj hι(x)ãj (t)

)
,

ndof∑
s=1

Qskhs(x)

)

=
ndof∑
s=1

Qsk z̃s , (15)

where z̃s = (z̃)s = (N(
∑r

j=1

∑ndof
ι=1 Qιj hι(x)ãj (t)), hs(x)), ãj = (ã)j is the jth POD basis

coefficient, Q is as defined in (6), and k = 1, . . . , r .
Obviously, the evaluation of (15) requires computing z̃ at each time step. In practice, one

computes the inner product by numerical quadratures on each element and then assembles z̃ as a
global vector. However, once the quadrature rule is chosen, one can compute the local quadrature
information (the product of weights and the values of the FE basis functions at the associated
quadrature points) beforehand. To obtain the nonlinear term, it remains to evaluate the nonlinear
function at all the quadrature points followed by matrix multiplications. Then, (15) can be written
in the following form.

NFE = QᵀWy, (16)

where W is a ndof × nenq matrix containing the quadrature information, y is a nenq × 1 vector
containing the values of the nonlinear function at all quadrature points, ne is the number of ele-
ments, and nq is the number of quadrature points in each element. For example, if the sth FE node
is shared by n elements es1 , es2 , . . . , esn , the sth row of W is

Ws,· = [0, · · · , 0, ω
es1
q hs(x

es1
q ), 0, · · · , 0, ω

es2
q hs(x

es2
q ), 0, · · · , 0, ωesn

q hs(xesn
q ), 0, · · · , 0],

where ω
esi
q hs(x

esi
q ) = [ωesi

1 hs(x
esi
1 ), . . . , ω

esi
nq hs(x

esi
nq )] is the local quadrature information on

element esi
and ω

esi
j is the weight of the jth quadrature point x

esi
j , for j = 1, . . . , nq . And,

y = [N(ũh
r (x

e1
q )), N(ũh

r (x
e2
q )), . . . , N(ũh

r (x
ene
q ))]ᵀ,

where N(ũh
r (x

ei
q )) = [N(ũh

r (x
ei
1 )), . . . , N(ũh

r (x
ei
nq ))] is the nonlinear function values at the quad-

rature points on the element ei , for i = 1, . . . , ne. In (16), QᵀW is precomputable and its size is
r × nenq , and y needs to be calculated repeatedly during the online simulation.
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Suppose that the complexity for evaluating the nonlinear function N(u) with θ components
is O((θ)), the total complexity in assembling NFE at each time step (or iteration) is roughly
O
(
4rnenq + (nenq)

)
flops. Here, we count both the multiplications and additions as flops,

where O
(
(nenq)

)
flops are used in computing the nonlinear function values at the quadrature

points over all elements, and O
(
4rnenq

)
flops are utilized for the two matrix-vector products:

one is to recover the values of ũh
r at all quadrature points from the POD approximation, the other

is for computing (QᵀW)y.
To improve the efficiency of nonlinear ROMs, we propose a method to use the FEIC for a spa-

tial discretization of the POD-G-ROM (12). The FEIC, also known as the product approximation
technique [57] or group FE method [58], has been used as an alternative tool of the FE method
for solving nonlinear elliptic problems [61, 62], nonlinear parabolic problems [55, 56, 59, 60],
and nonlinear hyperbolic problems [63, 64]. This approach replaces the nonlinear function by
its interpolant in the finite dimensional space, which leads to great savings in the computational
efforts while keeping the accuracy. To our knowledge, this is the first time that the FEIC is applied
in the POD setting with a rigorous error estimate provided.

Define the interpolation operator Ih : C(�) → Sh. The interpolant of N(·) in the FE space
satisfies

(IhN)(u(xi , t)) = N(u(xi , t)), (17)

where xi is a FE node, i = 1, . . . , ndof. The FE method with interpolated coefficients of the
POD-G-ROM (12) (POD-FEIC) is the following: to find uh

r (x, t) ∈ V h
r , such that,

(
∂uh

r

∂t
, vh

r

)
+ a
(
uh

r , vh
r

)+ (IhN(uh
r ), v

h
r

) = (f , vh
r

)
, ∀vh

r ∈ V h
r , (18)

and

uh
r (·, 0) = uh

0,r (x) ∈ V h
r , ∀x ∈ �. (19)

Different from the standard FE discretization, the nonlinear function N(uh
r ) in (14) is replaced

by the interpolation IhN(uh
r ) in (18). The kth row of the nonlinear term in the new numerical

discretization, NFEIC, reads:

(NFEIC)k = ((IhN)(uh
r (x, t)), ϕh

k (x)
)

=
(

ndof∑
ι=1

N

(
r∑

j=1

Qιj aj (t)

)
hι(x),

ndof∑
s=1

Qskhs(x)

)

=
ndof∑
s=1

ndof∑
ι=1

Qsk (hι(x), hs(x)) N

(
r∑

j=1

Qιj aj (t)

)
,

where aj = (a)j is the jth POD basis coefficient, Q is as defined in (6), and k = 1, . . . , r . It can
be rewritten as follows.

NFEIC = QᵀMhz, (20)

where Mh is the FE mass matrix with
[
Mh
]
ιs

= (hι, hs) and z = N (Qa(t)).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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The matrix QᵀMh in (20) only needs to be computed once and its size is r × ndof. At each
time step or iteration, only the nonlinear function values at the FE nodes need to be calculated.
It represents the major difference between the POD-FEIC model and the POD-FEM model: the
former utilizes the nonlinear function values at the FE nodes, while the latter uses the values
at all the quadrature points. When the model contains high-order polynomial or nonpolynomial
nonlinearities, high-order quadrature rules should be used to achieve an accurate approximation
of the nonlinear integrals. As a result, the total number of FE nodes is much less than that of
the quadrature points, which makes the POD-FEIC model computationally much cheaper than
the POD-FEM model. Indeed, the total computational complexity of (20) at each time step (or
iteration) is reduced to O(4rndof + (ndof)) flops, where O ((ndof)) flops are used in computing
the nonlinear function values at all the FE nodes and O (4rndof) flops are a result of the two
matrix-vector products to evaluate the vector of uh

r (x, t) from Qa, and to calculate
(
QᵀMh

)
z,

respectively.
The efficiency can be further improved by combining with the DEIM, which will be discussed

in Section VI.

Remark 3.1. When an implicit time integration method is used in numerical simulations, one
may solve the nonlinear equations by Newton iteration. If this is the case, one has to compute
the Jacobian of the nonlinear term in each iteration besides the original nonlinear term. In the
POD-FEM model, the element of the Jacobian matrix at the lth iteration is as follows.

[
J l

FE

]
kj

= (Nu(ũ
h,l
r )ϕh

j , ϕh
k

)
, (21)

where Nu is the partial derivative of the nonlinear function N(u). Once a quadrature rule is specified,
it can be written in the following form:

J l
FE = QᵀHWDl

qHᵀQ, (22)

where Q is as defined in (6) and H contains values of the FE basis at the quadrature points. If the
sth FE node is shared by n elements es1 , es2 , . . . , esn , the sth row of H is

Hs,· =
[
0, · · · , hs(x

es1
q ), 0, · · · , hs(x

es2
q ), 0, · · · , hs(xesn

q ), · · · , 0
]

.

And W = diag[ωe1
q , ωe2

q , . . . , ω
ene
q ] is a diagonal matrix, which consists of the weight information.

Dl
q is a diagonal matrix with its diagonal entries be values of Nu(ũ

h,l
r ) at the quadrature points,

that is,

Dl
q = diag[Nu(ũ

h,l
r (xe1

q )), Nu(ũ
h,l
r (xe2

q )), . . . , Nu(ũ
h,l
r (xene

q ))],

where Nu(ũ
h,l
r (xei

q )) = [Nu(ũ
h,l
r (x

ei
1 )), . . . , Nu(ũ

h,l
r (x

ei
nq ))] for i = 1, . . . , ne. In (22), matrices

QᵀHW and HᵀQ can be precomputed, whose dimensions are r × (nenq) and (nenq) × r , respec-
tively. In online simulations, the nonlinear function derivative values need to be evaluated at the
quadrature nodes in all the elements.

In the POD-FEIC model, the element of the Jacobian term at the lth iteration can be computed
as follows.

[
J l

FEIC

]
kj

= (IhNu(ũ
h,l
r )ϕh

j , ϕh
k

)
. (23)
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It can be written in the following matrix form:

J l
FEIC = QᵀMhDlQ, (24)

where Mh is the FE mass matrix and Dl is a ndof ×ndof diagonal matrix with the diagonal elements
be the derivative values at the FE nodes, [Dl]ii = Nu(u

h,l
r (xi)). As in (20), the matrix QᵀMh in

(24) only needs to be computed once, whose size is r × ndof. Furthermore, the nonlinear function
derivative values only need to be calculated at the FE nodes during online simulations. Therefore,
comparing with JFE, JFEIC can be evaluated at a lower computational cost.

IV. ERROR ESTIMATES

In this section, we analyze the numerical error of the POD-FEIC model (18). Because the obvi-
ous distinction between the POD-FEIC (18) and the POD-FEM (14) lies in the special spatial
discretization of the nonlinear term, we will consider the semidiscrete model (continuous in time)
and only focus on errors caused by the spatial discretization and the POD truncation. Readers
interested in the time discretization error analysis of the POD-G-ROM for parabolic PDEs are
referred to [67, 68, 72, 73].

To provide the analysis, we proceed in three steps: we begin by gathering a few preliminary
results that will be used; we then prove an error estimate for the L2 projection of u in Lemma 4.6;
finally, we establish the approximation error of (18) in Theorem 4.1. For clarity of notation, in
the sequel, we will denote by C a generic constant that does not depend on the mesh size h and
the number of POD basis functions r in the ROM.

A. Step 1: Preliminary Results

To derive the error estimation, we first make a few necessary hypotheses and present some
preliminary results. For the solution u and the nonlinear function N(u) of (7), we assume:

(H1) The solution u belongs to C1(0, T ; Hm+1(�) ∩ H 1
0 (�)),

(H2) N(u) belongs to C(0, T ; Hm+1(�)),
(H3) N(·) is locally Lipschitz, that is, let M = ‖u‖L∞(�) + 1, there exists L = L(M) such that

for all x∗ ∈ � and u(x∗), v(x∗) ∈ (−M , M),

|N (u(x∗)) − N (v(x∗)) | ≤ L|u(x∗) − v(x∗)|. (25)

Based on the FE method theory, we have the following interpolation error [74]:

Lemma 4.1. For 0 ≤ γ ≤ m+1 and 1 ≤ p ≤ ∞, if v ∈ C(�)∩∏K∈Th
Wm+1

p (K), there exists
a constant C independent of h such that

‖v − Ihv‖γ ,p ≤ Chm+1−γ ‖v‖m+1,p. (26)

The snapshots in our considerations are composed of the FE solutions uh(x, t), which solves
the following approximation problem: to find uh(x, t) ∈ V h, such that,(

∂uh

∂t
, vh

)
+ a
(
uh, vh

)+ (N(uh), vh
) = (f , vh), ∀vh ∈ V h, (27)
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with uh(x, 0) = uh
0(x) ∈ V h, ∀x ∈ �. The FE approximation theory for semilinear parabolic

equations is well-developed (see, e.g., Chapter 14 in [75] and reference therein). One can easily
modify the proof of Theorem 14.1 in [75] and obtain the following error estimate for the FE
solution.

Lemma 4.2. Let uh and u be the solutions of (27) and (7) under the assumptions of (H1) and (H3),
respectively. With appropriately chosen uh

0 in the FE approximation, we have, with C = C(u, T ),

‖uh(t) − u(t)‖ + h‖uh(t) − u(t)‖1 ≤ Chm+1, for t ∈ [0, T ]. (28)

To estimate the interpolation of nonlinear terms in the FEIC, we utilize an auxiliary “Euclidean”
norm introduced in [63] on C(�):

‖χ‖h =
[

ndof∑
i=1

|χ(xi)|2
] 1

2

. (29)

For any χ ∈ Vh, as the space is of finite dimensions, we have the equivalence between ‖χ‖
and ‖χ‖h on the reference element. With a straightforward homogeneity argument (or scaling
argument [74]), we have the following lemma:

Lemma 4.3. There exist two strictly positive constants c1 and c2 independent of h such that

c1h
d
2 ‖χ‖h ≤ ‖χ‖ ≤ c2h

d
2 ‖χ‖h, (30)

for all χ ∈ Vh.

Recall that the FE solutions uh(x, t) are used as snapshots, H = L2 is considered in the POD
method and ϕj (x) is the jth POD basis. Besides the POD projection error in L2(0, T , L2(�))

given in Proposition 2.1,

∫ T

0

∥∥∥∥uh(·, t) −
r∑

j=1

(
uh(·, t), ϕj (·)

)
ϕj (·)

∥∥∥∥
2

dt =
∑
j>r

λj , (31)

we have the projection error in L2(0, T , H 1(�)) norm as follows.

Lemma 4.4 ([69]). The POD projection error in H1 norm satisfies

∫ T

0

∥∥∥∥uh(·, t) −
r∑

j=1

(
uh(·, t), ϕj (·)

)
ϕj (·)

∥∥∥∥
2

1

dt =
∑
j>r

||ϕj ||21λj . (32)

For the POD approximation, we have the following POD inverse estimate [67]:

Lemma 4.5. Let Mr ∈ R
r×r with [Mr ]jk = (ϕj , ϕk) be the POD mass matrix, Sr ∈ R

r×r with
[Sr ]jk = [Mr ]jk + (∇ϕj , ∇ϕk) be the POD stiffness matrix, and ‖ · ‖2 denote the matrix spectral
norm. Then, for all v ∈ Vr , the following estimates hold.

‖v‖ ≤
√

‖Mr‖2‖S−1
r ‖2‖v‖1, (33)
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‖v‖1 ≤
√

‖Sr‖2‖M−1
r ‖2‖v‖. (34)

As we choose H = L2 in the POD method, both ‖Mr‖2 and ‖M−1
r ‖2 are one.

B. Step 2: L2 Projection Error

Next, we define the L2 projection of u, wh
r , from L2 to V h

r such that(
u − wh

r , vh
r

) = 0, ∀vh
r ∈ V h

r . (35)

We have the following estimation of the L2 projection error.

Lemma 4.6. The L2 projection of u, wh
r , satisfies the following error estimations:

∫ T

0
‖u − wh

r ‖2
dt ≤ C

(
h2m+2 +

∑
j>r

λj

)
, (36)

∫ T

0
‖∇ (u − wh

r

) ‖2
dt ≤ C

(
h2m + ‖Sr‖2h

2m+2 +
∑
j>r

||ϕj ||21λj

)
, (37)

where C = C(u, T ).

Proof.

‖u − wh
r ‖2 = (u − wh

r , u − wh
r

)
(35)= (u − wh

r , u − vh
r

)
, ∀vh

r ∈ V h
r . (38)

It indicates, by Cauchy–Schwartz inequality, for all vh
r ∈ V h

r ,

‖u − wh
r ‖ ≤ ‖u − vh

r ‖. (39)

Decomposing u − vh
r = u − uh + (uh − vh

r ) and choosing vh
r = Pru

h =∑r

j=1

(
uh, ϕj

)
ϕj in (39),

by the triangular inequality and Proposition 2.1, we have

∫ T

0
‖u − wh

r ‖2
dt ≤ C

(∫ T

0
‖u − uh‖2

dt +
∫ T

0
‖uh −

r∑
j=1

(
uh, ϕj

)
ϕj‖

2

dt

)

(31)≤ C

(∫ T

0
‖u − uh‖2

dt +
∑
j>r

λj

)
. (40)

Considering the FE approximation error (28), we have the bound for the L2 projection error in
L2(0, T ; L2(�)) as (36).

By the triangular inequality and adding then subtracting Pru
h =∑r

j=1

(
uh, ϕj

)
ϕj , we have

∫ T

0
‖∇ (u − wh

r

) ‖2
dt ≤ C

∫ T

0

(
‖∇ (u − uh

) ‖2 + ‖∇ (uh − Pru
h
) ‖2 + ‖∇ (Pru

h − wh
r

) ‖2
)

dt
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(32),(34)≤ C

(∫ T

0
‖∇ (u − uh

) ‖2
dt +

∑
j>r

||ϕj ||21λj + ‖Sr‖2

∫ T

0
||Pru

h − wh
r ||2
)

≤ C

(∫ T

0
‖∇ (u − uh

) ‖2
dt +

∑
j>r

||ϕj ||21λj + ‖Sr‖2

∫ T

0
||u − uh||2

)
,

where we use ‖wh
r − Pru

h‖ ≤ ‖u − uh‖ in the last inequality. Considering the FE approximation
error estimation (28), we have the bound for the L2 projection error in L2(0, T ; H 1(�)) as (37).
This proved the lemma.

C. Step 3: Main Results

Finally, we discuss the main theoretical results of this article, which is about the approximation
property of the POD-FEIC (18). We first estimate the difference between the L2 projection of u,
wh

r , and the approximation solution uh
r on a certain time interval in Lemma 4.7, which is bounded

by the L2 projection error. The conclusion is then extended to the whole time interval through a
continuity argument in Lemma 4.8. Using the triangular inequality, we get the final estimation of
approximation error u − uh

r in Theorem 4.1.
The crucial component in the analysis is the interpolation error of the nonlinear term(

N(u) − IhN(uh
r ), v

h
r

)
, which can be decomposed in two different ways:

(
N(u) − IhN(uh

r ), v
h
r

) = (N(u) − IhN(u), vh
r

)+ (IhN(u) − IhN(uh
r ), v

h
r

)
, (41)

and

(
N(u) − IhN(uh

r ), v
h
r

) = (N(u) − N(uh
r ), v

h
r

)+ (N(uh
r ) − IhN(uh

r ), v
h
r

)
. (42)

The first approach has been used in [63], in which the first term on the RHS of (41) is bounded
by the standard FE interpolation error under the smoothness assumption of N(u), and the second
term can be estimated with the help of the local Lipschitz continuity assumption of N(u) and an
auxiliary “Euclidean” norm. The second approach has been used in [55, 60], in which the first
term on the RHS of (42) also appears in the standard FE discretization, thus can be treated as
usual. The second term can be estimated by the FE interpolation error of N(uh

r ), whose accuracy
relies on the regularity of N(uh

r ). It is determined by a hypothesis on uh
r and a stronger smoothness

assumption of N(u) than that required in the first approach. In this article, we will follow the first
approach (41).

Let v = vh
r in (7) and subtract it from (18), we have the error equation of e = uh

r −u as follows.

(
et , v

h
r

)+ a
(
e, vh

r

)+ (IhN(uh
r ) − N(u), vh

r

) = 0, ∀vh
r ∈ V h

r . (43)

Let φh
r = uh

r − wh
r and η = u − wh

r , we have the decomposition of error, e = φh
r − η. Based on

the definition of L2 projection (35), we have (ηt , vh
r ) = 0. Therefore, the error equation (43) can

be rewritten as:

(
φh

r ,t , v
h
r

)+ a
(
φh

r , vh
r

) = a
(
η, vh

r

)+ (N(u) − IhN(uh
r ), v

h
r

)
, ∀vh

r ∈ V h
r . (44)
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Lemma 4.7. Under assumptions (H1)–(H3), let u be the solution of (7) and uh
r be the solution

of (18) with the initial condition uh
r (·, 0) =∑r

j=1(u0, ϕh
r ,j )ϕ

h
r ,j in (19), respectively. Assume that,

for some t1 with 0 < t1 ≤ T , we have

‖φh
r (t)‖L∞(�) <

1

2
, for all 0 < t ≤ t1. (45)

Then, it follows that

‖φh
r (t1)‖2 +

∫ t1

0
||∇φh

r (t)||2dt ≤ C(u, T )

(
h2m + ‖Sr‖2h

2m+2 +
∑
j>r

||ϕj ||21λj

)
. (46)

Proof. First note that one can certainly find a t1 to make (45) true by adjusting the mesh size
h and the number of POD basis functions r. We choose h to be small enough and r to be large
enough to ensure that ‖u−wh

r ‖L∞(�) < 1
2 , then together with (45), we have both wh

r and uh
r locate

on the interval (−M , M), where M is defined in (H3). This allows us to take advantage of the
local Lipschitz condition of N(u) on the interval t ∈ [0, t1]. Next, we start estimations.

Let vh
r = φh

r in (44), we have

(
φh

r ,t , φ
h
r

)+ a
(
φh

r , φh
r

) = a
(
η, φh

r

)+ (N(u) − IhN(u), φh
r

)+ (IhN(u) − IhN(wh
r ), φ

h
r

)
+ (IhN(wh

r ) − IhN(uh
r ), φ

h
r

)
. (47)

By the continuity (9) and coercivity (10) of a(·, ·), and Cauchy–Schwartz inequality, we have

1

2

d

dt
‖φh

r ‖2 + β‖∇φh
r ‖2 ≤ α‖∇η‖‖∇φh

r ‖ + ‖N(u) − IhN(u)‖‖φh
r ‖

+ ‖IhN(u) − IhN(wh
r )‖‖φh

r ‖
+ ‖IhN(wh

r ) − IhN(uh
r )‖‖φh

r ‖. (48)

For the first term on the RHS of (48), by Young’s inequality, we have

α‖∇η‖‖∇φh
r ‖ ≤ α2

2β
‖∇η‖2 + β

2
‖∇φh

r ‖2. (49)

For the second term on the RHS of (48), Young’s inequality yields

‖N(u) − IhN(u)‖‖φh
r ‖ ≤ ‖N(u) − IhN(u)‖2

2
+ ‖φh

r ‖2

2
. (50)

Considering the FE interpolation error and the assumption (H2), we have

‖N(u) − IhN(u)‖ ≤ Chm+1|N(u)|Hm+1(�). (51)

For the third term on the RHS of (48), Young’s inequality gives

‖IhN(u) − IhN(wh
r )‖‖φh

r ‖ ≤ ‖IhN(u) − IhN(wh
r )‖2

2
+ ‖φh

r ‖2

2
. (52)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



POD-FEIC OF SEMILINEAR PARABOLIC EQUATIONS 1727

Using Lemma 4.3, the local Lipschitz condition, and the triangular inequality, we have

‖IhN(u) − IhN(wh
r )‖

(30)≤ c2h
d
2 ‖IhN(u) − IhN(wh

r )‖h

(17),(29)= c2h
d
2 ‖N(u) − N(wh

r )‖h

(25)≤ Lc2h
d
2 ‖u − wh

r ‖h

(17),(29)= Lc2h
d
2 ‖Ihu − wh

r ‖h

(30)≤ Lc2c
−1
1 ‖Ihu − wh

r ‖
≤ Lc2c

−1
1

(‖u − Ihu‖ + ‖u − wh
r ‖
)

. (53)

By the regularity assumption (H1) of solution u and the FE approximability (Lemma 4.1), we have

‖u − Ihu‖ ≤ Chm+1|u|Hm+1(�). (54)

Thus, we have, for the third term on the RHS of (48),

‖IhN(u) − IhN(wh
r )‖ ≤ C

(
hm+1 + ‖η‖) . (55)

For the fourth term on the RHS of (48), we use similar arguments to those for the third term and
get

‖IhN(wh
r ) − IhN(uh

r )‖
(30)≤ c2h

d
2 ‖IhN(wh

r ) − IhN(uh
r )‖h

(17),(29)= c2h
d
2 ‖N(wh

r ) − N(uh
r )‖h

(25)≤ Lc2h
d
2 ‖wh

r − uh
r ‖h

(30)≤ Lc2c
−1
1 ‖wh

r − uh
r ‖

= Lc2c
−1
1 ‖φh

r ‖. (56)

Substituting (49)–(52), (55), and (56) in (48), we obtain

d

dt
‖φh

r ‖2 + β‖∇φh
r ‖2 ≤ α2

β
‖∇η‖2 + C

(
h2m+2 + ‖η‖2

)+ C∗‖φh
r ‖2, (57)

where C∗ = Lc2c
−1
1 + 1. By Gronwall’s lemma, on the interval [0, t1], we have

‖φh
r (t1)‖2 +

∫ t1

0
β‖∇φh

r ‖2ds

≤ eC∗t1‖φh
r (0)‖2 + eC∗t1

∫ t1

0

(
α2

β
‖∇η‖2 + Ch2m+2 + C‖η‖2

)
ds. (58)

Considering t1 ≤ T and the choice of the initial condition that indicates ‖φh
r (0)‖ = 0, the above

inequality yields

‖φh
r (t1)‖2 +

∫ t1

0
β‖∇φh

r ‖2ds ≤ eC∗T

∫ T

0

(
α2

β
‖∇η‖2 + Ch2m+2 + C‖η‖2

)
ds,

(37)≤ C

(
h2m + ‖Sr‖2h

2m+2 +
∑
j>r

||ϕj ||21λj

)
, (59)

where C = C(u, T ) independent of t1.
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Lemma 4.8. Suppose the order of FEs m ≥ 1 for d = 1 and m ≥ 2 for d ≥ 2, respectively. With
the same conditions as those in Lemma 4.7, we have

‖φh
r (T )‖2 +

∫ T

0
||∇φh

r (t)||2dt ≤ C(u, T )

(
h2m + ‖Sr‖2h

2m+2 +
∑
j>r

||ϕj ||21λj

)
. (60)

Proof. Assume t∗
1 is the largest value that makes (45) true. If t∗

1 �= T , it must be

‖φh
r (t

∗
1 )‖L∞(�) = 1

2
. (61)

However, by the inverse inequality,

‖φh
r (t

∗
1 )‖L∞(�) ≤ Ch− d

2 ‖φh
r (t

∗
1 )‖ ≤ Ch− d

2

⎛
⎝hm +√‖Sr‖2h

m+1 +
√∑

j>r

||ϕj ||21λj

⎞
⎠ . (62)

Then, for m ≥ 1 if d = 1, and for m ≥ 2 if d = 2, 3, one can always find a h small enough and a r
large enough such that ‖φh

r (t
∗
1 )‖L∞(�) < 1

2 . This contradicts with the assumption (61). Therefore,
t∗
1 = T , that is, the conclusion (46) is true on the whole time interval [0, T ].

Theorem 4.1. Under assumptions (H1)–(H3), let u be the solution of (7) and uh
r be the solution

of (18) with the initial condition uh
r (·, 0) =∑r

j=1(u0, ϕh
r ,j )ϕ

h
r ,j in (19), respectively. The order of

FEs m ≥ 1 for d = 1, m ≥ 2 for d ≥ 2. There exist positive numbers h0 and r0 such that, for
h ≤ h0 and r ≥ r0, we have

‖uh
r (T ) − u(T )‖2 +

∫ T

0
||∇uh

r (t) − ∇u(t)||2dt ≤ C

(
h2m + ‖Sr‖2h

2m+2 +
∑
j>r

||ϕj ||21λj

)
,

(63)

where C = C(u, T ) is a positive constant independent of h and λj .

Proof. The conclusion follows the triangular inequality, Lemma 4.8, and Lemma 4.6.

Remark 4.1. In Theorem 4.1, the estimation for the gradient of errors, ‖∇uh
r − ∇u‖L2(0,T ;L2(�))

is optimal with respect to (w.r.t.) both the spatial discretization (∼ O(hm)) and the POD

truncation (∼ O(
√∑

j>r ||ϕj ||21λj )). By Poincaré–Friedrichs inequality, it is easy to show

the error in L2(0, T ; H 1(�)) has the same optimality. Although not proven here, the error
in L2(0, T ; L2(�)) is also optimal w.r.t. the spatial discretization (∼ O(hm+1)) and the POD

truncation (∼ O(
√∑

j>r λj )). We shall verify it numerically in the next section.

Remark 4.2. Theorem 4.1 also holds on the FEIC approximation of the POD-G-ROM for the
problem (8). The proof follows a similar argument.
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V. NUMERICAL TESTS

The goal of this section is twofold: first, the proposed method will be validated by two problems
that have appeared in interdisciplinary research. Accuracy and efficiency of the new approach are
to be tested; second, the theoretical result in Section IV will be numerically verified by another
example.

For a comparison of accuracy, the approximation errors of the POD-FEIC (18) and the
POD-FEM (14) are computed, respectively, in two different norms:

E0(u, v) =
√√√√ 1

M

M∑
�=1

||u(·, t�) − v(·, t�)||2, E1(u, v) =
√√√√ 1

M

M∑
�=1

||u(·, t�) − v(·, t�)||21,

where E0 is a discrete approximation of the error in L2(0, T ; L2(�)), while E1 is a discrete
approximation of the error in L2(0, T ; H 1(�)).

To measure the efficiency, we consider the CPU time, which is the time elapsed for the (online)
integration only, excluding the (offline) time for generating basis functions, precomputing matri-
ces, calculating errors, and so forth. We define a speed-up factor of the new POD-ROMs as
follows.

Sf ≡ CPU time of the POD-FEM (14) simulation

CPU time of the new POD-ROM simulation
, (64)

where the new POD-ROM is either the POD-FEIC (18) or the POD-FEIC-DEIM that will be
defined in next section. Furthermore, to evaluate the effectiveness of the FEIC, we compare the
profiling time for generating the nonlinear terms NFE (16) and JFE (22) in the POD-FEM sim-
ulations with that for computing NFEIC (20) and JFEIC (24) in the POD-FEIC simulations. The
profiling time is provided by the MATLAB profile function, which is usually longer than the
actual simulation time.

For a fair comparison, the same numerical quadrature formulae are used in the implementations
of both approaches. All numerical tests reported in this article are implemented on a PC with a
2.6 GHz Intel Core i7 processor. In this article, the snapshot matrix in the POD basis generation
is composed of the full-order simulation results at all time steps. Note that this is not necessary
in practice. For a discussion on the snapshot locations, the reader is referred to [14, 72, 76].

A. Validation

For the validation purpose, we consider two examples: a one-dimensional (1D) FitzHugh–Nagumo
(F-N) system, which possesses a cubic polynomial nonlinearity; and a two-dimensional (2D)
Buckley–Leverett equation (BLE), which has a nonpolynomial nonlinearity.

FitzHugh–Nagumo System. We first consider the simplified 1D Hodgkin–Huxley model used
in [4], which is a F-N system. The model is a nonlinear PDE system and describes the activation
and deactivation dynamics of a spiking neuron. The system reads:

∂v

∂t
− μvxx − 1

μ
v(v − 0.1)(1 − v) + 1

μ
w = c

μ
, x ∈ [0, L], t ∈ [0, T ],

∂w

∂t
− bv + γw = c, x ∈ [0, L], t ∈ [0, T ],
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TABLE I. The approximation errors, CPU time, and speed-up factors of the POD-FEM (14) and the
POD-FEIC (18).

POD-FEM POD-FEIC

r E0(ũ
h
r , uh) E1(ũ

h
r , uh) CPU time E0(u

h
r , uh) E1(u

h
r , uh) CPU time Sf

3 3.64 × 10−3 9.96 × 10−2 3.81 3.64 × 10−3 9.96 × 10−2 1.20 3.18
5 6.61 × 10−4 2.27 × 10−2 3.90 6.60 × 10−4 2.27 × 10−2 1.23 3.17
7 1.20 × 10−4 4.91 × 10−3 3.93 1.20 × 10−4 4.91 × 10−3 1.25 3.14
9 2.03 × 10−5 1.25 × 10−3 4.04 2.10 × 10−5 1.25 × 10−3 1.27 3.18
Note that the POD-FEIC keeps the same accuracy as the POD-FEM, but saves CPU time by over three times.

vx(0, t) = −i0(t), vx(L, t) = 0, t ∈ [0, T ],
v(x, 0) = 0, w(x, 0) = 0, x ∈ [0, L], (65)

where v(x, t) and w(x, t) are voltage and recovery voltage, respectively. Let u = [v, w]ᵀ, the weak
form of the original system has the form of (7):(

∂u
∂t

, v
)

+ M1a (u, v) + M2 (u, v) + (N, v) = (f , v), (66)

where a(u, v) = μ(ux , vx), N = [ 1
μ
v(v − 0.1)(1 − v), 0]ᵀ, f = [ c

μ
, c]ᵀ, M1 = [ μ 0

0 0 ], and

M2 = [ 0 1
μ

−b γ
]. We choose the same parameters as those utilized in [4], that is, L = 1, T = 8,

μ = 0.015, b = 0.5, γ = 2, c = 0.05 and the stimulus i0(t) = 50, 000t3e−15t .
To generate snapshots, we use linear FEs on a uniform mesh for spatial discretization with mesh

size h = 1/512, and the Crank–Nicolson scheme for time integration with time step �t = 1×10−2.
A three-point Gauss quadrature rule is applied for evaluating the inner product. The CPU time for
the full-order simulation is 249.72 s. In total, 801 snapshots are collected and used to compute the
POD basis in L2 space. Over 99.9% kinetic energy is captured by only three POD basis functions.
As the exact solution is unknown, we regard the FE solution, uh, as the benchmark.

The approximation errors, simulation time, and speed-up factors of the POD-FEM and the
POD-FEIC are listed in Table I when the same number of POD basis functions, r, is used in both
ROMs. It is seen that the FEIC discretization achieves the same accuracy as that of the FE dis-
cretization, but improves the computational efficiency by over three times. The phase portraits of
the POD-FEIC (r = 5) solutions at different spatial points are plotted in Fig. 1, which are compared
with those of the FE solutions and the POD-FEM (r = 5) solutions at the same spatial points. It
shows that the correct limit cycles of the original system have been captured by the POD-FEIC
model.

Based on the MATLAB profiler, the command for evaluating the nonlinear terms NFE (16)
and JFE (22) was executed 2418 times in the POD-FEM simulation when r = 5. The profiling
took 5.02 s. In the simulation of the POD-FEIC model based on the same POD basis functions,
the command for computing NFEIC (20) and JFEIC (24) was called 2418 times, too. However, the
profiling time decreased to be 1.11 s.

Buckley–Leverett Equation. We then consider the 2D BLE, which is usually used to describe
two phase flow in porous media with a gravitation pull in x-direction [77].

∂u

∂t
− μ�u + ∂f1(u)

∂x
+ ∂f2(u)

∂y
= 0, x ∈ �, t ∈ [0, T ],
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FIG. 1. The limit cycles on the v – w plane: the POD approximation (r = 5) with either the FEM discretiza-
tion (POD-FEM) or the FEIC discretization (POD-FEIC) coincides with that of the finite element solution
(FEM). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

u(x, t) = 0, x ∈ ∂�, t ∈ [0, T ],
u(x, 0) = e−16(x2+y2), x ∈ �, (67)

where f1(u) = u2

u2+(1−u)2 and f2(u) = f1(u)[1−5(1 − u)2]. The weak form of the original system
has the form of (8) with a(u, v) = μ(∇u, ∇v) and N(u) = [−f1, −f2]ᵀ.

In this test, we choose the same parameters as used in [77]: μ = 0.1, T = 0.5, � =
[−1.5, 1.5] × [−1.5, 1.5]. To generate snapshots, we use quadratic FEs on a uniform triangu-
lar mesh for spatial discretization with mesh size h = 1/64, and the Crank–Nicolson scheme for
time integration with time step �t = 1 × 10−2. A seven-point Gauss quadrature rule is applied
for evaluating the inner product. It takes 1.25 × 104 s to finish the full-order simulation. Fifty one
snapshots are collected and used to compute POD basis in L2 space. Over 99.9% kinetic energy
is captured by only five POD basis functions. Due to the lack of exact solution, we also consider
the FE solution, uh, to be the benchmark.

The POD-FEM and the POD-FEIC approximation errors are listed in Table II when r POD
basis functions used in both ROMs. It is seen that the POD-FEIC obtains the same accuracy as that
of the POD-FEM, but, decreases the CPU time by over three times. A comparison among the FE
approximation, the POD-FEM (r = 5) approximation, and the POD-FEIC (r = 5) approximation
solutions at t = 0.2 is shown in Fig. 2.

Based on the MATLAB profiler, the command for evaluating the nonlinear term NFE (16)
and JFE (21) was executed 165 times in the POD-FEM simulation when r = 5. The profiling took
42.0 s. In the simulation of the POD-FEIC model generated by the same POD basis, the command
for computing NFEIC (20) and JFEIC (24) was also called 165 times. But, the profiling time reduced
to be 9.49 s.

B. Verification

In this subsection, we will verify the theoretical results obtained in Section IV through a problem
with a nonpolynomial nonlinearity. It is governed by the following equations:
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TABLE II. The approximation errors, CPU time, and speed-up factors of the POD-FEM (14) and the
POD-FEIC (18).

POD-FEM POD-FEIC

r E0(ũ
h
r , uh) E1(ũ

h
r , uh) CPU time E0(u

h
r , uh) E1(u

h
r , uh) CPU time Sf

5 4.47 × 10−3 7.68 × 10−2 34.9 4.47 × 10−3 7.68 × 10−2 8.78 3.97
10 3.64 × 10−4 1.05 × 10−2 35.6 3.64 × 10−4 1.05 × 10−2 9.25 3.85
15 3.46 × 10−5 1.37 × 10−3 42.1 3.46 × 10−5 1.37 × 10−3 11.3 3.73
20 2.72 × 10−6 1.35 × 10−4 47.6 2.74 × 10−6 1.35 × 10−4 12.9 3.69
Note that the POD-FEIC keeps the same accuracy as the POD-FEM, but saves CPU time by over three times.

FIG. 2. The simulations at t = 0.2: the FEM solution (left), the error of POD-FEM with r = 5 (middle), and
the error of POD-FEIC with r = 5 (right). [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

∂u

∂t
− �u + sin(u) = f , x ∈ �, t ∈ [0, T ],

u = 0, x ∈ ∂�, t ∈ [0, T ],
u(x, 0) = g, x ∈ �, (68)

where f is determined by substituting a designated exact solution into the LHS of (68) and g
is the exact solution at t = 0. In the test, we consider the problem in 1D with exact solution
u = 0.5 sin(πx)(10 tanh(x − t)+ 1) on the domain � = [0, 1] during the time interval t ∈ [0, 1].
The exact solution is also our benchmark when calculating errors. The weak formulation is of the
form (7) with a(u, v) = (ux , vx) and N(u) = sin(u). We investigate the convergence properties
of the POD-FEIC solution w.r.t. mesh size h and the number of POD basis r, respectively.

To check the approximation order of the POD-FEIC solution w.r.t. h, we collect the FE solution
of the original system with linear elements (m = 1) and quadratic elements (m = 2), respectively.
Backward-Euler method is used for the time integration with a small time step �t = 1 × 10−6. A
seven-point Gauss quadrature rule is applied for evaluating the inner product. The number of POD
basis functions are chosen such that

∑
j>r λj < 1 × 10−7. In this way, the spatial discretization

error dominates the whole approximation property.
The errors in both E0 and E1 norms are shown in Table III. Linear regressions indicate that, for

linear elements, the order of convergence is 1.97 in E0 norm and 0.98 in E1 norm; for quadratic
elements, the error convergence order is 2.94 in E0 norm and 1.95 in E1 norm. The approximation
orders are close to the optimal values in Theorem 4.1. As the error analysis is asymptotic, as h
decreases, the order approaches the optimal values (order m + 1 in E0 norm and order m in E1

norm).
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TABLE III. The approximation rate of the POD-FEIC w.r.t. h.

m = 1 m = 2

h E0(u
h
r , u) E1(u

h
r , u) E0(u

h
r , u) E1(u

h
r , u)

1/8 2.09 × 10−2 5.41 × 10−1 2.41 × 10−3 1.26 × 10−1

1/16 5.50 × 10−3 2.81 × 10−1 3.30 × 10−4 3.42 × 10−2

1/32 1.39 × 10−3 1.42 × 10−1 4.22 × 10−5 8.76 × 10−3

1/64 3.50 × 10−4 7.12 × 10−2 5.31 × 10−6 2.20 × 10−3

Order h1.97 h0.98 h2.94 h1.95

TABLE IV. The approximation rate of the POD-FEIC w.r.t. r when linear finite elements are used.

m = 1

r
√∑

j>r λj E0(u
h
r , u)

√∑
j>r ||ϕj ||2

H1λj E1(u
h
r , u)

3 4.13 × 10−2 4.60 × 10−2 6.26 × 10−1 6.21 × 10−1

4 2.45 × 10−2 2.74 × 10−2 4.48 × 10−1 4.47 × 10−1

6 9.07 × 10−3 1.02 × 10−2 2.23 × 10−1 2.31 × 10−1

7 5.59 × 10−3 6.29 × 10−3 1.55 × 10−1 1.69 × 10−1

Order – 1.00 – 0.96

TABLE V. The approximation rate of the POD-FEIC w.r.t. r when quadratic finite elements are used.

m = 2

r
√∑

j>r λj E0(u
h
r , u)

√∑
j>r ||ϕj ||2

H1λj E1(u
h
r , u)

3 4.15 × 10−2 4.60 × 10−2 6.28 × 10−1 6.19 × 10−1

4 2.46 × 10−2 2.74 × 10−2 4.50 × 10−1 4.43 × 10−1

6 9.18 × 10−3 1.02 × 10−2 2.25 × 10−1 2.21 × 10−1

7 5.68 × 10−3 6.29 × 10−3 1.57 × 10−1 1.54 × 10−1

Order – 1.00 – 1.00

To check the approximation order of the POD-FEIC solution w.r.t. r, we collect the FE solution
of the original system when linear elements (m = 1) and quadratic elements (m = 2) are utilized
for spatial discretization, respectively, and backward-Euler method for the time integration. The
mesh size h = 1/64 and the time step �t = 1×10−6 are fixed. The number of POD basis functions

is chosen so that
√∑

j>r λj decays by a factor of 2.

The errors in both E0 and E1 norms when linear elements are used are shown in Table IV and
those for quadratic elements are listed in Table V. Linear regressions indicate that the conver-

gence order of error in E1 norm w.r.t.
√∑

j>r ||ϕj ||2H1λj is 0.96 for linear elements and 1.00 for

quadratic elements. Wherein, the approximation order for quadratic elements is linear, which is
optimal as indicated in Theorem 4.1. That of linear elements is close to 1 but slightly smaller
than 1, which is because the discretization error tends to dominate the error as r increases. At

the same time, note that the approximation order of error in E0 norm w.r.t.
√∑

j>r λj is 1 for

both linear and quadratic elements. Although not proven theoretically, the error in E0 norm also
converges optimally.
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VI. THE COMBINATION WITH THE DEIM

The DEIM has been successfully applied in many nonlinear ROMs to reduce the computational
complexity of the nonlinear terms [4, 51, 78–81]. For a detailed presentation of the DEIM method,
the reader is referred to [4]. In general, it uses the following ansatz on a nonlinear function
N(u(x,t)):

N(u) =
r̂∑

j=1

ψj(x)cj (t), (69)

where ψj(x) is the jth nonlinear POD basis obtained by applying the POD method on the nonlinear
snapshots and r̂ is the rank of the nonlinear POD basis. Based on the nonlinear POD basis vectors
� = [ψ1, . . . , ψr̂ ], the DEIM optimally selects a set of interpolation points ℘ := [℘1, . . . , ℘p]
and approximates the vector of nonlinear function values, N(u), by

N(u) ≈ �(Pᵀ�)−1PᵀN(u), (70)

where P = [e℘1 , . . . , e℘p ] is the matrix for selecting the corresponding p indices ℘1, . . . , ℘p, and
e℘i

is the ℘i th column in the identity matrix.
When the FD method is used for the spatial discretization, the nonlinear snapshot data consist

of vectors of nonlinear function values, N(u), on a certain time interval. However, when the FE
method is used, the nonlinear snapshot becomes (N(u(x,t)),h) as the nonlinear term in the weak
formulation (27). Therefore, generating each nonlinear snapshot requires O

(
4nenq + (nenq)

)
flops, which costs lots of offline time. Moreover, in cases such as complex flows are studied, many
interpolation points might be required to obtain a good approximation of the nonlinear term. As the
inner product has to be calculated over the elements sharing the selected DEIM points, the online
simulation time increases. These issues represent the main computational hurdles for applying
DEIM in the FE setting, which, however, can be easily overcome by the POD-FEIC approach we
proposed in Section III.

Indeed, thanks to the separation of spatial and temporal variables in the nonlinear term of the
POD-FEIC model, the value vector of the nonlinear function, N(u), can be chosen as the nonlinear
snapshot. Hence, the computational complexity for generating each nonlinear snapshot is reduced
to O((ndof)) flops. Replacing the nonlinear function with the DEIM approximation (70) in the
POD-FEIC (18), we get the POD-FEIC-DEIM model, which has a more efficient approximation
of the nonlinear term

NFEIC−DEIM = QᵀMh�(Pᵀ�)−1PᵀN(Qa(t)). (71)

It is seen that, once Cp = QᵀMh�(Pᵀ�)−1 is precomputed, in online simulations, one only needs
to calculate the nonlinear functions at p selected DEIM points, zp = PᵀN(Qa(t)), which does not
involve any numerical quadratures. The corresponding computational complexity of the nonlinear
term in each time step (or iteration) is only O (4rp + (p)) flops, where O ((p)) flops are used
in computing the nonlinear function values at the DEIM points and O (4rp) flops are utilized
to implement two matrix-vector products: PᵀQa(t) and Cpzp. Therefore, the POD-FEIC-DEIM
improves the computational efficiency over the POD-FEIC, which, obviously, outperforms the
POD-FEM.
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TABLE VI. The approximation errors, CPU time, and speed-up factors of the POD-FEIC-DEIM model
with r = 5 POD basis and p interpolation points for the nonlinear function approximation.

p E0(û
h
r , uh) CPU time Sf

3 5.94 × 10−3 1.01 3.86
5 3.00 × 10−3 1.01 3.86
7 9.66 × 10−4 1.02 3.82
9 6.63 × 10−4 1.02 3.82

A. Validation

We demonstrate the effectiveness of the new approach by considering the first two examples in
Section V again. The same spatial and temporal discretization methods and the numerical quad-
rature rules as those used in the POD-FEIC simulation are considered in the POD-FEIC-DEIM
simulations. In the following, we denote the POD-FEIC-DEIM solution by ûh

r .

FitzHugh–Nagumo System. We revisit the 1D F-N model that has been used in Section V-A.
In total, 801 nonlinear snapshots of N(v) = 1

μ
v(v − 0.1)(1 − v) are generated and used in the

DEIM. The nonlinear function is then approximated by the DEIM basing on p selected interpo-
lation points. In this test, we consider the POD-FEIC-DEIM generated by the same r = 5 POD
basis functions as those used in FitzHugh–Nagumo System Section and investigate the numerical
performance of the new model by varying the number of interpolation points.

The approximation errors in E0 norm, CPU time, and speed-up factors for simulations are
presented in Table VI. As p increases, the POD-FEIC-DEIM result approaches to that of the
POD-FEIC (E0(u

h
r , uh) = 6.60 × 10−4 when r = 5). It is also seen from Table VI that when p = 3,

the POD-FEIC-DEIM error is nine times larger than that of the POD-FEIC. However, as the limit
cycle on the v – w plane shown in Fig. 3, the difference mainly occurs at the beginning of the
simulation (from t = 0 to t = 1). After the transient interval, the limit cycles of the POD-FEIC and
the POD-FEIC-DEIM coincide with each other. Moreover, the CPU time of the POD-FEIC-DEIM
is lower than that of the POD-FEIC, although not significantly due to the small size of the tested
problem.

To measure the effectiveness of the POD-FEIC-DEIM approximation of the nonlinear terms,
we utilize the MATLAB profiler. It shows that, when r = 5 and p = 3, the command for evaluat-
ing the nonlinear terms was executed 2416 times, which took 0.63 s. When r = 5 and p = 9, the
command for evaluating the nonlinear terms was called 2418 times, which took 0.64 s. Hence, in
general, it takes less time in generating the nonlinear terms in the POD-FEIC-DEIM model than
that in the POD-FEM and POD-FEIC models.

Buckley–Leverett Equation. We also consider the 2D BLE problem that has been utilized
in Section V-A. In total, 51 nonlinear snapshots of f 1(u) and f 2(u) are generated, respectively.
They are used in the DEIM for selecting p interpolation points. We consider the POD-FEIC-
DEIM model generated by the same r = 5 POD basis functions as those used in Buckley–Leverett
Equation Section and investigate its numerical behavior by varying p.

The approximation errors in E0 norm, CPU time, and speed-up factors for simulations are listed
in Table VII. Note that for the POD-FEIC model when r = 5, the error E0(u

h
r , uh) = 4.47 × 10−3

and the CPU time is 8.78 s with the speed-up factor 3.97. The POD-FEIC-DEIM model achieves
a close accuracy by only using p = 5 interpolation points, while improving the computational
efficiency: the error is 4.74 × 10−3 but the speed-up factor reaches 51.4. Figure 4 shows the
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FIG. 3. The limit cycle on the v – w plane: the POD-FEIC results (r = 5) and the POD-FEIC-DEIM
approximation (r = 5 and p = 3). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

TABLE VII. The approximation errors, CPU time, and speed-up factors of the POD-FEIC-DEIM model
with r = 5 POD basis and p interpolation points for the nonlinear function approximation.

p E0(û
h
r , uh) CPU time Sf

5 4.74 × 10−3 0.679 51.4
10 4.68 × 10−3 0.692 50.4
15 4.67 × 10−3 0.705 49.5
20 4.61 × 10−3 0.711 49.0

FIG. 4. Distribution of DEIM interpolation points for f 1(u) and f 2(u) (left), the difference between POD-
FEIC and POD-FEIC-DEIM at t = 0.2 when p = 5 (middle) and p = 20 (right). [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

distribution of 20 first selected DEIM interpolation points (left), and the difference between the
POD-FEIC approximation and the POD-FEIC-DEIM solution when p = 5 (middle) and p = 20
(right).

To measure the effectiveness of the POD-FEIC-DEIM approximation of the nonlinear terms,
we use the MATLAB profiler. It shows that, when r = 5 and p = 5, the command for evaluating the
nonlinear terms was executed 166 times, which took 0.05 s. When r = 5 and p = 20, the command
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for evaluating the nonlinear terms was called 166 times, which took 0.07 s. Therefore, in general,
it takes less time in generating the nonlinear terms in the POD-FEIC-DEIM model than that in
the POD-FEM and POD-FEIC models.

VII. CONCLUSIONS

As a first step of our investigations on efficient FE discretization algorithms for nonlinear model
reduction techniques, we develop the FEIC method for nonlinear POD-ROMs. Comparing with
the standard FE discretization, which requires the nonlinear function values to be determined at
all the quadrature points in order to evaluate the inner product in the nonlinear terms, the proposed
approach is computationally more efficient because the nonlinear function values are needed at
the FE nodes. The proposed method also achieves the same accuracy as that of the standard FE
discretization when nonlinear functions satisfy certain smoothness assumptions. Furthermore, the
approach is more suitable for the DEIM. Combining the FEIC method with the DEIM will further
reduce the computational complexity for evaluating nonlinear terms.

We plan to continue investigating several research avenues. We will discuss the performance
of the proposed method on three-dimensional semilinear parabolic equations. We will further
extend the proposed approach to more general nonlinear systems including nonlinear parametric
equations and the nonlinear closure ROMs that have been developed for complex flows in [2, 39].
Some realistic engineering application problems will be tested.

The author is grateful to Dr. Saifon Chaturantabut for sharing the MATLAB implementation
codes of the discrete empirical interpolation method. The author thank the anonymous reviewers
for their constructive comments, which helped improve the manuscript.
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81. R. Stefănescu and I. M. Navon, POD/DEIM nonlinear model order reduction of an ADI implicit shallow
water equations model, J Comput Phys 237 (2013), 95–114.

Numerical Methods for Partial Differential Equations DOI 10.1002/num


