
Proper orthogonal decomposition closure models for turbulent flows:
A numerical comparison

Zhu Wang a, Imran Akhtar b, Jeff Borggaard a, Traian Iliescu a,⇑
a Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
b Department of Mechanical Engineering, NUST College of Electrical & Mechanical Engineering, National University of Sciences & Technology, Islamabad, Pakistan

a r t i c l e i n f o

Article history:
Received 8 December 2011
Received in revised form 13 April 2012
Accepted 20 April 2012
Available online 3 May 2012

Keywords:
Proper orthogonal decomposition
Reduced-order modeling
Turbulence
Large eddy simulation
Dynamic subgrid-scale model
Variational multiscale model

a b s t r a c t

This paper puts forth two new closure models for the proper orthogonal decomposition reduced-order
modeling of structurally dominated turbulent flows: the dynamic subgrid-scale model and the varia-
tional multiscale model. These models, which are considered state-of-the-art in large eddy simulation,
together with the mixing length and the Smagorinsky closure models, are tested in the numerical simu-
lation of 3D turbulent flow past a circular cylinder at Re ¼ 1000. Five criteria are used to judge the per-
formance of the proper orthogonal decomposition reduced-order models: the kinetic energy spectrum,
the mean velocity, the Reynolds stresses, the root mean square values of the velocity fluctuations, and
the time evolution of the POD coefficients. All the numerical results are benchmarked against a direct
numerical simulation. Based on these numerical results, we conclude that the dynamic subgrid-scale
and the variational multiscale models are the most accurate.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

Reduced-order models (ROMs) of structurally dominated turbu-
lent flows are central to many applications in science and engi-
neering, such as fluid flow control (see for example, [1–10]) and
data assimilation of atmospheric and oceanic flows [11–13]. Both
computational efficiency and physical accuracy are needed for
the success of these ROMs in practical applications. Striking a bal-
ance between efficiency and accuracy in ROMs of turbulent flows
is, of course, challenging. Indeed, it is clear that retaining fewer
modes leads to more efficient ROMs. Preserving the physical accu-
racy of the resulting ROM, however, becomes challenging, since the
modes that are not included in the ROM representation of the
underlying turbulent flow need to be modeled. Thus, the ROM
must contain a closure model to represent the effect of the dis-
carded POD modes. The quest of balancing the computational effi-
ciency and physical accuracy represents one of the main challenges
in ROMs for turbulent flows.

One of the most successful ROM strategies for structurally dom-
inated turbulent flows has been the proper orthogonal decomposi-

tion (POD) [14,15]. POD starts with data from an accurate
numerical simulation (or physical experiment), extracts the most
energetic modes in the system, and utilizes a Galerkin procedure
that yields a ROM of the underlying turbulent flow. The first proper
orthogonal decomposition reduced-order model (POD-ROM) for the
turbulent boundary layer was proposed in [16]. This model trun-
cated the POD basis and used an eddy viscosity-based closure mod-
el. This POD-ROM yielded good qualitative results, considering the
coarseness of the approximation. The criterion used to assess the
accuracy of the model was the intermittency of bursting events
in the turbulent boundary layer. This POD-ROM was further inves-
tigated numerically in two subsequent papers [17,18]. The model
reproduced the qualitative physics of the turbulent boundary layer
well. Furthermore, by adding new POD modes to the model, the
accuracy of the model was increased.

Since the eddy viscosity POD closure model put forth in [16],
several alternative closure modeling strategies have been used,
such as calibration [19–21] and the use of the H1 norm instead of
the standard L2 norm in the derivation of the POD basis [22–24].
For a survey of these alternative approaches, the reader is referred
to [25] (also see [26]). The focus of this report is eddy viscosity clo-
sure models that aim to improve the physical accuracy of the ROM
for general flow settings. These settings will, in general, be differ-
ent from those used in the computation of the underlying POD ba-
sis (e.g., longer time intervals and different Reynolds numbers).
Similar goals are shared by the promising finite-time thermody-
namics formalism put forth in [27–29]. The alternative POD closure
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modeling strategies mentioned above (i.e., calibration and H1 norm
POD basis selection), however, optimize the ROM with respect to
the same flow setting used in the computation of the POD basis.
Thus, as shown in [21], their application to general flow settings
is beset with difficulties.

Despite their initial success, POD-ROMs have generally been
limited to laminar flows and relatively few reports on closure mod-
eling strategies for turbulent flows have appeared in the literature
[16–18,21,27,30–41]. This is in stark contrast to the amount of
work done in traditional turbulence modeling, such as large eddy
simulation (LES), where literally hundreds of closure models have
been proposed and investigated (see for example, [42]) over the
same time period. This disparity in closure modeling between
POD reduced-order modeling and classical turbulence modeling
seems even more dramatic considering that the concept of an en-
ergy cascade, which is a fundamental modeling principle in LES, is
also valid in a POD setting. Indeed, the validity of the extension of
the energy cascade concept to the POD setting was studied numer-
ically in [43], where the authors have investigated the energy
transfer among POD modes in a non-homogeneous computational
setting. By monitoring the triad interactions due to the nonlinear
term in the Navier–Stokes equations, they concluded that the
transfer of energy among the POD modes is similar to the transfer
of energy among Fourier modes. Specifically, they found that there
is a net forward energy transfer from low index POD modes to
higher index POD modes and that this transfer of energy is local
in nature (that is, energy is mainly transferred among POD modes
whose indices are close to one another). This study (see also [35])
clearly suggests that LES ideas based on the energy cascade con-
cept could also be used in devising POD-ROMs.

One of the main reasons for the scarcity of closure models for
POD-ROMs of turbulent flows is the impractical cost of implement-
ing standard LES closure models employed in a POD-ROM setting.
Indeed, most of the computational cost of a POD-ROM lies in
assembling the vectors, matrices and tensors of the ROM. This,
however, is hardly a problem for POD-ROM, since the vectors,
matrices and tensors are assembled only once, at the beginning
of the POD-ROM simulation, and reused at every time step. Stan-
dard (nonlinear) LES closure models, however, introduce new vec-
tors and matrices that need to be recomputed at every time step.
Thus, a straightforward numerical discretization of such closure
models comes at a huge computational cost, rendering the result-
ing POD-ROMs impractical.

In the past few years, a number of strategies have been intro-
duced to treat nonlinear terms in POD-ROMs. These include inter-
polatory methods such as the empirical interpolation method [44],
the discrete empirical interpolation method [45,46], the closely re-
lated group finite element approach [49], the gappy POD [47,48]
and a novel two-level discretization method [50]. The latter ap-
proach is best suited for this study since it does not constrain the
nonlinear term to lie within a predefined set. This approach is
based on a two-level discretization of the vectors, matrices and
tensors of the POD-ROM, in which all the terms are computed on
the fine grid, except for the nonlinear closure model terms, which
are computed on a coarser grid. In [50], numerical simulations of a
turbulent flow past a 3D cylinder at Re ¼ 1000 with a standard LES
closure model [51] demonstrated that the new two-level discreti-
zation is both computationally efficient and physically accurate.
Indeed, the new two-level algorithm decreased the CPU time of
the standard one-level algorithm by more than an order of magni-
tude, without compromising the physical accuracy.

In this report, we use the two-level algorithm proposed in [50]
to discretize two new POD-ROMs, inspired from state-of-the-art
LES closure modeling strategies: the dynamic subgrid-scale (DS)
model [52–54] and the variational multiscale (VMS) model [55].
We also consider the standard mixing-length closure model pro-

posed in [16] and the Smagorinsky model proposed in [35,38,50],
both being standard LES closure models. All four POD-ROMs are
tested in the numerical simulation of a 3D turbulent flow past a
circular cylinder at Re ¼ 1000. Five criteria are used to judge the
performance of the POD-ROMs: the kinetic energy spectrum, the
mean velocity, the Reynolds stresses, the root mean square values
of the velocity fluctuations, and the time evolution of the POD coef-
ficients. All the numerical results are benchmarked against a direct
numerical simulation (DNS).

The rest of the paper is organized as follows. The general meth-
odology used in the development of POD-ROMs is presented in
Section 2. The four POD closure models are described in Section 3
and are investigated numerically in Section 4. Finally, conclusions
and several research directions currently pursued by our group are
provided in Section 5.

2. POD reduced-order modeling

We now present the general approach used in the development
of POD-ROMs. We start by briefly describing the POD methodol-
ogy; for more details, the reader is referred to [14,15]. To this
end, we consider the numerical solution of the incompressible Na-
vier–Stokes equations (NSE):

ut " Re"1Duþ ðu %rÞuþrp ¼ 0
r % u ¼ 0

)
; ð1Þ

where u is the velocity, p is the pressure and Re is the Reynolds
number. The POD basis is generated by post-processing typical data
from the numerical simulation of (1). If Y ¼ yð%; tÞ 2 H j t 2 ð0; TÞf g
(with H a Hilbert space) represents a simulation of the NSE, then
the first POD basis vector is the function that maximizes the
time-averaged projection of Y onto itself,

u1 ¼ max
u2H;kukH¼1

1
T

Z T

0
yð%; tÞ;uð%Þh iH
!! !!2dt: ð2Þ

Subsequent vectors, uk, are determined by seeking the above max-
imum in the orthogonal complement to

Xk"1 ¼ spanfu1; . . . ;uk"1g; 2 6 k 6 N; in H; ð3Þ

where N is the rank of Y. If we choose H ¼ L2 and Y represents a
single simulation, the POD basis functions satisfy the Fredholm
integral equation
Z

X
Rðx; x0Þuiðx

0Þdx0 ¼ kiuiðxÞ; ð4Þ

where

Rðx;x0Þ ¼ 1
T

Z T

0
yðx; tÞy'ðx0; tÞdt ð5Þ

is the spatial autocorrelation kernel. There are natural extensions of
this definition that accommodate multiple simulations. In practice,
either the time average of each simulation or the steady state solu-
tion is removed, so that Y contains fluctuation from the mean (or a
centering trajectory), e.g., yðx; tÞ ¼ uðx; tÞ " UðxÞ [14]. Note that
each POD basis vector uk represents a weighted time average of
the data Y. Thus, these basis vectors preserve linear properties
(such as the divergence-free property).

A POD basis enables a reduced representation of the simulated
data, and thus can be viewed as a compression algorithm. Utilizing
the POD basis to obtain efficient approximations to (1) is achieved
using the POD basis in a Galerkin approximation, and employing
the fact that the POD basis vectors are mutually orthogonal.
A POD-ROM of the flow is constructed from the POD basis by
writing
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uðx; tÞ ( urðx; tÞ ) UðxÞ þ
Xr

j¼1

ajðtÞujðxÞ; ð6Þ

where UðxÞ is the centering trajectory, fujg
r
j¼1 are the first r POD ba-

sis vectors, and fajðtÞgr
j¼1 are the sought time-varying coefficients

that represent the POD-Galerkin trajectories. We now replace the
velocity u with ur in the NSE (1), then project the resulting equa-
tions onto the subspace Xr . Using the boundary conditions and
the fact that all modes are solenoidal, one obtains the POD Galerkin
reduced-order model (POD-G-ROM):

@ur

@t
;/

" #
þ ður %rÞur;/ð Þ þ 2

Re
DðurÞ;r/

" #
¼ 0 8/ 2 Xr ; ð7Þ

where DðurÞ :¼ ðrur þ ðrurÞTÞ=2 is the deformation tensor of ur .
We note that, since the computational domain that we consider is
large enough, the pressure terms in (7) can be neglected (for details,
see [37,56]). The POD-G-ROM (7) yields the following autonomous
dynamical system for the vector of time coefficients, aðtÞ:

_a ¼ bþ Aaþ aT Ba; ð8Þ

where b;A, and B correspond to the constant, linear, and quadratic
terms in the numerical discretization of the NSE (1), respectively.
The initial conditions are obtained by projection:

ajð0Þ ¼ huj;uð%;0Þ " Uð%ÞiH; j ¼ 1; . . . ; r: ð9Þ

The finite dimensional system (8) can be written componentwise as
follows: For all k ¼ 1; . . . ; r,

_akðtÞ ¼ bk þ
Xr

m¼1

AkmamðtÞ þ
Xr

m¼1

Xr

n¼1

BkmnanðtÞamðtÞ; ð10Þ

where

bk ¼ " uk;U %rU
$ %

" 2
Re
ruk;

rUþrUT

2

 !
; ð11Þ

Akm ¼ "ðuk;U %rumÞ " ðuk;um %rUÞ " 2
Re
ruk;

rum þruT
m

2

" #
; ð12Þ

Bkmn ¼ "ðuk;um %runÞ: ð13Þ

3. POD closure models

In this section, we present the four POD closure models investi-
gated numerically in Section 4. To this end, we start by describing
the filtering operation and the spatial lengthscale d used in the POD
closure models. Both are needed in order to define meaningful LES-
inspired POD closure models.

3.1. POD filter

In LES, the filter is the central tool used to obtain simplified
mathematical models that are computationally tractable. The fil-
tering operation is effected by convolution of flow variables with
a rapidly decaying spatial filter gd, where d is the radius of the spa-
tial filter. In POD, however, there is no explicit spatial filter used.
Thus, in order to develop LES-type POD closure models, a POD filter
needs to be introduced. Given the hierarchical nature of the POD
basis, a natural such filter appears to be the Galerkin projection.
For all u 2 H, the Galerkin projection !u 2 Xr is the solution of the
following equation:

ðu" !u;uÞ ¼ 0 8u 2 Xr : ð14Þ

The Galerkin projection defined in (14) will be the filter used in all
POD closure models studied in this report.

3.2. POD lengthscale

Next, we introduce the lengthscale d used in the POD closure
models. We emphasize that this choice is one of the fundamental
issues in making a connection with LES. Indeed, we need such a
lengthscale (d) in order to define dimensionally sound POD models
of LES flavor. To simplify the notation, in this section we utilize sub-
scripts for the three spatial components: x1; x2; x3 and u1;u2;u3. In
the other sections, we use the standard notation x; y; z and u;v ;w.

To derive the lengthscale d, we use dimensional analysis. A
dimensionally sound lengthscale l> for a turbulent pipe flow was de-
fined in [16]. In fact, this lengthscale was only defined implicitly,
through the turbulent eddy viscosity mT :¼ u>l>. Indeed, Eq. (22) in
[16] reads

mT :¼ u>l> ¼
R X2

0 hui>ui>idx2

X2
R X2

0 hui>;jui>;jidx2

& '1=2 ; ð15Þ

where repeated indices denote summation, the subscript > denotes
unresolved POD modes,

hf i ¼ 1
L1L3

Z L1

0

Z L3

0
f ðx; tÞdx1dx3 ð16Þ

denotes the spatial average of f in the homogeneous directions (here
x1 and x3), and L1; L3 and X2 are the streamwise, spanwise, and wall-
normal dimensions of the computational domain, respectively. Note
that the authors in [16] only considered the wall region, not the en-
tire pipe flow. In (15), the following notation was used: ui> ¼PN

j¼rþ1ai
juj;ui>ui> ¼

P3
i¼1ui>ui>; and ui>;j ¼ @ui>

@xj
. Note that a quick

dimensional analysis shows that the quantity defined in (15) has
the units of a viscosity. Indeed,

½mT + ¼
m
s

m
s m

m 1
s

1
s m

$ %( )1=2 ¼
m3

s2

m
s

¼ m2

s
: ð17Þ

In Appendix B of [16], the authors have further simplified (15) and
expressed mT in terms of the first neglected POD modes:

mT :¼ u>l>

¼
P
ðk;nÞk

ðnÞ
k

X2L1L3
P
ðk;nÞk

ðnÞ
k

R X2
0 DUðnÞik

DUðnÞ'ik
dx2 " k2

1 " k2
3

& '& '1=2 ; ð18Þ

where the triplets ðk;nÞ are the first neglected POD modes.
In Eq. (9.90) of [14], the authors define another dimensionally

sound turbulent viscosity

mT :¼ u>l> ¼
1

X2

Z X2

0

hui>ui>i
hui>;jui>;ji1=2 dx2: ð19Þ

A quick dimensional analysis shows that the quantity defined in
(19) also has the units of a viscosity.

We can use the definition of mT in (15) and dimensional analysis
to define the following lengthscale l>:

l> :¼
R X2

0 hui>ui>idx2

X2
R X2

0 hui>;jui>;jidx2

: ð20Þ

A quick dimensional analysis reveals that the quantity defined in
(20) is dimensionally sound, i.e., has the units of a lengthscale. Sim-
ilarly, we can use the definition of mT in (19) and dimensional anal-
ysis to define the following alternative lengthscale l>:

l> :¼ 1
X2

Z X2

0

hui>ui>i
hui>;jui>;ji

dx2

" #1=2

: ð21Þ

Again, a quick dimensional analysis shows that the quantity defined
in (21) is also dimensionally sound, i.e., has the units of a length-
scale. We note that one could also use the two definitions of mT in
(15) and (19) to define two dimensionally sound velocity scales
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u>. Since these velocity scales are not used in this report, we do not
carry out their derivation.

In the 3D flow past a cylinder example that we consider in Sec-
tion 4, both (20) and (21) are valid candidates for the definition of
the lengthscale d. The only modification we need to make (due to
our computational domain) is to replace the horizontal averaging
by spanwise averaging and take double integrals in the remaining
directions. Respectively, we have

d :¼
R L1

0

R L2
0 hui>ui>idx1dx2

R L1
0

R L2
0 hui>;jui>;jidx1dx2

 !1=2

ð22Þ

and

d :¼ 1
L1L2

Z L1

0

Z L2

0

hui>ui>i
hui>;jui>;ji

dx1dx2

" #1=2

: ð23Þ

3.3. POD closure models

We are now ready to present the four POD closure models that
are investigated numerically in Section 4.

The POD-G-ROM (7) has been successfully used for laminar
flows. For structurally dominated turbulent flows, however, the
POD-G-ROM simply fails (see for example, [50]). The reason is that
the effect of the discarded POD modes furþ1; . . . ;uNg needs to be in-
cluded in the model. For turbulent flows, the most natural way to
tackle this POD closure problem is by using the eddy viscosity (EV)
concept, which states that the role of the discarded modes is to ex-
tract energy from the system. The concept of energy cascade, which
is well established in a Fourier setting, has been recently confirmed
in a POD setting in the numerical investigations in [43]. Thus, using
LES inspired EV closure models in POD-ROM is a natural step.

In this section, we propose two new POD closure models: the
dynamic subgrid-scale model and the variational multiscale mod-
el. We emphasize that, although these models were announced in
[57], this study represents their first careful derivation and thor-
ough numerical investigation. We also numerically test the mix-
ing-length [16] and Smagorinsky [35,38,50] POD closure models.

Since all four POD closure models are of EV type, we first pres-
ent a general EV POD-ROM framework. Then, for each closure mod-
el, we specify its implementation in this general framework. The
general EV POD-ROM framework can be written as:

_a ¼ bþ ebðaÞ
& '

þ Aþ eAðaÞ
& '

aþ aT Ba; ð24Þ

which is just a slight modification of the POD-G-ROM (8). The new
terms in (24) (the vector ebðaÞ and the matrix eAðaÞ) correspond to
the numerical discretization of the POD closure model. In compo-
nentwise form, Eq. (24) can be written as

_akðtÞ ¼ bk þ ebkðaÞ
& '

þ
Xr

m¼1

Akm þ eAkmðaÞ
& '

amðtÞ

þ
Xr

m¼1

Xr

n¼1

BkmnanðtÞamðtÞ; ð25Þ

where bk;Akm, and Bkmn are the same as those in Eq. (8) and ebkðaÞ
and eAkmðaÞ depend on the specific closure model used.

3.3.1. The mixing-length POD reduced-order model (ML-POD-ROM)
The first POD closure model was the mixing-length model pro-

posed in [16]. This closure model is of EV type and amounts to
increasing the viscosity coefficient m by

mML ¼ amT ¼ aUMLLML; ð26Þ

where UML and LML are characteristic velocity and length scales for
the unresolved scales, and a is an Oð1Þ nondimensional parameter

that characterizes the energy being dissipated. Using the EV ansatz
in (26), the mixing-length POD reduced-order model (ML-POD-ROM)
has the form (24), where

ebkðaÞ ¼ "mML ruk;
rUþrUT

2

 !
; ð27Þ

eAkmðaÞ ¼ "mML ruk;
rum þruT

m

2

" #
: ð28Þ

The parameter a is expected to vary in a real turbulent flow, and dif-
ferent values of a may result in different dynamics of the flow
[14,16–18]. There are also different ways to define mT in (26): rela-
tion (15) was used in [16], whereas relation (19) was used in [14].
We also mention that several other authors have used the ML-
POD-ROM (26) (see for example, [50,57]). Improvements to the
mixing-length model (26) in which the EV coefficient is mode
dependent were proposed in [30,32,58].

3.3.2. The Smagorinsky POD reduced-order model (S-POD-ROM)
A potential improvement over the simplistic mixing-length

hypothesis is to replace the constant mML in (27) and (28) (which
is computed only once, at the beginning of the simulation) with
a variable turbulent viscosity (which is recomputed at every time
step), such as that proposed in [51]. This yields a POD closure mod-
el in which the viscosity coefficient is increased by

mS :¼ ðCSdÞ2kDðurÞk; ð29Þ

where CS is the Smagorinsky constant, d is the lengthscale defined
in Section 3.2 and kDðurÞk is the Frobenius norm of the deformation
tensor DðurÞ. Using the EV ansatz in (29), the Smagorinsky POD re-
duced-order model (S-POD-ROM) has the form (24), where

~bkðaÞ ¼ "2ðCSdÞ2 ruk; kDðurÞk
rUþrUT

2

 !

; ð30Þ

eAkmðaÞ ¼ "2ðCSdÞ2 ruk; kDðurÞk
rum þruT

m

2

" #
: ð31Þ

The S-POD-ROM (30) and (31) was proposed in [57] (see also [35])
and was used in the reduced-order modeling of structurally domi-
nated 3D turbulent flows in [38,50]. Its advantage over the ML-
POD-ROM (27) and (28) is obvious: the latter utilizes a constant EV
coefficient at every time step, whereas the former recomputes the
EV coefficient (which depends on kDðurÞk) at every time step. To ad-
dress the significant computational burden posed by the recalcula-
tion of the Smagorinsky EV coefficient at every time step, a novel
two-level discretization algorithm proposed in [50] is employed in
Section 4.

3.3.3. The variational multiscale POD reduced-order model (VMS-POD-
ROM)

The VMS method, a state-of-the-art LES closure modeling strat-
egy, was introduced in [55,59,60]. The VMS method is based on the
principle of locality of energy transfer, i.e., it uses the ansatz that
energy is transferred mainly between neighboring scales. In [43],
the transfer of energy among POD modes for turbulent flow past
a backward-facing step (a non-homogeneous separated flow) was
investigated numerically. In their report, it was shown that the
Fourier-decomposition based concepts of energy cascade and
locality of energy transfer are also valid in the POD context (see
Figs. 3 and 4 in [43]). Thus, VMS closure models represent a natural
choice for POD-ROM.

To develop the VMS POD closure model, we start by decompos-
ing the finite set of POD modes Xr into the direct sum of large re-
solved POD modes Xr

L and small resolved POD modes Xr
S:
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Xr ¼ Xr
L , Xr

S; where ð32Þ

Xr
L :¼ span u1;u2; . . . ;urL

n o
and ð33Þ

Xr
S :¼ span urLþ1;urLþ2; . . . ;ur

n o
: ð34Þ

Accordingly, we decompose ur into two components: uL
r represent-

ing the large resolved scales, and uS
r representing the small resolved

scales:

ur ¼ uL
r þ uS

r ; ð35Þ

where

uL
r ¼ Uþ

XrL

j¼1

ajuj; ð36Þ

uS
r ¼

Xr

j¼rLþ1

ajuj: ð37Þ

The two components uL
r and uS

r represent the projections of ur onto
the two spaces Xr

L and Xr
S, respectively. The general POD-ROM

framework (24) can now be separated into two equations - one
for aL (the vector of POD coefficients of uL

r ) and one for aS (the vector
of POD coefficients of uS

r ). The variational multiscale POD reduced-or-
der model (VMS-POD-ROM) applies an eddy viscosity term to the
small resolved scales only, following the principle of locality of en-
ergy transfer. The VMS-POD-ROM reads:

_aL

_aS

* +
¼ bL

bS

" #
þ Ar aL

aS

* +
þ AL 0

0 AS þ eASðaSÞ

" #
aL

aS

* +
þ

aL

aS

* +T

B
aL

aS

* +
:

ð38Þ

The finite dimensional system (38) can be written componentwise
as follows:

_aL
kðtÞ ¼ bL

k þ
Xr

m¼1

Ar
kmamðtÞ þ

XrL

j¼1

AL
kjajðtÞ þ

Xr

m¼1

Xr

n¼1

BkmnanðtÞamðtÞ;

8k ¼ 1; . . . ; rL; ð39Þ

_aS
kðtÞ ¼ bS

k þ
Xr

m¼1

Ar
kmamðtÞ þ

Xr

j¼rLþ1

AS
kj þ eA

S
kj

& '
ajðtÞ

þ
Xr

m¼1

Xr

n¼1

BkmnanðtÞamðtÞ 8k ¼ rL þ 1; . . . ; r; ð40Þ

where

bL
k ¼ " uk;U %rU

$ %
" 2

Re
ruk;

rUþrUT

2

 !

; ð41Þ

Ar
km ¼ "ðuk;U %rumÞ " ðuk;um %rUÞ; ð42Þ

AL
kj ¼ "

2
Re
ruk;

ruj þruT
j

2

 !
; ð43Þ

Bkmn ¼ "ðuk;um %runÞ; ð44Þ

bS
k ¼ " uk;U %rU

$ %
; ð45Þ

AS
kj ¼ "

2
Re
ruk;

ruj þruT
j

2

 !
; ð46Þ

eAS
kjðaÞ ¼ "2ðCSdÞ2 ruk; kDðu

S
r þ UÞk

ruj þruT
j

2

 !
: ð47Þ

We emphasize that the system of equations (38) is coupled through
two terms: (i) aT Ba, which represents the nonlinearity ður %rÞur;
and (ii) Ara, which represents the term ður %rÞur linearized around
the centering trajectory U. The difference between the VMS-POD-
ROM (38)–(47) and the S-POD-ROM (30) and (31) is that the former
acts only on the small resolved scales (since the Smagorinsky EV

term ðCSdÞ2kDðuS
r þ UÞk is included only in the equation corre-

sponding to aS), whereas the latter acts on all (both large and small)
resolved scales.

The VMS-POD-ROM (38)–(47) was announced in [57]. This
study, however, represents its first careful derivation and thorough
investigation in the numerical simulation of a 3D turbulent flow.
We note that a fundamentally different VMS LES closure model
that utilizes the NSE residual was proposed in [61]; this model
was used in a POD setting in [26]. Yet another VMS-POD-ROM, in-
spired from the numerical stabilization methods developed in [62–
65], was proposed, analyzed and tested in [66]. We emphasize that
the VMS-POD-ROM (38)–(47) is different from both the model
used in [26] and that used in [66].

3.3.4. Dynamic subgrid-scale POD reduced-order model (DS-POD-
ROM)

For all three POD-ROM closure models defined above (i.e., ML-
POD-ROM (27) and (28), S-POD-ROM (30) and (31), and VMS-
POD-ROM (38)–(47)), the definition has been entirely phenomeno-
logical. Indeed, arguing that the role of the discarded POD modes is
to extract energy from the system, we used an EV ansatz to derive
closure models of increasing complexity and physical accuracy.
The dynamic subgrid-scale (DS) POD-ROM closure model is also of
EV type. Its derivation, however, requires a precise definition of
the filtering operation. The DS closure model has its origins in
LES, where it is considered state-of-the-art (see for example,
[42]). In LES, the filtering operation is effected by convolving the
flow variables with a rapidly decaying spatial filter. In POD, the fil-
tering operation is effected by using the POD Galerkin projection
described in Section 3.1 (see (14)). To derive the precise POD fil-
tered equations, we start with the NSE (1) in which the velocity
u is replaced by its POD approximation uðx; tÞ ( urðx; tÞ )
UðxÞ þ

Pr
j¼1ajðtÞujðxÞ in (6), and obtain

@ur

@t
" Re"1Dur þ ður %rÞur þrp ¼ 0: ð48Þ

Using the fact that r % ur ¼ 0 in (48), we get ður %rÞur ¼ r % ður urÞ.
Thus, (48) can be rewritten as

@ur

@t
" Re"1Dur þr % ðururÞ þrp ¼ 0: ð49Þ

Applying the POD filtering operation (14) to (49), using the fact that
the POD Galerkin projection is a linear operator, and assuming that
differentiation and POD filtering commute, we obtain

@!ur

@t
" Re"1D!ur þr % ður urÞ þr!p ¼ 0: ð50Þ

We note that, if filtering and differentiation do not commute, one
has to estimate the commutation error (see for example, [67–69]).
We also note that, since the POD filtering operation is the Galerkin
projection (14), !ur ¼ ur . To maintain a notation consistent with the
nonlinear term, we continue to use the !ur notation in the following
development.

The POD filtered Eq. (50) can be rewritten as

@!ur

@t
" Re"1D!ur þr % ð!ur !urÞ þr % ðsrÞ þr!p ¼ 0; ð51Þ

where

sr ¼ urur " !ur !ur ð52Þ

is the POD subfilter-scale stress tensor. Thus, the POD-G-ROM (7)
amounts to setting sr ¼ 0. For turbulent flows, as we have already
mentioned, this approximation is flawed. Thus, one needs to ad-
dress the POD closure problem, i.e., to model the POD subfilter-
scale stress tensor sr in terms of the POD filtered velocity !ur .
We note that the POD closure problem is exactly the LES closure
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problem, in which the spatial filtering is replaced by POD Galerkin
projection. For all three POD-ROM closure models defined so far in
this section (i.e., ML-POD-ROM (27) and (28), S-POD-ROM (30) and
(31), and VMS-POD-ROM (38)–(47)), the closure problem has been
addressed by assuming an EV ansatz for sr . The DS-POD-ROM em-
ploys an EV ansatz as well; specifically, the Smagorinsky model is
utilized:

sr ( "2ðCSdÞ2kDð!urÞkDð!urÞ; ð53Þ

in which CS is not a constant (as in the Smagorinsky model), but a
function of space and time, i.e., CS ¼ CSðx; tÞ. To compute CSðx; tÞ,
we follow the LES derivation in [42] and replace the LES spatial fil-
tering with the POD Galerkin projection. Since there are two spatial
filters in the LES derivation of the DS model, we define a second POD
Galerkin projection (in addition to that defined in (14)): For all
u 2 X, the second (test) Galerkin projection ~u 2 XR (where R < r)
is the solution of the following equation:

ðu" ~u;uÞ ¼ 0 8u 2 XR: ð54Þ

Applying the second POD filtering operation (54) to (50), we obtain:

@f!ur

@t
" Re"1Df!ur þr % ðf!ur

f!ur Þ þr % ðTrÞ þrep ¼ 0; ð55Þ

where

Tr ¼ gurur "f!ur
f!ur ð56Þ

is the second POD subfilter-scale stress tensor. We note that the fol-
lowing identity (known as the ‘‘Germano identity’’ in LES) holds:

Tr ¼ gurur "f!ur
f!ur ¼ g!ur !ur "f!ur

f!ur

& '
þ gurur " g!ur !ur

& '
¼ Lr þ esr ;

ð57Þ

where Lr ¼ g!ur !ur "f!ur
f!ur and esr ¼ gurur " g!ur !ur . We assume the same

EV ansatz for the two POD subfilter-scale stress tensors, sr and Tr:

Tr ( "2ðCS
edÞ2kDðf!ur ÞkDðf!ur Þ; ð58Þ

sr ( "2ðCSdÞ2kDð!urÞkDð!urÞ; ð59Þ

where ed is the filter radius used in the second POD filtering opera-
tion (54). Assuming that CS remains constant under the second POD
filtering (54), we obtain:

esr ( "2ðCSdÞ2 gkDð!urÞkDð!urÞ ( "2ðCSdÞ2 gkDð!urÞkDð!urÞ: ð60Þ

Substituting (58) and (60) into (57) we obtain:

"2ðCS
edÞ2kDðf!ur ÞkDðf!ur Þ ¼ g!ur !ur "f!ur

f!ur

& '

" 2ðCSdÞ2 gkDð!urÞkDð!urÞ: ð61Þ

We note that CS is the only unknown in (61), all other terms being
computable quantities. Since all the terms in (61) are tensors, the
unknown CS cannot satisfy all six equations. Thus, the following
least squares approach is considered instead:

C2
S

min
g!ur !ur "f!ur

f!ur

& '
"2ðCSdÞ2 gkDð!urÞkDð!urÞ þ2ðCS

edÞ2kDðf!ur ÞkDðf!ur Þ
h i

: g!ur !ur "f!ur
f!ur

& '
"2ðCSdÞ2 gkDð!urÞkDð!urÞ þ2ðCS

edÞ2kDðf!ur ÞkDðf!ur Þ
h i

:

ð62Þ

The solution CSðx; tÞ of (62) is:

C2
S ðx;tÞ

¼
g!ur !ur"f!ur

f!ur

h i
: 2d2 gkDð!urÞkDð!urÞ"2ed2kDðf!ur ÞkDðf!ur Þ
h i

2d2 gkDð!urÞkDð!urÞ"2ed2kDðf!ur ÞkDðf!ur Þ
h i

: 2d2 gkDð!urÞkDð!urÞ"2ed2kDðf!ur ÞkDðf!ur Þ
h i:

ð63Þ

Since the stress tensors can be computed directly from the resolved
field, (63) yields a time- and space-dependent formula for CSðx; tÞ.

Thus, the DS-POD-ROM increases the viscosity coefficient by

mDS :¼ CSðx; tÞdð Þ2kDðurÞk; ð64Þ

where CSðx; tÞ is the coefficient in (63), d is the lengthscale defined
in Section 3.2 and kDðurÞk the Frobenius norm of the deformation
tensor DðurÞ. Thus, the dynamic subgrid-scale POD reduced-order
model (DS-POD-ROM) has the form (24), where

ebkðaÞ ¼ "2d2 ruk;C
2
S ðx; tÞkDðurÞk

rUþrUT

2

 !
; ð65Þ

eAkmðaÞ ¼ "2d2 ruk;C
2
S ðx; tÞkDðurÞk

rum þruT
m

2

" #
: ð66Þ

Note that mDS defined in (64) can take negative values. This can
be interpreted as backscatter, the inverse transfer of energy from
high index POD modes to low index modes. The notion of backscat-
ter, well-established in LES (see for example, [42]), was also found
in a POD setting in the numerical investigation in [43].

4. Numerical tests

In this section, we use a structurally dominated 3D turbulent
flow problem to test the four POD-ROMs described in Section 3:
(i) the ML-POD-ROM (27) and (28); (ii) the S-POD-ROM (30) and
(31); (iii) the new VMS-POD-ROM (38)–(47); and (iv) the new
DS-POD-ROM (65) and (66). We also include results for the POD-
G-ROM (7) (i.e., a POD-ROM without any closure model). A suc-
cessful POD closure model should at least perform better than
the POD-G-ROM (7). Finally, a DNS projection of the evolution of
the POD modes served as benchmark for our numerical simula-
tions: The closeness to the DNS data was used as a criterion for
the success of the POD closure model. The qualitative behavior of
all POD-ROMs is judged according to the following five criteria:
(i) the kinetic energy spectrum; (ii) the mean velocity; (iii) the Rey-
nolds stresses; (iv) the root mean square (rms) values of the velocity
fluctuations; and (v) the time evolution of the POD coefficients. The
first four criteria measure the temporal and spatial average behav-
ior of the POD-ROMs, whereas the last criterion measures the
instantaneous behavior of the POD-ROMs. We also include a com-
putational efficiency assessment for all four POD-ROMs as well as a
sensitivity study to measure the robustness of the numerical re-
sults with respect to changes in r, the number of POD modes re-
tained in the POD-ROMs. In Section 4.1, details of the numerical
methods and parameter choices are given. In Section 4.2, numeri-
cal results are presented and discussed.

4.1. Numerical methods and parameter choices

We investigate all four POD-ROMs in the numerical simulation
of 3D flow past a circular cylinder at Re = 1000. The Reynolds num-
ber is computed using the diameter (D) of the cylinder as the
lengthscale and the freestream velocity (U1) as the velocity scale.
The wake of the flow is fully turbulent. The cylinder is parallel to
the z-axis and the freestream flow is in the positive x-direction
(see Fig. 2). In this section, u denotes the streamwise velocity com-
ponent (associated with the x-axis), v denotes the normal velocity
component (associated with the y-axis), and w denotes the span-
wise velocity component (associated with the z-axis). A parallel
CFD solver is employed on the time interval ½0;300+ to generate
the DNS data [70]. Details on the numerical discretization are pre-
sented in Appendix A.

Collecting 1000 snapshots of the velocity field (u;v ;w) over
the time interval ½0;75+ and applying the method of snapshots

Z. Wang et al. / Comput. Methods Appl. Mech. Engrg. 237–240 (2012) 10–26 15



developed in [15], we obtain the POD basis fu1; % % % ;uNg. These
POD modes are then interpolated onto a structured quadratic finite
element triangulation with nodes coinciding with the nodes used
in the original DNS finite difference discretization. The first r ¼ 6
POD modes capture 84% the system’s kinetic energy. These modes
are used in all POD-ROMs that we investigate next. For all the POD-
ROMs, the time discretization was effected by using the explicit
Euler method with Dt ¼ 7:5- 10"4 and the spatial discretization
used piecewise quadratic Lagrange finite elements (P2).

POD-ROMs for the pressure field have also been developed
[36,56]. The advantage of these POD-ROMs is that the computation
of hydrodynamic forces on structures becomes possible. A pres-
sure-Poisson based POD-ROM that requires the POD modes of
the pressure field in addition to those for the velocity field was pro-
posed in [56]. This model predicted the lift and drag forces on a cyl-
inder at Re ¼ 100. In this report, however, we only develop POD-
ROMs of the velocity field. Thus, lift and drag forces cannot be com-
puted and compared with those from DNS.

It is important to note that the quadratic nonlinearity in the NSE
(1) allows for easy precomputation of the vector b, the matrix A
and the tensor B in the POD-G-ROM (8). For the general nonlinear
EV POD closure model (24), however, the vector ebðaÞ and the ma-
trix eAðaÞ that correspond to the additional closure terms have to be
recomputed (reassembled) at each time step. Since the POD basis
functions are global, although only a few are used in POD-ROMs
(r . N), reassembling ebðaÞ and eAðaÞ at each time step would dra-
matically increase the CPU time of the corresponding POD-ROM.
Thus, a major advantage of POD-ROMs (the dramatic decrease of
computational time), would be completely lost.

To ensure a high computational efficiency of the POD-ROMs, we
utilize two approaches: (i) Instead of updating the closure terms in
the POD-ROMs every time step, we recompute them every 1.5 time
units (i.e., every 20,000 time steps). The previous numerical inves-
tigations in [50] showed that this approach does not compromise
the numerical accuracy of the S-POD-ROM (30) and (31). (ii) We
employ the two-level algorithm introduced in [50] to discretize
the nonlinear closure models. We emphasize that, in order to
maintain a fair numerical comparison of the four POD-ROMs, we
used both algorithmic choices (i) and (ii) listed above in all four
POD-ROMs. Therefore, the success or failure of the POD-ROM can
solely be attributed to the closure term, which is the only distin-
guishing feature among all POD-ROMs, and not to the specific algo-
rithmic choices, which are the same for all POD-ROMs.

The two-level algorithm used in all four POD-ROMs is summa-
rized below.

‘¼0; compute b;A;B on the fine mesh;

for ‘¼0 toM"1
compute ebða‘Þ; eAða‘Þ on the coarse mesh
a‘þ1 :¼ eFða‘Þ;
endfor

two-level algorithm

ð67Þ

In (67), M represents the total number of time steps. The idea in the
two-level algorithm is straightforward: Instead of computing the
closure terms ebða‘Þ; eAða‘Þ directly on the fine mesh (as done in
the standard one-level algorithm), the two-level algorithm discret-
izes them on a coarser mesh. Thus, the two-level algorithm is much
more efficient than the standard one-level algorithm. Indeed, in [50]
it was shown that the two-level algorithm (67) achieves the same
level of accuracy as the one-level algorithm while decreasing the
computational cost by an order of magnitude. In all four POD-ROMs,
we apply the two-level algorithm with a coarsening factor Rc ¼ 4 in
both radial and azimuthal directions. Thus, the vectors and matrices
related to the nonlinear closure terms are computed on a coarse fi-
nite element mesh with 37- 49- 17 grid points.

In Section 3.2, we proposed two definitions for the POD length-
scale d. In the finite element discretization that we employ, defini-
tion (23) is harder to implement than (22), therefore we use the
latter. Using definition (22) with r ¼ 6, we obtain d ¼ 0:1179,
which is the POD lengthscale that we will use in all four POD-
ROMs. For the DS-POD-ROM (65) and (66), we need to define the
second (test) Galerkin projection (54) and the corresponding filter
radius ed. Choosing R ¼ 1 in (54) and using (22), we obtain
ed ¼ 0:1769.

The constants in EV LES models are determined in a straightfor-
ward fashion, utilizing scaling laws satisfied by general 3D turbu-
lent flows (see for example, [42]). Although the energy cascade
concept in a POD context was verified numerically in [43], there
are no general scaling laws available in this setting. Thus, to our
knowledge, the correct values for the EV constants a in the ML-
POD-ROM (27) and (28) and CS in the S-POD-ROM (30) and (31)
and the new VMS-POD-ROM (38)–(47) are still not known. To
determine these EV constants, we run the corresponding POD-
ROM on the short time interval ½0;15+ with several different values
for the EV constants and choose the value that yields the results
that are closest to the DNS results. This approach yields the follow-
ing values for the EV constants: a ¼ 3- 10"3 for the ML-POD-ROM,
CS ¼ 0:1426 for the S-POD-ROM, and CS ¼ 0:1897 for the VMS-
POD-ROM. We emphasize that these EV constant values are opti-
mal only on the short time interval tested, and they might actually
be non-optimal on the entire time interval ½0;300+ on which the
POD-ROMs are tested. Thus, this heuristic procedure ensures some
fairness in the numerical comparison of the four POD-ROMs.

In the VMS-POD-ROM, only the first POD mode is considered as
the large resolved POD mode, that is, rL ¼ 1 in (33). In the DS-POD-
ROM, since mDS can be negative, we use a standard ‘‘clipping’’ pro-
cedure to ensure the numerical stability of the discretization (see
for example, [42]). Specifically, we let
CSðx; tÞ ¼maxfCSðx; tÞ;"0:2g. The value "0.2 is determined as fol-
lows. We run the DS-POD-ROM without ‘‘clipping’’ for the time
interval [0,15] and record C"S;ave, the average negative value of
CSðx; tÞ. We then evaluate the DS-POD-ROM on the entire time
interval [0,300] with the ‘‘clipping’’ value C"S;ave=2 ¼ "0:2. We note
that there are alternative procedures to deal with the same issue in
LES, such as VDSMwc [71]. We utilized the standard ‘‘clipping’’
procedure described above as a first step in the numerical investi-
gation of the DS-POD-ROM.

4.2. Numerical results

Before presenting the quantitative comparison of the POD-
ROMs, we give a flavor of the topology of the resulting flow fields.
Fig. 1 presents the first streamwise POD mode (top left), the first
normal POD mode (top right), the third streamwise POD mode
(bottom left), and the third normal POD mode (bottom right).
Fig. 2 presents snapshots of horizontal velocity at t ¼ 142:4 s for
DNS, POD-G-ROM, ML-POD-ROM, S-POD-ROM, VMS-POD-ROM,
and DS-POD-ROM. For clarity, only five isosurfaces are drawn. Tak-
ing the DNS results as a benchmark, the POD-G-ROM seems to add
unphysical structures. The ML-POD-ROM, on the other hand, ap-
pears to add too much numerical dissipation to the system and
thus eliminates some of the vortical structures in the wake. The
S-POD-ROM, VMS-POD-ROM, and DS-POD-ROM perform well, cap-
turing a similar amount of structure as the DNS. It also seems that
there is some phase shift for all these POD-ROMs. Due to space lim-
itations, only one time instance snapshot is shown for the POD-
ROMs. The general behavior over the entire time interval is similar;
it can be found at <http://www.math.vt.edu/people/wangzhu/
POD_3DNumComp.html>.

Fig. 3 presents the energy spectra of the four POD-ROMs and, for
comparison purposes, of the POD-G-ROM. The five energy spectra
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are compared with the DNS energy spectrum. All energy spectra
are calculated from the average kinetic energy of the nodes in
the cube with side 0.1 centered at the probe
(0.9992,0.3575,1.0625). It is clear that the energy spectrum of
the POD-G-ROM overestimates the energy spectrum of the DNS.
The energy spectrum of the ML-POD-ROM, on the other hand,
underestimates the energy spectrum of the DNS, especially at the
higher frequencies. The S-POD-ROM has a more accurate spectrum
than the ML-POD-ROM, but displays high oscillations at the higher

frequencies. The VMS-POD-ROM is a clear improvement over the
S-POD-ROM, with smaller oscillations at the higher frequencies.
The energy spectrum of the DS-POD-ROM is qualitatively similar
to that of the VMS-POD-ROM. The DS-POD-ROM spectrum de-
creases the amplitude of the high frequency oscillations of the
VMS-POD-ROM even further, although it introduces some sporadic
large amplitude oscillations at high frequencies. To summarize, the
DS-POD-ROM and the VMS-POD-ROM yield the most accurate en-
ergy spectra, i.e., the closest to the DNS energy spectrum. On the

Fig. 1. First streamwise POD mode (top left), first normal POD mode (top right), third streamwise POD mode (bottom left), and third normal POD mode (bottom right).

Fig. 2. Snapshots of horizontal velocity at t = 142.5 s for: (a) DNS; (b) the POD-G-ROM (7); (c) the ML-POD-ROM (27) and (28); (d) the S-POD-ROM (30) and (31); (e) the new
VMS-POD-ROM (38)–(47); and (f) the new DS-POD-ROM (65) and (66). Five isosurfaces are plotted.
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average, the DS-POD-ROM performs slightly better than the VMS-
POD-ROM.

The second criterion in the comparison of the four POD-ROMs is
the mean velocity components: hui (the mean streamwise veloc-
ity), hvi (the mean normal velocity), and hwi (the mean spanwise
velocity). The time averaging is effected on the interval ½0;300+
and the spatial averaging is performed in the yz-direction
(h%i ¼ h%ityz). Since the topology of the velocity field is markedly dif-
ferent in the x-, y-, and z-directions (see Figs. 1 and 2), one could
also consider spatial averaging in the xz-direction (h%i ¼ h%itxz). We
note that, since the numerical results with spatial averaging in
the xz-direction were qualitatively similar to those with spatial

averaging in the yz-direction, they were not included in this report.
These numerical results, however, can be found in [25]. In Fig. 4,
we plot the mean velocity components for different values of x.
Fig. 4 yields the following conclusions: First, the mean streamwise
velocity is computed accurately by all POD-ROMs. Second, the
POD-G-ROM yields inaccurate results for the mean normal veloc-
ity; all the other POD-ROMs perform significantly better than the
POD-G-ROM. Third, the mean spanwise velocity results are similar
for the ML-POD-ROM, the S-POD-ROM, the VMS-POD-ROM and the
DS-POD-ROM; the POD-G-ROM performs better than all these
POD-ROMs over certain regions, and worse over other regions.

As a third criterion in the comparison of the POD-ROMs, we uti-
lize the Reynolds stresses: u" hui;v " hvih i (the xy-component of
the Reynolds stress), hu" hui;w" hwii (the xz-component of the
Reynolds stress), and v " hvi;w" wh ih i (the yz-component of the
Reynolds stress), where h%i represents the temporal and spatial
averaging operator. The time averaging is effected on the interval

(a)

(b)

(c)

(d)

(e)

Fig. 3. Kinetic energy spectrum of the DNS (blue) and the POD-ROMs (red): (a) the
POD-G-ROM (7); (b) the ML-POD-ROM (27) and (28); (c) the S-POD-ROM (30) and
(31); (d) the new VMS-POD-ROM (38)–(47); and (e) the new DS-POD-ROM (65) and
(66). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 4. Mean velocity components for DNS and POD-ROMs: (a) hui (the mean
streamwise velocity), (b) hvi (the mean normal velocity), and (c) wh i (the mean
spanwise velocity), where h%i ¼ h%ityz .
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½0;300+ and the spatial averaging is performed in the yz-direction
(h%i ¼ h%ityz). In Fig. 5, we plot the Reynolds stresses for different val-
ues of x. Fig. 5 yields the following conclusions. First, the POD-G-
ROM Reynolds stresses are consistently the most inaccurate (i.e.,
the farthest from the DNS Reynolds stresses). The second conclu-
sion is that the ML-POD-ROM, the S-POD-ROM, the VMS-POD-
ROM and the DS-POD-ROM all have similar behaviors. Indeed, dif-
ferent POD-ROMs might outperform the others over different spa-
tial regions, but there is no clear ‘‘winner’’ over the entire spatial
interval for any of the Reynolds stresses and spatial averaging used.

The fourth criterion in the POD-ROM comparison is the rms val-
ues of the velocity fluctuations: huirms ¼ u" hui;u" huih i (the rms
of the streamwise velocity fluctuations), hvirms ¼ v " hvi;h v " hvii
(the rms of the normal velocity fluctuations), and
wh irms ¼ w" wh i;w" wh ih i (the rms of the spanwise velocity fluc-

tuations). The time averaging is effected on the interval ½0;300+ and
the spatial averaging is performed in the yz-direction (h%i ¼ h%ityz).
In Fig. 6, we plot the rms values for different values of x. Fig. 6

yields the following conclusions. Similar to the Reynolds stresses
case, the POD-G-ROM rms values of the velocity fluctuations are
consistently the most inaccurate (i.e., the farthest from the DNS
rms values). The rms plots corresponding to the four POD-ROMs,
however, display a clear, consistent ordering this time. Indeed,
the DS-POD-ROM and the VMS-POD-ROM consistently outper-
formed the other two POD-ROMs (the S-POD-ROM and the ML-
POD-ROM), especially when the hvirms and the wh irms plots are con-
sidered. The S-POD-ROM consistently performs worse than the DS-
POD-ROM and the VMS-POD-ROM, but is clearly more accurate
than the ML-POD-ROM.

As the fifth criterion in judging the performance of the POD-
ROMs, the time evolutions of the POD basis coefficients a1ð%Þ and
a4ð%Þ on the entire time interval ½0;300+ are shown in Figs. 7 and
8. We note that the other POD coefficients have similar behavior.
Thus, for clarity of exposition, we include only a1ð%Þ and a4ð%Þ. The
POD-G-ROM’s time evolutions of a1 and a4 are clearly inaccurate.
Indeed, the magnitude of a4 is nine times larger than that of the
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Fig. 5. Reynolds stresses for DNS and POD-ROMs: (a) u" hui;v " hvih i (the xy-
component of the Reynolds stress), (b) hu" hui;w" hwii (the xz-component of the
Reynolds stress), and (c) hv " hvi;w" hwii (the yz-component of the Reynolds
stress), where h%i ¼ h%ityz .
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DNS projection, which indicates the need for closure modeling. The
ML-POD-ROM’s time evolutions of a1 and a4 are also inaccurate.
Specifically, although the time evolution at the beginning of the
simulation (where the EV constant a was chosen) is relatively
accurate, the accuracy significantly degrades toward the end of
the simulation. For example, the magnitude of a4 at the end of
the simulation is only one eighth of that of the DNS. The S-POD-
ROM yields more accurate time evolutions than the ML-POD-
ROM for both a1 and a4, although the magnitude of the POD coef-
ficients stays almost constant at a high level. The VMS-POD-ROM’s
time evolutions of a1 and a4 are better than those of the S-POD-
ROM, since the magnitudes of the POD coefficients are closer to
those of the DNS. Finally, the DS-POD-ROM also yields accurate re-
sults. We note that the DS-POD-ROM’s a1 and a4 coefficients have

significantly more variability than the corresponding coefficients
of the VMS-POD-ROM. This is a consequence of the fact that the
EV coefficient CS varies in time and space for the DS-POD-ROM,
whereas it is constant for the VMS-POD-ROM. To summarize, the
DS-POD-ROM and the VMS-POD-ROM perform the best. On the
average, the DS-POD-ROM performs slightly better than the
VMS-POD-ROM.

Based on the overall results (the kinetic energy spectrum, the
mean velocity, the Reynolds stresses, the rms values of the velocity
fluctuations, and the time evolutions of the POD basis coefficients
a1ð%Þ and a4ð%Þ), the DS-POD-ROM and the VMS-POD-ROM outper-
form the ML-POD-ROM and the S-POD-ROM. To determine which
one of the DS-POD-ROM and the VMS-POD-ROM performs best,
we collected the results in Figs. 8(d) and 8(e) (corresponding to
the time evolution of the POD basis coefficient a4ð%Þ for the DNS
projection, the VMS-POD-ROM and the DS-POD-ROM) and we dis-
played them in the same plot in Fig. 9. Since it is difficult to distin-
guish between the results from the VMS-POD-ROM and the DS-

(a)

(b)

(c)

(d)

(e)

Fig. 7. Time evolution of the POD basis coefficient a1 of the DNS (blue) and the
POD-ROMs (red): (a) the POD-G-ROM (7); (b) the ML-POD-ROM (27) and (28); (c)
the S-POD-ROM (30) and (31); (d) the new VMS-POD-ROM (38)–(47); and (e) the
new DS-POD-ROM (65) and (66). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

(a)

(b)

(c)

(d)

(e)

Fig. 8. Time evolution of the POD basis coefficient a4 of the DNS (blue) and the
POD-ROMs (red): (a) the POD-G-ROM (7); (b) the ML-POD-ROM (27) and (28); (c)
the S-POD-ROM (30) and (31); (d) the new VMS-POD-ROM (38)–(47); and (e) the
new DS-POD-ROM (65) and (66). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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POD-ROM, we zoomed in on the POD basis coefficient a4 over the
time interval [266,282]. Based on the plot in the inset, it is clear
that, for this time interval, the DS-POD-ROM performs better than
the VMS-POD-ROM. More importantly, it appears that the magni-

tude of a4 in the DS-POD-ROM displays some of the variability dis-
played by the DNS; the magnitude of the VMS-POD-ROM’s a4

coefficient, on the other hand, displays an almost periodic behav-
ior. We believe that the variation of the DS-POD-ROM’s a4 coeffi-
cient is due to the dynamic computation of the EV coefficient,
which changes in both space and time; the EV coefficient of the

Fig. 9. Time evolution of the POD basis coefficient a4 of the DNS (blue), the new
VMS-POD-ROM (38)–(47) (green), and the new DS-POD-ROM (65) and (66) (red).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Speed-up factors of POD-ROMs.

POD-G-
ROM

ML-POD-
ROM

S-POD-
ROM

VMS-POD-
ROM

DS-POD-
ROM

Sf 665 659 36 41 23
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Fig. 10. Kinetic energy spectrum of the DNS (blue) and the POD-ROMs (red) for
r ¼ 4. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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VMS-POD-ROM, however, is constant and computed at the begin-
ning of the simulation.

To summarize, the VMS and DS approaches, which are state-of-
the-art closure modeling strategies in LES, yield the most accurate
POD closure models for the 3D turbulent flow that we investigated.
Indeed, the DS-POD-ROM and the VMS-POD-ROM clearly yield: (i)
the best energy spectra (with a plus for the DS-POD-ROM, see
Fig. 3); (ii) the best rms values (see Fig. 6); and (iii) the best time evo-
lutions of the POD coefficients a1 and a4 (with an advantage for the
DS-POD-ROM, see Figs. 7–9). Furthermore, with respect to the other
two criteria (the mean velocity components in Fig. 4 and the Rey-
nolds stresses in Fig. 5), the DS-POD-ROM and the VMS-POD-ROM
perform at least as well as the other POD-ROMs. Thus, we conclude
that the DS-POD-ROM and the VMS-POD-ROM yield the most accu-
rate average and instantaneous numerical results.

A natural question, however, is whether the new POD closure
modeling strategies that we proposed display a high level of com-

putational efficiency, which is one of the trademarks of a successful
POD-ROM. To answer this question, we computed the CPU times
for all four POD-ROMs and compared them with those of the
DNS and the POD-G-ROM.

To make such a comparison, however, we first need to address
the numerical differences between the DNS and the POD-ROMs.
First, the discretizations used in the two approaches are com-
pletely different. Indeed, the spatial discretization used in the
DNS was the finite difference method, whereas for the POD-ROMs
we used a finite element method. Furthermore, the time-discreti-
zation used in the DNS was second-order (Crank–Nicolson and
Adams–Bashforth), whereas in the POD-ROMs we used a first-or-
der time discretization (explicit Euler). The time steps employed
were also different: Dt ¼ 2- 10"3 in the DNS and Dt ¼ 7:5- 10"4

in the POD-ROM. Most importantly, the DNS was performed on a
parallel machine (on 16 processors), whereas all the POD-ROM
runs were carried out on a single-processor machine. Thus, to en-
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Fig. 11. Mean velocity components for DNS and POD-ROMs for r ¼ 4: (a) hui (the
mean streamwise velocity), (b) hvi (the mean normal velocity), and (c) wh i (the
mean spanwise velocity), where h%i ¼ h%ityz .

(a)

−8 −6 −4 −2 0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

1.5 x 10
−3

x

< 
 u

−<
 u

 >
, v

−<
 v

 >
  >

DNS
POD−G−ROM
ML−POD−ROM
S−POD−ROM
VMS−POD−ROM
DS−POD−ROM

−10 −5 0 5 10
−0.2

−0.1

0

0.1

0.2

(b)

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

1.5

2 x 10
−3

x

< 
 u

−<
 u

 >
, w

−<
 w

 >
  >

DNS
POD−G−ROM
ML−POD−ROM
S−POD−ROM
VMS−POD−ROM
DS−POD−ROM

−10 −5 0 5 10
−0.04

−0.02

0

0.02

(c)

−8 −6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

10

12 x 10
−4

x

< 
 v

−<
 v

 >
, w

−<
 w

 >
  >

DNS
POD−G−ROM
ML−POD−ROM
S−POD−ROM
VMS−POD−ROM
DS−POD−ROM

−10 −5 0 5 10
−0.05

0

0.05

0.1

0.15

Fig. 12. Reynolds stresses for DNS and POD-ROMs for r ¼ 4: (a) u" hui;v " hvih i
(the xy-component of the Reynolds stress), (b) hu" hui;w" hwii (the xz-component
of the Reynolds stress), and (c) v " hvi;w" wh ih i (the yz-component of the
Reynolds stress), where h%i ¼ h%ityz .
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sure a more realistic comparison between the CPU times of the
DNS and the POD-ROMs, we multiplied the CPU time of the DNS
by a factor of 16.

To measure the computational efficiency of the four POD-ROMs,
we define the speed-up factor

Sf ¼
CPU time of DNS

CPU time of POD-ROM
ð68Þ

and list results in Table 1. The most efficient model is the POD-G-
ROM. This is not surprising, since no closure model is used in
POD-G-ROM and thus no CPU time is spent computing an additional
nonlinear term at each time step. The second most efficient model is
the ML-POD-ROM. This is again natural, since only a linear closure
model is employed in the ML-POD-ROM and thus the computa-
tional overhead is minimal. The speed-up factors for the S-POD-
ROM, the VMS-POD-ROM and the DS-POD-ROM are one order of
magnitude lower than those for the ML-POD-ROM and the POD-

G-ROM. The reason is that the former use nonlinear closure models,
which increase significantly the computational time. Note, how-
ever, that the S-POD-ROM, the VMS-POD-ROM and the DS-POD-
ROM are still significantly more efficient than the DNS.

Finally, to assess the robustness of the POD-ROMs, we conduct a
sensitivity study with respect to r, the number of POD modes re-
tained in the models. To this end, we repeat the above numerical
investigation of the POD-ROMs, this time, however, with fewer
POD modes: We use r ¼ 4 instead of r ¼ 6, as we have used so
far. The question we are trying to address is whether the conclu-
sions drawn from the previous numerical results remain valid
when r is reduced from 6 to 4. We note that, since the numerical
results with spatial averaging in the xz-direction were qualitatively
similar to those with spatial averaging in the yz-direction, they
were not included in this report. These numerical results, however,
can be found in [25].
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Fig. 13. Rms values of the velocity fluctuations for DNS and POD-ROMs for r ¼ 4:
(a) huirms ¼ u" hui; u" huih i (the rms value of the streamwise velocity fluctuations),
(b) hvirms ¼ v " hvi;v " hvih i (the rms value of the normal velocity fluctuations),
and (c) wh irms ¼ w" wh i;w" wh ih i (the rms value of the spanwise velocity
fluctuations), where h%i ¼ h%ityz .
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Fig. 14. Time evolutions of the POD basis coefficient a1 of the DNS (blue) and the
POD-ROMs (red) for r ¼ 4: (a) the POD-G-ROM (7); (b) the ML-POD-ROM (27) and
(28); (c) the S-POD-ROM (30) and (31); (d) the new VMS-POD-ROM (38)–(47); and
(e) the new DS-POD-ROM (65) and (66). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10 presents the energy spectra of the POD-ROMs and the
DNS. The DS-POD-ROM is clearly the most accurate model, as
was the case for r ¼ 6 (see Fig. 3).

Fig. 11 presents the mean velocity components of the POD-ROMs
and the DNS. The same conclusions as in the r ¼ 6 (see Fig. 4) can be
drawn: (i) all the POD-ROMs predict the mean streamwise velocity
accurately; and (ii) all the POD-ROMs (except the POD-G-ROM) pre-
dict the normal velocity component well. In contrast with the r ¼ 6
case, however, the POD-G-ROM is much worse than the other POD-
ROMs in predicting the spanwise velocity component.

Fig. 12 presents the Reynolds stresses of the POD-ROMs and the
DNS. The same conclusions as for r ¼ 6 study (see Fig. 5) can be
drawn: (i) the POD-G-ROM yields inaccurate results; and (ii) all
other POD-ROMs perform similarly.

Fig. 13 presents the rms values of the velocity fluctuations of
the POD-ROMs and the DNS. As in the r ¼ 6 case (see Fig. 6), the
POD-G-ROM yields very inaccurate results. There is, however, a dif-
ference between the results for r ¼ 4 and those for r ¼ 6. Indeed,
the most accurate results in Fig. 13 are those for the DS-POD-

ROM (as in the r ¼ 6 case), but the ML-POD-ROM performs better
than the VMS-POD-ROM. We do not have an explanation for these
relatively inaccurate results yielded by the VMS-POD-ROM. The S-
POD-ROM performs badly, just as in the r ¼ 6 case.

Figs. 14 and 15 present the time evolutions of the POD basis
coefficients a1ð%Þ and a4ð%Þ on the entire time interval ½0;300+. As
in the r ¼ 6 case (see Fig. 7), the DS-POD-ROM is the most accurate
model for predicting the time evolution of a1ð%Þ, followed (in this
order) by the ML-POD-ROM, the VMS-POD-ROM, the S-POD-
ROM, and the POD-G-ROM (which is the most inaccurate model).
The ordering for the time evolution of a4ð%Þ, however, is different:
the most accurate models seem to be the VMS-POD-ROM and the
S-POD-ROM, followed by the DS-POD-ROM, the ML-POD-ROM,
and the POD-G-ROM (which is again the most inaccurate model).

To summarize, the same general conclusions as in the r ¼ 6 case
can be drawn in the r ¼ 4 case: Overall, the DS-POD-ROM and the
VMS-POD-ROM yield the most accurate average and instantaneous
numerical results. Furthermore, with a few exceptions, the POD-
ROMs results display a relatively low sensitivity with respect to
changes in r, the number of POD modes employed in the models.

5. Conclusions

This paper put forth two new POD-ROMs (the DS-POD-ROM and
the VMS-POD-ROM), which are inspired by state-of-the-art LES
closure modeling strategies. These two new POD-ROMs together
with the ML-POD-ROM and the S-POD-ROM were tested in the
numerical simulation of a 3D turbulent flow past a cylinder at
Re ¼ 1000. For completeness, we also included results with the
POD-G-ROM (i.e., a POD-ROM without any closure model), as well
as the DNS projection of the evolution of the POD modes, which
served as benchmark for our numerical simulations.

To assess the performance of the POD-ROMs, five criteria were
considered in this paper: (i) the kinetic energy spectrum; (ii) the
mean velocity; (iii) the Reynolds stresses; (iv) the root mean square
values of the velocity fluctuations; and (v) the time evolution of the
POD coefficients. The first four criteria measure the temporal and
spatial average behavior of the POD-ROMs, whereas the last crite-
rion measures the instantaneous behavior of the POD-ROMs. Based
on the numerical results, the following general conclusions were
drawn: Both the POD-G-ROM and the ML-POD-ROM yielded inac-
curate results. The DS-POD-ROM and the VMS-POD-ROM clearly
outperformed these two models, yielding more accurate results.
The DS-POD-ROM generally performed slightly better than the
VMS-POD-ROM and seemed to display more adaptivity in terms
of adjusting the magnitude of the POD basis coefficients. Overall,
however, the two models yielded similar qualitative results. This
seems to reflect the LES setting, where both DS and VMS closure
modeling strategies are considered state-of-the-art [59,60]. The
DS-POD-ROM and the VMS-POD-ROM, although not as computa-
tionally efficient as the POD-G-ROM or the ML-POD-ROM, signifi-
cantly decreased the CPU time of the DNS. Finally, to assess the
robustness of the POD-ROMs, we conducted a sensitivity study with
respect to r, the number of POD modes retained in the models. To
this end, we repeated the above numerical investigation of the
POD-ROMs, this time, however, using r ¼ 4 instead of r ¼ 6. The
same general conclusions were drawn in the r ¼ 4 case: Overall,
the DS-POD-ROM and the VMS-POD-ROM yielded the most accu-
rate average and instantaneous numerical results. Furthermore,
with a few exceptions, the POD-ROMs results displayed a relatively
low sensitivity with respect to changes in r. To summarize, for the
3D turbulent flow that we investigated, the DS-POD-ROM and the
VMS-POD-ROM were found to perform the best among the POD-
ROMs investigated, combining a relative high numerical accuracy
with a high level of computational efficiency.

(a)

(b)

(c)

(d)

(e)

Fig. 15. Time evolutions of the POD basis coefficient a4 of the DNS (blue) and the
POD-ROMs (red) for r ¼ 4: (a) the POD-G-ROM (7); (b) the ML-POD-ROM (27) and
(28); (c) the S-POD-ROM (30) and (31); (d) the new VMS-POD-ROM (38)–(47); and
(e) the new DS-POD-ROM (65) and (66). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

24 Z. Wang et al. / Comput. Methods Appl. Mech. Engrg. 237–240 (2012) 10–26



We plan to further investigate several other research avenues.
First, we plan to study more efficient time-discretization ap-
proaches and take advantage of parallel computing in order to fur-
ther decrease the computational time and, at the same time,
increase the dimension (and thus the physical accuracy) of the
POD-ROMs. Second, since the linear closure model (ML-POD-
ROM) is computationally efficient, but only works on a relative
short time interval if the appropriate EV coefficient a is chosen,
we will investigate a hybrid approach: We will use the DS approach
to calculate a only when the flow displays a high level of variability,
and then use this value in the ML-POD-ROM as long as the flow does
not experience sudden transitions. Third, using these computa-
tional developments, we will investigate the new POD-ROMs in
higher Reynolds number structurally dominated turbulent flows.
These challenging flows will represent the ultimate test for the
new POD-ROM closure models: they will reveal whether POD can
fulfill its original promise of enabling accurate and efficient model-
ing of realistic structurally dominated turbulent flows. Due to the
physical complexity of the underlying flows, increased numbers
of snapshots and POD modes need to be considered to ensure the
accuracy of the POD-ROM. To tackle the computational complexity
of the POD-ROMs (and especially their nonlinear terms), we plan to
use the new two-level algorithms [50] in conjunction with the
empirical interpolation method [44] and the discrete interpolation
method [45,46]. Finally, we plan to employ the new POD-ROMs in
other scientific and engineering applications in which accurate
POD closure modeling is needed, such as optimal control, optimiza-
tion, and data assimilation problems.
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Appendix A

We briefly describe the numerical method used to generate the
DNS data for the test problem in Section 4. For more details on the
discretization, validation, verification, and parallel implementation
of the numerical scheme, the reader is referred to [56,70].

A parallel CFD algorithm is employed to solve the incompress-
ible NSE. Utilizing a strong conservative form, the NSE are written
in curvilinear coordinates and are nondimensionalized using the
diameter (D) of the cylinder as the lengthscale and the freestream
velocity ðU1Þ as the velocity scale.

A body conformal ‘‘O’’-type grid and curvilinear coordinates in an
Eulerian reference frame are used to simulate the 3D flow past a cyl-
inder at Re = 1000. The NSE are approximated numerically using an
approach similar to that employed in [72]. A 2D domain decomposi-
tion technique ensuring that each processor gets a ‘‘slice’’ of the grid
is used to implement the algorithm on a distributed-memory, mes-
sage-passing parallel computer. The transformed NSE are approxi-
mated numerically on a non-staggered-grid layout. The Cartesian
velocity components and pressure are defined at the center of the
control volume in the computational space and the volume fluxes
are defined at the midpoints of the corresponding faces.

All spatial derivatives are approximated with second-order
accurate central differences except for the convective terms, which

are discretized by using a variation of QUICK [73]. Dirichlet and
Neumann boundary conditions are used for the inflow and outflow
boundary conditions, respectively. No-slip and no-penetration
boundary conditions are prescribed on the cylinder surface.

A semi-implicit scheme is utilized to advance the solution in
time. The diagonal viscous terms are advanced implicitly using
the second-order accurate Crank–Nicolson method, whereas all
of the other terms are advanced using the second-order accurate
Adams–Bashforth method.

A fractional-step method [72,74–77] is used to advance the
solution in time. This method splits the momentum equation into:
(a) an advection–diffusion equation – momentum equation solved
without the pressure term; and (b) a pressure Poisson equation –
constructed by implicit coupling between the continuity equation
and the pressure in the momentum equation, thus satisfying the
mass conservation constraint.

A DNS of the flow past a circular cylinder is performed on a
144- 192- 32 grid distributed over 16 processors, in circumfer-
ential direction. Thus, the load per processor is 144- 12- 32 grid
points. In this simulation, the outer domain is 15D with a nondi-
mensional spanwise length of 2D. A CFL number based on the con-
vection term in curvilinear coordinates is used as a guideline in
choosing the time step. The simulations show that a stable time
stepping is achieved for a CFL (0.2, which corresponds to a nondi-
mensional time step size Dt ¼ 2- 10"3 for this grid.

To validate our DNS results, we compute the mean drag coeffi-
cient CD and the Strouhal number St. In Table 2, these quantities
are compared with those obtained by Norberg [78] and Evangeli-
nos and Karniadakis [79]. Note that the values obtained by using
our DNS results match those in [78,79].

The 1D energy spectrum at ðx=D; y=D; z=DÞ ¼ ð1:0;0:5;1:0Þ
exhibits a " 5

3 law in the inertial range, which extends about half
a decade in wave number [70].
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