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Proper orthogonal decomposition has been successfully used in the reduced-order model-
ing of complex systems. Its original promise of computationally efficient, yet accurate
approximation of coherent structures in high Reynolds number turbulent flows, however,
still remains to be fulfilled. To balance the low computational cost required by reduced-
order modeling and the complexity of the targeted flows, appropriate closure modeling
strategies need to be employed. Since modern closure models for turbulent flows are gen-
erally nonlinear, their efficient numerical discretization within a proper orthogonal decom-
position framework is challenging. This paper proposes a two-level method for an efficient
and accurate numerical discretization of general nonlinear closure models for proper
orthogonal decomposition reduced-order models. The two-level method computes the
nonlinear terms of the reduced-order model on a coarse mesh. Compared with a brute
force computational approach in which the nonlinear terms are evaluated on the fine mesh
at each time step, the two-level method attains the same level of accuracy while dramat-
ically reducing the computational cost. We numerically illustrate these improvements in
the two-level method by using it in three settings: the one-dimensional Burgers equation
with a small diffusion parameter m = 10�3, the two-dimensional flow past a cylinder at Rey-
nolds number Re = 200, and the three-dimensional flow past a cylinder at Reynolds number
Re = 1000.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Proper orthogonal decomposition (POD) is one of the primary methods to construct low-order bases for model reduction of
complex, nonlinear problems. The POD has its roots in statistics [1,2] and was initially used in the study of coherent struc-
tures in turbulent flows [3,4]. Over the past three decades, POD has been steadily developed in two main directions: (i)
understanding the fundamental mechanisms in fluid flows, e.g., [5–13]; and (ii) developing reduced-order models (ROMs),
i.e., models that predict the evolution of the dominant structures in the underlying complex system at a very low compu-
tational cost [14–31]. In this report, we are concerned with the latter.

POD has had a long and rich history in the reduced-order modeling of complex systems. Its use as a simulation tool is a
tremendously active research area. With the risk of being subjective, we list some of these applications below. Arguably the
most dynamic research area in which POD has been used as a reduced-order modeling technique is fluid flow control [32–
41]. Other applications include climate modeling and data assimilation of atmospheric and oceanic flows [42–45], stochastic
PDEs [46,47], surrogate models for optimization [48–50], the complex Ginzburg–Landau equations [5,51], groundwater
. All rights reserved.
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models [52], control texture in the growth of polycrystals [53], pectoral fin kinematics [54], nonlinear structural systems
[55–57], structural vibration [58–61], vehicle interior acoustics [62], structural health monitoring [63], ecosystems [64],
and cell population models [65]. Several of these works cite the need to explicitly account for the influence of truncation
or slow separation in the POD spectrum, e.g., [24,36,57,65]. The importance of reduced-order modeling in all these applica-
tions cannot be overemphasized. Indeed, the POD based ROMs (which we will denote in the sequel POD–ROMs) dramatically
reduce the computational cost of a brute force numerical simulation, which for some of the above applications (e.g., climate
modeling) is clearly unfeasible.

Despite its success as a general reduced-order modeling tool for complex systems, POD has yet to fulfill its original prom-
ise of computationally efficient, yet accurate approximation of coherent structures in high Reynolds number turbulent flows,
as put forth in the pioneering work [14]. Indeed, in this context, the ultimate goal of POD–ROM is to capture the coherent
structures in turbulent flows at high Reynolds numbers for time intervals that are much longer than those over which the
snapshots (i.e., the flow field data at different time instants) were collected and at parameter values (e.g., Reynolds number)
that are different from those at which the snapshots were generated. To our knowledge, this goal has not yet been achieved.
We believe that one of the main reasons is the following. To balance the low computational cost required by a ROM and the
complexity of the targeted turbulent flows, appropriate closure modeling strategies need to be employed. Since modern clo-
sure models for turbulent flows are generally nonlinear, their efficient numerical discretization within a POD framework is
challenging. Indeed, most POD–ROMs employ precomputed matrices and tensors, which precludes a straightforward discret-
ization of nonlinear closure model terms. This report aims at developing a computationally efficient numerical discretization
of general, nonlinear closure modeling strategies for POD–ROMs. Before describing this new methodology in detail, we feel
that the following remarks regarding the very scope of this report are needed.

We start by emphasizing that, in this paper, we do not answer and do not try to answer the question of whether or not
POD–ROM can be employed to simulate dominant coherent structures in high Reynolds number turbulent flows. We also do
not find the best closure model for POD–ROM and we do not assess the robustness of the POD–ROM with respect to changes
in the Reynolds number or length of simulation time. Instead, we take a more modest approach and try to elucidate whether
nonlinear closure modeling strategies can be utilized efficiently in a POD context. Although a modest step, we believe that
this is a necessary step in answering the above open question. Indeed, we believe that without employing modern closure
modeling strategies, which are generally nonlinear, POD–ROM does not stand any chance in successfully modeling dominant
coherent structures in high Reynolds number turbulent flows.

We also emphasize that POD is not intended to compete against well established, successful methodologies for the
numerical simulation of general turbulent fluid flows, such as large eddy simulation (LES) [66,67]. In fact, such a comparison
between POD–ROM and LES would be questionable. Indeed, as shown in [17], POD reduces to the standard Fourier decom-
position when homogeneous flows are considered. Thus, for homogeneous, isotropic turbulent flows, POD–ROM (and the
associated closure modeling) practically reduces to LES. This clearly suggests that POD–ROM and LES have different goals:
the latter targets general, homogeneous, isotropic turbulent flows, whereas the former aims at highly anisotropic turbulent
flows, whose dynamics are dominated by coherent structures. Moreover, the spatial resolutions employed by POD–ROM are
much coarser than those used in LES. These suggest that POD–ROM and LES could actually be used together: Indeed, for tur-
bulent flows at high Reynolds numbers (for which a direct numerical simulation (DNS) is unfeasible), LES could be used to
generate the snapshot matrix for the POD–ROM. This idea has been exploited in [12].

We also note that the POD–ROM approach that we pursue in this report has several similarities to the stochastic adaptive
large eddy simulation (SCALES) introduced in [68]. SCALES combines the coherent vortex simulation (CVS) methodology pro-
posed in [69,70] with subgrid-scale modeling ideas imported from LES. Specifically, the CVS applies a wavelet filter to a tur-
bulent vorticity field and separates it into energetic coherent structures and a residual, subgrid field that is homogeneous. To
overcome the relatively high computational cost of CVS [71], SCALES employs a wider support for the wavelet filter and then
takes advantage of LES-type modeling techniques to account for the effect of those coherent structures that are now treated
as subgrid-scale terms. Thus, POD–ROM and SCALES are similar in that they both target the coherent structures in the under-
lying turbulent flow. They are different, however, in that POD–ROM employs POD to generate these coherent structures,
whereas SCALES uses wavelets. Moreover, POD–ROM aims at highly non-homogeneous, anisotropic turbulent flows, whereas
SCALES considers general turbulent flows. Finally, POD–ROM employs spatial resolutions that are coarser than those used by
SCALES and CVS.

The last point we emphasize is that, although all numerical tests in this report involve fluid flow problems, the two-level
methodology we propose can be applied to any nonlinear closure model and any application in which POD is used as a re-
duced-order modeling technique.

We now present the new two-level methodology for the numerical discretization of nonlinear closure modeling in POD–
ROMs. We start by briefly describing the POD methodology (for more details, the reader is referred to [4,17]). To this end, we
consider the numerical solution of the incompressible Navier–Stokes equations (NSE):
ut � Re�1Duþ ðu � rÞuþrp ¼ 0;
r � u ¼ 0;

(
ð1Þ
where u is the velocity, p the pressure and Re the Reynolds number. The POD basis is generated by post-processing
typical data from the numerical simulation of (1). If Y ¼ fyð�; tÞ 2 H j t 2 ð0; TÞg (with H a Hilbert space) represents a
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simulation of the NSE, then the first POD basis vector is the function that maximizes the time-averaged projection of Y onto
itself:
/1 ¼ max
/2H; /k kH¼1

1
T

Z T

0
yð�; tÞ;/ð�Þh iH
�� ��2 dt: ð2Þ
Subsequent vectors, /k, are determined by seeking the above maximum in the orthogonal complement to:
Uk�1 ¼ span /1; . . . ;/k�1f g; 2 6 k 6 N; in H; ð3Þ
where N is the rank of Y. If we choose H ¼ L2 and Y represents a single simulation, the POD basis functions satisfy the Fred-
holm integral equation:
Z

X
Rðx;x0Þ/iðx0Þ dx0 ¼ ki/iðxÞ; ð4Þ
where
R x;x0ð Þ ¼ 1
T

Z T

0
yðx; tÞy� x0; tð Þ dt; ð5Þ
is the spatial autocorrelation kernel. There are natural extensions of this definition that accommodate multiple simulations.
In practice, either the time average of each simulation or the steady state solution is removed, so that Y contains fluctuation
from the mean (or centering trajectory), e.g., yðx; tÞ ¼ uðx; tÞ � �uðxÞ, cf. [17,72]. Note that each POD basis vector /k represents
a weighted time average of the data Y. Thus, these basis vectors preserve linear properties (such as the divergence-free
property).

A POD basis enables a reduced representation of the simulated data, and thus can be viewed as a compression algorithm.
Utilizing the POD basis to obtain efficient approximations to (1) is achieved using the POD basis in a Galerkin approximation,
and employing the fact that the POD basis vectors are mutually orthogonal. A reduced-order model (ROM) of the flow is con-
structed from the POD basis by writing:
uðx; tÞ � urðx; tÞ � �uðxÞ þ
Xr

j¼1

ajðtÞ/jðxÞ; ð6Þ
where �uðxÞ is the centering trajectory, f/jg
r
j¼1 are the first r POD basis vectors, and fajðtÞgr

j¼1 are the sought time-varying coef-
ficients that represent the POD–Galerkin trajectories.

A dynamical system for the vector of time coefficients, a(t), is constructed using (6) and a Galerkin projection of (1) onto
Ur. This leads to an autonomous system of the form:
_a ¼ bþ Aaþ aT Ba; ð7Þ
where b, A, and B correspond to the constant, linear, and quadratic terms in the numerical discretization of the NSE (1),
respectively. The initial conditions are obtained by projection:
ajð0Þ ¼ /j;uð�;0Þ � �uð�Þ
� �

H; j ¼ 1; . . . ; r: ð8Þ
It is important to note that the quadratic nonlinearity in (1) allows for easy precomputation of the vector b, the matrix A and
the tensor B, leading to efficient ROMs.

The dynamical system (7) is often accurate for laminar flows at parameter values that are well represented in the input
collection. From the earliest stages of POD of turbulent flows [14], it was recognized that a simple Galerkin truncation will
generally produce inaccurate results, even if the retained modes capture most of the system’s energy [15]. Thus, closure mod-
eling (i.e., modeling the effect of the discarded POD modes {/r+1, . . . ,/N} on the modes retained in the ROM {/1, . . . ,/r}) has
always played a central role in POD reduced-order model strategies. Closure modeling has developed in two main directions
(that often overlap): (i) improving the numerical stability [24–26,30,73,74]; and (ii) improving the physical accuracy [9,14,16–
21,75]. This paper is concerned with the latter. There are several new strategies that aim at more physical closure models,
e.g., the finite-time thermodynamics formalism of Noack et al. [76]. The closure models that we consider are similar to those
used in LES of turbulent flows and target: (i) a severe truncation of the POD basis, (ii) a wide range of Reynolds numbers, and (iii)
time intervals longer than those over which snapshots were collected. These features are essential for the POD reduced-order
modeling of turbulent flows.

The first closure model for POD - used in the pioneering work of Aubry et al. [14] – was the mixing length model, one of the
simplest models used in LES of turbulent flows [66,67,77]. This model employs the concept of an energy cascade and rep-
resents the effect of the discarded POD modes by adding a dissipative term to the ROM. This POD closure model has been
used in numerous studies [9,16,18–21,75]. The validity of the energy cascade concept in a POD setting was confirmed in re-
cent numerical studies [12,78]. This study, together with the long list of recent reports in which variations of the simple mix-
ing length eddy viscosity model in [14] were successfully used, clearly indicate that LES ideas could be used in the
development of closure models for POD. One of the main computational hurdles in the development of more sophisticated
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closure models for POD–ROMs of coherent structures in turbulent flows has been the lack of efficient computational strat-
egies for the discretization of nonlinear closure modeling terms.

Indeed, the main advantage of the ROM (7) over the usual discretizations of (1) (such as finite elements or finite differ-
ences) is that the dimension of the dynamical system (7) is usually extremely small. Thus, the time integration of (7) can be
effected very efficiently. There is, however, a caveat. The matrices in (7) are computed only once at the beginning of the simu-
lation. This is essential for the computational efficiency of the ROM. Indeed, if we had to recompute the matrices at every
time step, this would increase the computational time dramatically, since these matrices are full and the POD basis functions
/i are global. Thus, current POD closure models use matrices that are precomputed. This restriction has been a major compu-
tational hurdle in the development of modern closure strategies for POD of turbulent flows dominated by coherent structures. Many
of these closure modeling strategies introduce nonlinear, non-polynomial terms that need to be efficiently approximated.
Existing methods to treat terms of this form are interpolatory and thus not directly amenable to the chaotic nature of tur-
bulent flows.

In this paper, we propose a novel way to overcome this major computational hurdle. We emphasize that this paper is not
concerned with the derivation of improved POD closure models [79]. Instead, for a given closure model (one of the most ba-
sic LES closure models), we develop a new algorithm that allows an efficient and accurate numerical discretization of that
POD closure model. Our new approach is based on the observation that only a small subset of the original POD basis is used
in the ROM and this basis is typically dominated by coarse, large scale structures. Thus, the numerical discretization of the
nonlinear closure term can be effected on a mesh at a resolution that is significantly lower than that of the mesh utilized in
the derivation of the full POD basis. Based on the above observation, we develop a two-level algorithm for the discretization
of the nonlinear closure model. This two-level algorithm allows for an efficient computation of the nonlinear POD closure
model at each time step without compromising its accuracy. Numerical results supporting our new approach are presented
for three test problems.

The rest of the paper is organized as follows. In Section 2, we describe the new two-level algorithms. Section 3 presents
results using these new algorithms on three test problems: a one-dimensional (1 D) Burgers equation with a very small vis-
cosity parameter (m = 10�3), a two-dimensional (2 D) flow past a cylinder at a Reynolds number Re = 200 and a three-dimen-
sional (3 D) turbulent flow past a cylinder at a moderate Reynolds number Re = 1000. Conclusions are presented in Section 4.

2. Two-level algorithms

In this section, we describe two-level algorithms for efficient and accurate discretization of nonlinear POD closure models.
We start by describing the standard POD Galerkin algorithm. Using a Galerkin projection of the NSE (1) onto the space Ur

defined in (3), we obtain the finite dimensional system (7). This system can be written componentwise as follows: For all
k = 1, . . . ,r:
_akðtÞ ¼ bk þ
Xr

m¼1

AkmamðtÞ þ
Xr

m¼1

Xr

n¼1

BkmnanðtÞamðtÞ; ð9Þ
where
bk ¼ � /k; �u � r�uð Þ � 2
Re
r/k;

r�uþr�uT

2

� �
; ð10Þ

Akm ¼ � /k; �u � r/mð Þ � /k;/m � r�uð Þ � 2
Re
r/k;

r/m þr/T
m

2

� �
; ð11Þ

Bkmn ¼ �ð/k;/m � r/nÞ: ð12Þ
The POD Galerkin (POD-G) algorithm reads:
‘ ¼ 0; compute b;A;B;

for ‘ ¼ 0 to M � 1
a‘þ1 :¼ Fða‘Þ; ð13Þ

endfor

POD-G
algorithm
where the superscript ‘ denotes the current time step, M is the total number of time steps, and F is the function correspond-
ing to the time-advancement method (e.g., Euler’s method).

As mentioned in the introduction, closure modeling is needed when using the POD-G model (7) for turbulent flows. One
of the most popular closure models used in large eddy simulation of turbulent flows is the Smagorinsky model [80], which
augments the diffusion coefficient by CkDðuÞk, where kDðuÞk is the Frobenius norm of the deformation tensor DðuÞ ¼ ruþruT

2 .
Thus, the weak form of the NSE (1) equipped with the Smagorinsky model now reads: For all i = 1, . . . ,r:
ðut ;/iÞ þ
2
Re
þ 2C kDðuÞk

� �
DðuÞ;r/i

� �
þ u � rð Þu;/ið Þ ¼ 0: ð14Þ
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We note that, since we are using the non-dimensionalized NSE (1), the constant C in (14) is non-dimensional. Since the mod-
el used is the Smagorinsky model, we are motivated to identify the term above with ðCS dÞ2 kDðuÞk. This leads to the iden-
tification of the corresponding CS and d values using the following equation:
C ¼ CS dð Þ2
ffiffiffi
2
p

; ð15Þ
where the factor
ffiffiffi
2
p

comes from the formula used in the Smagorinsky model for the computation of the Frobenius norm [66].
To determine d in (15), we use a definition similar to that proposed in [14] (although other definitions can be used):
d :¼
R L1

0

R L2
0 ui> ui>h i dx1 dx2R L1

0

R L2
0 ui>;j ui>;j
� �

dx1 dx2

 !1=2

; ð16Þ
where repeated indices denote summation, the subscript > denotes unresolved POD modes (fluctuations),
hf i ¼ 1

L3

R L3
0 f ðx; tÞdx3 denotes the spatial average of f in the homogeneous direction, and L1 and L2 are the two inhomogeneous

directions of the computational domain. We note that formula (16) corresponds to the case of 3 D flow past a cylinder
(Section 3.3); for the 2 D case (Section 3.2), the obvious modifications should be made. Using a Galerkin truncation
uðx; tÞ � urðx; tÞ � �uðxÞ þ

Pr
j¼1ajðtÞ/jðxÞ in (14), yields the following finite dimensional dynamical system:
_a ¼ bþ ~bðaÞ
� 	

þ Aþ eAðaÞ� 	
aþ aT Ba; ð17Þ
where ~bðaÞ and eAðaÞ correspond to the discretization of the nonlinear closure model. In componentwise form, system (17)
can be written as
_akðtÞ ¼ bk þ ~bkðaÞ
� 	

þ
Xr

m¼1

Akm þ eAkmðaÞ
� 	

amðtÞ þ
Xr

m¼1

Xr

n¼1

BkmnanðtÞamðtÞ; ð18Þ
where bk, Akm, and Bkmn are the same as those in Eq. (9) and
~bkðaÞ ¼ �2C r/k; kDðuÞk
r�uþr�uT

2

� �
;

eAkmðaÞ ¼ �2C r/k; kDðuÞk
r/m þr/T

m

2

� �
:

We emphasize that we are concerned with closure models (such as (14)) that cannot be cast as a quadratic nonlinearity and
thus cannot be simply included in B. The brute force approach in the numerical discretization of (17) yields the one-level
algorithm:
‘ ¼ 0; compute b;A;B on the fine mesh;

for ‘ ¼ 0 to M � 1
compute ~bða‘Þ; eAða‘Þ on the fine mesh ð19Þ
a‘þ1 :¼ eF ða‘Þ;

endfor

one-level
algorithm
where eF is a modification of F in (13) accounting for the additional nonlinear closure terms. Because we need to recompute
(reassemble) ~bðaÞ and eAðaÞ, algorithm (19) is impractical. Indeed, this algorithm removes a major advantage of ROM – the
decrease of computational time. This is because although r� N, the POD basis functions are global and reassembling ~bðaÞ
and eAðaÞ at each time step dramatically increases the CPU time.

To make algorithm (19) practical, we must avoid the computational price required by the matrix reassembly. The two-
level algorithm we propose is based on the observation that only a small subset of the original POD basis is used in the
ROM. Indeed, if a computation on a fine mesh of size h is employed to obtain the POD basis {/1, . . . ,/N}, one is usually able
to use a coarser mesh of size H to represent the POD basis {/1, . . . ,/r}, where r� N. Fig. 1 clearly supports this statement.
Indeed, the numerical resolution needed for an accurate approximation of /10 is much lower than that needed for the approx-
imation of /70. We also note that a similar conclusion would be drawn if we used Fourier basis functions [17].

Thus, to avoid the high computational cost required by the one-level algorithm (19), we propose an algorithm that com-
putes ~bðaÞ and eAðaÞ at each time step on a coarse mesh of size H, and not on the same fine mesh of size h used in the com-
putation of the POD basis functions {/1, . . . ,/N}. Thus, we present a two-level algorithm:
‘ ¼ 0; compute b;A;B on the fine mesh;

for ‘ ¼ 0 to M � 1
compute ~bða‘Þ; eAða‘Þ on the coarse mesh ð20Þ
a‘þ1 :¼ eF ða‘Þ;

endfor

hybrid

two-level
algorithm
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Fig. 1. 1 D Burgers equation with m = 10�3. POD basis functions: (left) /10; (right) /70. Note that the numerical resolution needed for an accurate
approximation of /10 is much lower than that needed for the approximation of /70.
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The advantage of the two-level algorithm (20) over the one-level algorithm (19) is obvious: the former achieves the same
level of accuracy as the latter while decreasing the computational cost by an order of magnitude:
error two-level � error one-level

CPU two-level � CPU one-level
The dramatic reduction in CPU time for the two-level algorithm is due to the efficient computation of ~bðaÞ and eAðaÞ on the
coarse mesh at each time step.

For completeness, we also investigate a modification of the hybrid two-level algorithm (20). This algorithm is denoted as
the coarse two-level algorithm:
‘ ¼ 0; compute b;A;B on the coarse mesh;

for ‘ ¼ 0 to M � 1
compute ~bða‘Þ; eAða‘Þ on the coarse mesh ð21Þ
a‘þ1 :¼ eF ða‘Þ;

endfor

coarse

two-level
algorithm
Note that the coarse two-level algorithm (21) is actually the one-level algorithm (19) applied to POD bases that have been
interpolated on a coarse mesh. Thus, once the fine grid is used in the generation of the snapshots, it is no longer used in the
coarse two-level algorithm (21).

A central role in our new two-level POD–ROM algorithm is played by the coarsening and interpolation procedures. Since
this study represents the first investigation of the new two-level algorithm, we chose the simplest approach – uniformly skip-
ping mesh points to coarsen the structured mesh and interpolate on the coarse mesh. We emphasize, however, that there are
obvious ways to improve the coarsening and interpolation procedures; we plan to pursue these approaches in a future study.

We also note that the two-level methodology introduced here is different from modeling approaches in which the POD
computed on a coarse mesh is used as a surrogate for the entire underlying system (see, e.g., [46]). Indeed, the POD basis in
our two-level methodology is computed on the fine mesh. After extracting the POD basis from the fine mesh computation,
we interpolate it on the coarse mesh and compute the POD closure model. Employing a POD basis computed directly on the
coarse mesh yields highly inaccurate results for the complex flows considered in this report.

Next we present numerical experiments that test the improvement of the two-level algorithms (20) and (21) over the
one-level algorithm (19).
3. Numerical results

In this section, we investigate the two-level algorithms in the numerical simulation of three test problems: (i) the 1 D
Burgers equation with a small diffusion coefficient (Section 3.1); (ii) the 2 D flow past a circular cylinder at Re = 200 (Sec-
tion 3.2); and (iii) the 3 D flow past a circular cylinder at Re = 1000 (Section 3.3). Both two-level algorithms (20) and (21)
employ two meshes: (i) a fine mesh of size h (the mesh on which the POD basis {/1, . . . ,/N} was computed); and (ii) a coarse
mesh of size H (the mesh on which the computation of the POD closure model is effected at each time step). For a given fine
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mesh of size h, we consider different coarse meshes with sizes H. The coarsening factor Rc represents the ratio H/h. We inves-
tigate whether the coarse two-level algorithm (21) and the hybrid two-level algorithm (20) can achieve the same order of
accuracy as the standard one-level algorithm (19), while significantly decreasing the CPU time. The accuracy of the three
algorithms is benchmarked against a DNS. The relative error in the algorithms is computed as
error ¼
1
L

PL
‘¼1 uPOD-ROM x; t‘ð Þ � uDNS x; t‘ð Þ


 

2

0
1
L

PL
‘¼1 uDNS x; t‘ð Þk k2

0

; ð22Þ
where L is the number of snapshots and k�k0 is the L2 norm. To ensure the fairness of our numerical investigation, we also
performed numerical experiments with the POD-G algorithm (13) (i.e., without any closure model) with a small number of
POD basis functions (small r). Poor results with POD-G indicate the need for the closure modeling employed in the two-level
and one-level algorithms. We also mention that, for both the one-level and the two-level algorithms, we only recompute ~b
and eA every one hundred time steps. The reason is that, had we computed ~b and eA at every time step for the one-level algo-
rithm, this would have increased the CPU time for the one-level algorithm beyond our present computational limits. We
emphasize that these computational savings were achieved without sacrificing the numerical accuracy. Indeed, the same
qualitative results (on a shorter time interval) were achieved by evaluating ~b and eA at every time step. This is not surprising,
since we used a very small time step in the time discretization. In practical computations with the two-level algorithm
(when the one-level algorithm does not need to be used) ~b and eA will be evaluated at every time step. Finally, we mention
that in all the models tested (both POD-G and POD–ROM), the time discretization was effected by using the explicit Euler
method with a small time-step. Since the main focus of the paper is the efficient spatial discretization for POD closure mod-
eling, we chose this simple time discretization method; using the same time-discretization for both POD-G and POD–ROM
allowed for a fair comparison. Obviously, higher-order methods can (and should) be used for further computational savings.
We plan to pursue this research direction in a forthcoming study.

3.1. 1 D Burgers equation with m = 10�3

In this section, we investigate the two-level algorithms in the numerical simulation of the 1 D Burgers equation with a
small diffusion coefficient m = 10�3:
ut � muxx þ uux ¼ f : ð23Þ
We use a computational setting that is similar to that used by Kunisch and Volkwein [81]. The initial condition on domain
X = [0,1] is defined as u0(x) = 1 if x 2 (0,1/2] and u0(x) = 0 otherwise. The forcing term is f = 0 and the time interval is
[0,T] = [0,1]. The boundary conditions are homogeneous Dirichlet.

A DNS is used as benchmark. This is computed using the finite element method with piecewise linear polynomials to dis-
cretize the problem in space, the implicit Euler method to discretize in time, and Newton’s method to solve the nonlinear
system. We use a mesh-size Dx = 1/8192 and a time step Dt = 10�3. A mesh refinement study indicates that the DNS conver-
gence has been achieved. The CPU time for DNS is 6155 s.

We use the DNS data consisting of 1001 snapshots to generate the POD basis. This POD basis is then used in all POD re-
duced-order models that we investigate next.

The qualitative behavior of all the models tested is represented by the time evolution of the POD coefficients a1(�) and a6(�)
plotted in Fig. 3. We note that the other POD coefficients have a similar behavior; for clarity of exposition, we included only
a1(�) and a6(�). For comparison purposes, Fig. 3 include the time evolution of the POD coefficients obtained by projecting the
DNS onto each POD mode.

The POD-G (13) with low r (r = 10) performs poorly, although it is computationally efficient (CPU time of 19 s). Indeed, the
temporal evolutions of POD coefficients in Fig. 3 are inaccurate. The amplitude of the temporal evolution of the POD coef-
ficient a6(�) for POD-G with r = 10 is two times larger than that for DNS. The relative error of POD-G with r = 10 is
7.54 	 10�2. Thus, although the first 10 POD modes capture most (99.44%) of the system’s energy, an additional term to sta-
bilize the computations is needed [82].

We now consider the Smagorinsky model (14) with an artificial viscosity coefficient C = 7 	 10�4 as a closure model.
Although the Smagorinsky model targets 3 D turbulent flows, for this test problem it plays the role of numerical stabilization.
For the numerical discretization of the resulting nonlinear POD–ROM (17), we will use three different strategies: (i) the one-
level algorithm (19); (ii) the hybrid two-level algorithm (20); and (iii) the coarse two-level algorithm (21). In comparing the
three algorithms, the time discretization was effected by using the explicit Euler method with Dt = 10�5.

The one-level algorithm (19) with r = 10 yields the temporal evolution of POD coefficients in Fig. 3. Comparing these re-
sults with those for the DNS projection clearly shows that the one-level algorithm yields relatively accurate results although
it uses only a few (r = 10) POD basis functions. Indeed, the one-level algorithm (19) produces results that are much closer to
those for the DNS than the results for POD-G with r = 10. The relative error of the one-level algorithm is 2.55 	 10�2, whereas
that of POD-G with r = 10 is 7.54 	 10�2. This, however, comes at a high computational cost. The CPU time is 19 s for POD-G
and is 858 s for the one-level algorithm.

The coarsening and interpolation procedures used in the two-level algorithms (20) and (21) were straightforward: The
coarsening of the mesh was effected by skipping nodes and the interpolation of the POD basis function /i on the coarse mesh



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
φ

10

original
coarsening

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
φ

10

original

coarsening

Fig. 2. 1 D Burgers equation with m = 10�3. Coarsening and interpolation of /10 for two rates of coarsening: 32 (left) and 256 (right). Notice that the
structure of the POD basis is preserved remarkably well.
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was carried out by simply keeping the values of /i corresponding to the nodes of the coarse mesh. The results in Fig. 2 indi-
cate that the coarsening and interpolation preserve the structure of the POD basis remarkably well.

The coarse two-level algorithm (21) with r = 10 and Rc = 16, 32 produces the temporal evolution of POD coefficients in
Fig. 3. Comparing these results with those for the one-level algorithm (19), we conclude that the coarse two-level algorithm
(21) and the one-level algorithm (19) yield results that are qualitatively similar (see Table 1).

The hybrid two-level algorithm (20) with r = 10 and Rc = 16, 32 yields the temporal evolution of POD coefficients in Fig. 3.
Comparing these results with those for the one-level algorithm (19), we conclude that the hybrid two-level algorithm (20)
yields an improved accuracy while keeping the CPU time at a modest level (see Table 1).

To measure the efficiency of our two-level algorithms, we define a speed-up factor:
Sf �
CPU time of one-level algorithmð19Þ

CPU time of two-level algorithmð21Þorð20Þ : ð24Þ
We present the speed-up factors along with relative errors for both two-level algorithms in Table 1. The relative error of the
one-level algorithm is 2.55 	 10�2. The data in Table 1 clearly shows that both two-level algorithms significantly decrease
the CPU time (by up to an order of magnitude) while maintaining similar accuracy as the more expensive one-level algorithm.
We also emphasize that, as expected, the two-level algorithms decrease significantly the CPU time of the underlying DNS, by
a factor of more than 300.

Thus, for this test problem, we conclude that the two-level algorithms achieve the same order of accuracy as the standard
one-level algorithm, while decreasing the CPU time by more than an order of magnitude. We note that, for this test case, the
coarse two-level algorithm (21) performs better than the hybrid two-level algorithm (20).
3.2. 2 D Flow past a circular cylinder at Re = 200

POD has been implemented successfully in the low-dimensional modeling of laminar cylinder wakes [83,22,84]. Deane
et al. [10] modeled the dynamics of the flow past a cylinder with an eight-dimensional Galerkin model. Ma and Karniadakis
[22] generalized the POD Galerkin models to predict the 3 D transition initiated by the Mode A instability [85] at Re � 180.

In this section, we investigate the two-level algorithm using the numerical simulation of 2 D flow past a circular cylinder
at Re = 200. We simulate 2 D flow past a cylinder using a parallel CFD solver on a 4-processor platform and record the snap-
shot data of the flow field. The details of the numerical algorithm employed are provided in Section 3.3 and Appendix A. The
reader is referred to [37,86,87] for validation and verification results of the 2 D version of the CFD solver.

The qualitative behavior of all the models tested is represented by the time evolution of the POD coefficients a1(�) and a3(�)
and the 2 D projections of the limit cycle on the phase planes – (a1,ai), i = 2, 3 presented in Figs. 4 and 5, respectively. We note
that the other POD coefficients have a similar behavior; for clarity of exposition, we included only a1(�) and a3(�).

After we collect the DNS data, we construct a structured quadratic finite element mesh with nodes coinciding with the
nodes used in the original DNS finite volume discretization. For the last period, we generate 40 snapshots, then use the meth-
od of snapshots [4] to generate the POD basis. Deane et al. [10] observed that 20 snapshots are sufficient for the construction
of the first eight eigenfunctions at Re = 100–200. In general, numerical studies [88] suggest that the first r POD modes, where
r is even, resolve the first r/2 temporal harmonics and require a 2r number of snapshots for convergence.
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Fig. 3. 1 D Burgers equation with m = 10�3. Temporal evolution of POD coefficients a1(�) and a6(�) over [0,1]. Notice that POD-G with r = 10 performs poorly
compared to DNS. The one-level algorithm for the nonlinear closure model improves the results of POD-G with r = 10, but the computational cost is high.
The two-level algorithms keep the same accuracy, but decrease the computational cost by more than one order of magnitude.
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This POD basis is then used in all POD reduced-order models for the 2D flow past a circular cylinder. For all these POD
models, the time discretization was performed using the explicit Euler method with Dt = 1.4 	 10�3.

For comparison purposes, Figs. 4 and 5 include the time evolution of the POD coefficients obtained by projecting the DNS
onto each POD mode and the 2 D projection of the limit cycle on the phase planes, respectively.



Table 1
1 D Burgers equation with m = 10�3. Speed-up factors Sf and relative errors for different coarsening factors Rc.
Note that the relative errors for the two-level algorithms are comparable to the error for the one-level
algorithm (2.55 	 10�2). The two-level algorithms, however, significantly decrease the CPU time (by up to an
order of magnitude) of the one-level algorithm (858 s).

Rc Coarse two-level Hybrid two-level

Sf Error Sf Error

2 1.92 2.43 	 10�2 1.87 2.43 	 10�2

4 3.68 2.36 	 10�2 3.59 2.36 	 10�2

8 6.76 2.31 	 10�2 6.60 2.33 	 10�2

16 12.62 2.27 	 10�2 12.08 2.30 	 10�2

32 21.45 2.20 	 10�2 19.50 2.27 	 10�2
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The POD-G (13) with r small (r = 4) yields poor results, although it is computationally efficient (its CPU time is 246 s). In-
deed, the temporal evolution of POD coefficients and the 2 D projections of the limit cycle on the phase planes in Figs. 4 and
5, respectively, are inaccurate. The amplitude of the temporal evolution of the POD coefficient a3(�) for POD-G with r = 4 is
more than eight times larger than that for the DNS. The relative error of POD-G with r = 4 is 9.57 	 10�2. In fact, the solution
diverges to a spurious limit cycle. Furthermore, the 2 D projections of the limit cycle on the phase planes – (a1,ai), i = 2, 3 for
POD-G with r = 4 are significantly different from the projected DNS. Thus, although the first 4 POD modes capture 98.74% of
the system’s energy, these results clearly indicate the need for closure modeling.

We will use the Smagorinsky model (14) with an artificial viscosity coefficient C = 1.9 	 10�3 as a closure model. Although
the Smagorinsky model targets 3 D turbulent flows, for this test problem it plays the role of numerical stabilization. Never-
theless, by using formulas (15) and (16), we can determine the values for the corresponding Smagorinsky constant and filter
radius: CS = 0.1845 and d = 0.1987, respectively. For the numerical discretization of the resulting nonlinear POD–ROM (17),
we will use three different strategies: (i) the one-level algorithm (19); (ii) the hybrid two-level algorithm (20); and (iii) the
coarse two-level algorithm (21).

The one-level algorithm (19) with r = 4 yields the temporal evolution of POD coefficients and the 2 D projections of the
limit cycle on the phase planes – (a1,ai), i = 2, 3 in Figs. 4 and 5. Comparing these results with those for the DNS, it is clear that
the one-level algorithm yields relatively accurate results, although it uses only a few (r = 4) POD basis functions. Indeed, the
one-level algorithm (19) produces results that are much closer to those for DNS than the results for POD-G with r = 4. The
relative error of the one-level algorithm is 9.0 	 10�3, whereas that of POD-G with r = 4 is 9.57 	 10�2. This, however, comes
at a high computational cost. The CPU time is 246 s for POD-G and is 4.01 	 104 s for the one-level algorithm.

To implement our two-level algorithms (20) and (21), we again used the simplest coarsening and interpolation proce-
dures. The coarsening of the mesh was effected by skipping nodes in the radial and azimuthal directions. For example, when
the coarsening factor Rc = 2, we skip every other node in both directions; when Rc = 4, we skip over three nodes in both direc-
tions (and so on). To interpolate a POD basis function /i on the coarse mesh, we just keep the values of /i corresponding to
the nodes of the coarse mesh. The effect of the mesh coarsening and interpolation is shown in Fig. 6 for two coarsening fac-
tors (Rc = 2 and Rc = 4). It is clear from Fig. 6 that, although the accuracy of the POD modes degrades as the mesh is coarsened,
the geometric structure is preserved.

The coarse two-level algorithm (21) with r = 4 and Rc = 2, 4 yields the temporal evolution of POD coefficients and the 2 D
projections of the limit cycle on the phase planes – (a1,ai), i = 2, 3 in Figs. 4 and 5. Comparing these results with those for the
one-level algorithm (19), we conclude that the coarse two-level algorithm (21) and the one-level algorithm (19) yield results
that are qualitatively similar. The coarse two-level algorithm, however, reduces that computational time by an order of mag-
nitude (see Table 2).

The hybrid two-level algorithm (20) with r = 4 and Rc = 2, 4 yields the temporal evolution of POD coefficients and 2 D pro-
jections of the limit cycle on the phase planes – (a1,ai), i = 2, 3 in Figs. 4 and 5. Comparing these results with those for the
one-level algorithm (19), we conclude that the hybrid two-level algorithm (20) yields an improved accuracy (a shorter initial
transition in the temporal evolution of the POD coefficients ai(�) and tighter 2D projections of the limit cycle on the phase
planes) while keeping the CPU time at a modest level (see Table 2).

To measure the efficiency of our two-level algorithms, we present the speed-up factors Sf defined in (24) along with rel-
ative errors for both two-level algorithms in Table 2. Again, the relative error of the one-level algorithm is 9.0 	 10�3. The
data in Table 2 clearly shows that both two-level algorithms significantly decrease the CPU time (by up to an order of mag-
nitude), while maintaining similar accuracy as the more expensive one-level algorithm.

Thus, for this test problem, we conclude that the two-level algorithms achieve the same order of accuracy as the standard
one-level algorithm, while decreasing the CPU time by more than an order of magnitude. We also note that, in this case, the
hybrid two-level algorithm (20) performs better than the coarse two-level algorithm (21).

We now compare the computational costs of the DNS and the POD–ROM options. This comparison, however, is challeng-
ing, since the discretizations used in the two approaches are completely different. Indeed, the spatial discretization used in
the DNS was the finite volume method, whereas for POD–ROMs we used a finite element method. Furthermore, the time-
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Fig. 4. 2 D flow past a cylinder at Re = 200. Temporal evolution of POD coefficients a1(�) and a3(�) over 100 vortex shedding cycles. Notice that POD-G with
r = 4 performs poorly compared to DNS. The one-level algorithm for the nonlinear closure model improves the results of POD-G with r = 4, but the
computational cost is high. The two-level algorithms keep the same accuracy, but decrease the computational cost by more than one order of magnitude.
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discretization used in DNS was second-order (Crank–Nicolson and Adams–Bashforth), whereas in POD–ROM we used a first-
order time discretization (explicit Euler). The time-steps employed were also different: Dt = 2 	 10�3 in the DNS and
Dt = 1.4 	 10�3 in the POD–ROMs. Finally, the DNS was performed on a parallel machine (on 4 processors), whereas the
POD–ROMs were carried out on a single-processor machine.
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Fig. 5. 2 D flow past a cylinder at Re = 200. 2 D projections of the limit cycle on the phase planes (a1,a2) and (a1,a3) over 100 vortex shedding cycles. The red
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Keeping in mind these significant differences between the two types of discretization employed, the two-level algorithm
significantly reduced the computational time of the DNS: The CPU time for the DNS was 1.17 	 104 s, whereas for the POD–
ROM with the two-level discretization it was 2.52 	 103 s.



Fig. 6. 2 D flow past a cylinder at Re = 200: Mesh (left column), streamwise component of /1 (middle column), and streamwise component of /3 (right
column). (For clarity, the POD modes are plotted only in a neighborhood of the cylinder.) Original fine mesh (top row), mesh coarsened by a factor of 2
(middle row), and mesh coarsened by a factor of 4 (bottom row). Notice that, although the accuracy of the POD modes degrades as the mesh is coarsened,
the geometric structure is preserved.

Table 2
2 D flow past a cylinder at Re = 200. Speed-up factors Sf and relative errors for different coarsening
factors Rc. Note that the relative errors for the two-level algorithms are comparable to the error for
the one-level algorithm (9.0 	 10�3). The two-level algorithms, however, significantly decrease the
CPU time (by up to an order of magnitude) of the one-level algorithm (4.01 	 104 s).

Rc Coarse two-level Hybrid two-level

Sf Error Sf Error

2 4.03 1.02 	 10�2 3.97 9.0 	 10�3

4 15.91 1.12 	 10�2 14.58 9.0 	 10�3
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3.3. 3 D Flow past a circular cylinder at Re = 1000

In this section, we investigate the two-level algorithms in the numerical simulation of 3 D flow past a circular cylinder at
Re = 1000. A parallel CFD solver is employed to generate the DNS data [37]. For details on numerical discretization, the reader
is referred to Appendix A. The qualitative behavior of all reduced-order models investigated is represented by the time evo-
lution of the POD coefficients a1(�) and a4(�) in Fig. 8. We note that the other POD coefficients have a similar behavior; for
clarity of exposition, we included only a1(�) and a4(�).

We record snapshot data of the flow field to compute the POD basis functions. At Re = 1000, the wake is fully turbulent
and the flow is not periodic anymore as observed in the lower Re regime. We notice that there is a spectrum of frequencies
present in the flow field. This requires a large snapshot data set comprising many shedding cycles.

By using multiple processors, we reduce the load per processor and are able to record a large data set of the flow field.
Each processor records 1000 snapshots of the velocity field (u1,u2,u3) over 15 shedding cycles on its local grid points. Thus,
parallel computing is a key enabling technology for model reduction in 3 D flows. Using the method of snapshots [4], we



Fig. 7. 3 D flow past a cylinder at Re = 1000. First streamwise POD mode (top left), first normal POD mode (top right), third streamwise POD mode (bottom
left), and third normal POD mode (bottom right).
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construct a correlation matrix and compute the POD basis {/1, . . . ,/N} using MPI-ALLREDUCE (SUM) operation [91]. We ob-
serve that the 3 D POD modes are not symmetric anymore due to presence of multiple frequencies in the dynamical system
as shown in Fig. 7.

These POD modes are then interpolated onto a structured quadratic finite element mesh with nodes coinciding with the
nodes used in the original DNS finite volume discretization. The POD basis is then used in all POD reduced-order models that
we investigate next. For all these POD models, the time discretization was effected by using the explicit Euler method with
Dt = 7.5 	 10�4. We note that POD–ROMs have also been extended to the pressure field [84,87]. The key advantage of pres-
sure ROM is the computation of hydrodynamic forces on the structure. Akhtar et al. [87] developed a pressure-Poisson based
ROM that requires the POD modes of the pressure fields in addition to those for the velocity field. Their model predicted the
lift and drag forces on a cylinder at Re = 100. In the current study, however, we restrict ourselves to the ROM of the velocity
field. Thus, lift and drag forces cannot be computed and compared with those from DNS.

For comparison purposes, we include the time evolution of the POD coefficients obtained by projecting the DNS onto each
POD mode.

The POD-G (13) with r small (r = 6) is not appropriate, although it is computationally efficient (its CPU time is 486 s). In-
deed, the temporal evolutions of POD coefficients in Fig. 8 are inaccurate. The amplitude of the temporal evolution of the POD
coefficient a4(�) for r = 6 is nine times larger than that for the DNS projection. The relative error of POD-G with r = 6 is
1.23 	 10�1. Thus, although the first 6 POD modes capture 84% of the system’s energy, these results clearly indicate the need
for closure modeling.

We will use the Smagorinsky model (14) with an artificial viscosity coefficient C = 4 	 10�4 as a POD closure model for
turbulent flows. By using formulas (15) and (16), we can determine the values for the corresponding Smagorinsky constant
and filter radius: CS = 0.1426 and d = 0.1179, respectively. For the numerical discretization of the resulting nonlinear POD–
ROM (17), we will use three different strategies: (i) the one-level algorithm (19); (ii) the hybrid two-level algorithm (20);
and (iii) the coarse two-level algorithm (21).

The one-level algorithm (19) with r = 6 yields the temporal evolution of POD coefficients in Fig. 8. Comparing these results
with those for the DNS, it is clear that the one-level algorithm yields relatively accurate results although it uses only a few
(r = 6) POD basis functions. Indeed, the one-level algorithm (19) produces results that are much closer to those for the DNS
than the results for POD-G with r = 6. The relative error of the one-level algorithm is 4.46 	 10�2, whereas that of POD-G with
r = 6 is 1.23 	 10�1. This, however, comes at a high computational cost. Indeed, the CPU time is 486 s for POD-G with r = 6
and is 5.32 	 105 s for the one-level algorithm.

We used the simplest coarsening and interpolation procedures. The coarsening of the mesh was effected by skipping
nodes in the radial and azimuthal directions. For example, when the coarsening factor Rc = 2, we skip every other node in
both directions; when Rc = 4, we skip over three nodes in both directions (and so on). For this test problem, we only coars-
ened the mesh in the x and y directions, since the mesh resolution in the z direction was already low. To interpolate a POD
basis function /i on the coarse mesh, we just keep the values of /i corresponding to the nodes of the coarse mesh.

The coarse two-level algorithm (21) with r = 6 and Rc = 2, 4 yields the temporal evolution of POD coefficients in Fig. 8. Com-
paring these results with those for the one-level algorithm (19), we conclude that the coarse two-level algorithm (21) and
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Fig. 8. 3 D flow past a cylinder at Re = 1000. Temporal evolution of POD coefficients a1(�) and a4(�) over the time interval [0,75]. Notice that POD-G with r = 6
performs poorly compared to DNS. The one-level algorithm for the closure model improves the results of POD-G with r = 6, but the computational cost is
high. The two-level algorithms keep the same accuracy, but decrease the computational cost by more than one order of magnitude.
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the one-level algorithm (19) yield results that are qualitatively similar. The coarse two-level algorithm, however, reduces
that computational time by an order of magnitude (see Table 3).

The hybrid two-level algorithm (20) with r = 6 and Rc = 2, 4 yields the temporal evolution of POD coefficients in Fig. 8. Com-
paring these results with those for the one-level algorithm (19), we conclude that the hybrid two-level algorithm (20) yields
an improved accuracy while keeping the CPU time at a modest level (see Table 3).



Table 3
3 D flow past a cylinder at Re = 1000. Speed-up factors Sf and relative errors for different coarsening
factors Rc. Note the relative errors for the two-level algorithms are comparable to the error for the
one-level algorithm (4.46 	 10�2). The two-level algorithms, however, significantly decrease (by over
an order of magnitude) the CPU time of the one-level algorithm (5.32 	 105 s).

Rc Coarse two-level Hybrid two-level

Sf Error Sf Error

2 4.97 4.44 	 10�2 5.22 4.52 	 10�2

4 24.52 3.85 	 10�2 24.18 4.73 	 10�2
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Although the main goal of this paper is to investigate whether, for a given closure model (the basic Smagorinsky model),
the two-level algorithms represent an efficient, yet accurate alternative to the one-level algorithm, we note that the POD–
ROM results are not always accurate when compared with DNS results. Indeed, we note that the time evolutions for the
POD–ROMs’ a1 coefficients in Fig. 8 are close to those corresponding to the DNS. The time evolutions for the POD–ROMs’
a4 coefficients, however, are less accurate. We believe that these inaccuracies are due to the fact that the closure model em-
ployed is just the standard Smagorinsky model; more accurate closure models (such as the dynamic SGS model and the var-
iational multiscale model) will probably yield improved results. We also emphasize that the plots in Fig. 8 represent
instantaneous quantities (not averages), which are generally hard to capture accurately by turbulence closure models.

To measure the efficiency of our two-level algorithms, we present the speed-up factors Sf given in (24) along with relative
errors for both two-level algorithms in Table 3. The relative error of the one-level algorithm is 4.46 	 10�2. The data in Table 3
clearly shows that both two-level algorithms significantly decrease (by over an order of magnitude) the CPU time while
maintaining similar accuracy as the more expensive one-level algorithm.

Thus, for this test problem, we conclude that the two-level algorithms achieve the same order of accuracy as the standard
one-level algorithm, while decreasing the CPU time by more than an order of magnitude. We also notice that, in this case, the
coarse two-level algorithm (21) performs better than the hybrid two-level algorithm (20).

As in the 2 D test case, we mention that a comparison between the computational cost of the DNS and that of the POD–
ROMs used is challenging, since the discretizations used in the two approaches are completely different. Indeed, the spatial
discretization used in the DNS was the finite volume method, whereas for POD–ROMs we used a finite element method. Fur-
thermore, the time-discretization used in DNS was second-order (Crank–Nicolson and Adams–Bashforth), whereas in POD–
ROM we used a first-order time discretization (explicit Euler). The time-steps employed were also different: Dt = 2 	 10�3 in
the DNS and Dt = 7.5 	 10�4 in the POD–ROM. Finally, the DNS was performed on a parallel machine (on 16 processors),
whereas the POD–ROMs were carried out on a single-processor machine.

Keeping in mind these significant differences between the two types of discretization employed, the two-level algorithm
reduced the computational time of the DNS: The CPU time for the DNS was 3.58 	 104 s, whereas for the POD–ROM with the
two-level discretization it was 2.17 	 104 s. We believe that by increasing the time-step, using a higher-order time-discret-
ization and migrating the code to parallel machines, the computational cost of the two-level algorithm can be decreased
even further. We plan to pursue these research directions in a future study.
4. Conclusions

In this paper, we proposed a two-level algorithm for the numerical discretization of nonlinear POD closure models. This
two-level algorithm opens new research avenues in the investigation of physically accurate POD closure modeling strategies,
similar to the state-of-the-art closure models used in LES of turbulent flows. The main idea behind the new two-level algo-
rithm is the evaluation of the nonlinear POD closure model on a coarse mesh. This allows for an efficient computation of the
nonlinear POD closure model at each time step. While reduced-order models will never fully replace high resolution simu-
lation methods such as LES, there are a number of important applications where the construction of accurate reduced-order
models is critical. This discretization methodology for nonlinear POD closure models creates more strategies for building
these models.

We considered two versions of the two-level algorithm: (i) a hybrid two-level algorithm in which only the nonlinear term
was evaluated on the coarse mesh; and (ii) a coarse two-level algorithm in which all the terms of the POD–ROM were eval-
uated on the coarse mesh. Both two-level algorithms were compared to a standard brute-force computational approach,
which we denoted the one-level algorithm. We investigated the two-level algorithms in the numerical simulation of three
test problems: (i) the one-dimensional Burgers equation with a small diffusion parameter m = 10�3; (ii) the 2 D flow past a
cylinder at Reynolds number Re = 200; and (iii) the 3 D flow past a cylinder at Reynolds number Re = 1000. For completeness,
we also included results with POD Galerkin formulation (i.e., without any closure model) with a low number of POD modes,
as well as a DNS projection of the evolution of the POD modes, which served as benchmark for our numerical simulations.
We emphasize that the goal of this paper is to propose an efficient numerical discretization of a given nonlinear POD closure
model, and not to advocate a specific POD closure model. Therefore, we just chose one of the standard closure models used in
LES, the Smagorinsky model.
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For all three numerical tests, we drew the same conclusions. The two-level algorithms achieved the same order of accu-
racy as the standard one-level algorithm, but they both decreased the computational cost of the latter by more than an order
of magnitude. Thus, the two-level algorithms appear as promising approaches in the numerical discretization of nonlinear
closure modeling strategies for POD–ROMs. The coarse two-level algorithm performed better than the hybrid two-level algo-
rithm in the 1 D and 3 D tests, whereas the latter performed better in the 2 D test. The differences between the two two-level
algorithms in terms of computational efficiency and numerical accuracy, however, were minimal. Since there are no major
differences in terms of implementation, we conclude that both two-level algorithms should be considered in practical POD–
ROM computations. We also note that, in general, the errors in both two-level algorithms seem to decrease as Rc increases.
This behavior, however, is not always observed (e.g., the coarse two-level algorithm in Table 2 and the hybrid two-level algo-
rithm in Table 3). This behavior is counterintuitive, since coarsening the mesh should result in an error increase. We do men-
tion, however, that given the mesh sizes considered in our study (especially those for the 2 D and 3 D numerical tests), we
cannot infer the true asymptotic behavior of the error with respect to the mesh size.

We plan to further investigate several research avenues. First, we plan to develop discretization strategies for reducing
the computational cost of the two-level algorithm even further. To this end, we plan to develop more appropriate interpo-
lation strategies, based on Galerkin projection rather than simply skipping points. We also plan to investigate more efficient
time-discretization approaches, since in this report we used the forward Euler method, which only has first-order accuracy
and is only conditionally stable. Higher-order time discretization strategies will provide significant further savings in com-
putational time. Finally, we will take advantage of parallel computing in order to further decrease the computational time
and, at the same time, increase the dimension (and thus physical accuracy) of the POD–ROM.

A second research direction we plan to pursue is to employ the new two-level algorithm in the numerical discretization of
modern closure modeling strategies for POD–ROMs of coherent structures in turbulent flows. Thus, we will investigate how
state-of-the-art LES closure modeling strategies, such as the dynamic SGS model and the variational multiscale method, can
improve the physical accuracy of POD–ROMs of turbulent flows dominated by coherent structures, such as turbulent bound-
ary layers. In particular, we will investigate different approaches for determining a length-scale d and use a dynamic proce-
dure to determine a closure model term C that varies in both time and space. We will also gradually increase the Reynolds
number in the turbulent flows we will consider and assess the validity range of the POD–ROMs. To obtain the snapshot data
for the POD–ROM in these high Reynolds number flows, we plan to employ modern numerical simulation strategies, such as
LES. Equipped with these modern closure models, the POD–ROMs could then be tested in the numerical simulation of tur-
bulent flows dominated by coherent structures for time intervals that are longer than those on which the POD snapshot ma-
trix was computed.

A third research direction we will investigate is the extension of the two-level methodology to POD–ROMs of geophysical
flows. Of course, the nonlinear closure models for these predominantly two-dimensional oceanic and atmospheric flows will
be different from most of the LES closure models used in the numerical simulations of three-dimensional turbulent flows,
where the concept of energy cascade plays a central role. We will develop POD–ROM closure models based on approximate
deconvolution [67], which is a mathematical closure modeling strategy that does not rely on the concept of energy cascade.

Finally, we plan to employ the two-level methodology in other applications in which nonlinear closure models for POD is
needed, such as optimal control, optimization, uncertainty quantification and data assimilation problems. Since the two-le-
vel method we propose has a general framework and is not restricted to turbulence closure models, its extension to other
nonlinear POD closure models is straightforward.
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Appendix A

We briefly describe the numerical method used to generate the DNS data for the test problems in Sections 3.2 and 3.3. We
use a parallel CFD algorithm to solve the incompressible NSE. Using a strong conservative form, the governing equations are
written in curvilinear coordinates (n1,n2,n3) as
oUm

onm
¼ 0; ð25Þ

o J�1ui

� 	
ot

þ oFim

onm
¼ 0; ð26Þ
and the flux is defined as
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Fig. 9. 3 D flow past a cylinder at Re = 1000. A typical ‘‘O”-grid distributed over different processors: a 2 D layout of 192 	 256 grid distributed on an 8-
processor platform (left) and a 3 D layout of 128 	 128 	 96 ‘‘O”-grid distributed on a 24 (8 	 3) processor platform (right). The grid is plotted only for the
region corresponding to processor ‘‘1”. (Note that only every 4th grid point is plotted for clarity.)
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Fim ¼ Umui þ J�1 onm

oxi
p� 1

Re
Gmn oui

onn
; ð27Þ
where i, j = 1, 2, 3, ui represent the Cartesian velocity components, and p is the pressure. Eqs. (25) and (26) are non-dimen-
sionalized using the diameter (D) of the cylinder as length scale and the freestream velocity (U1) as velocity scale. Thus, the

Reynolds number is Re ¼ DU1
m , where m ¼ l

q. Other quantities are defined as follows: J�1 ¼ det oxi
onj

� 	
is the inverse of the Jacobian

or the volume of the cell; Um ¼ J�1 onm
oxj

uj is the volume flux (contravariant velocity multiplied by J�1) normal to the surface of

constant nm; and Gmn ¼ J�1 onm
oxj

onn
oxj

is the ‘‘mesh skewness tensor”.

We use a body conformal ‘‘O”-type grid to simulate the flow past a cylinder and employ curvilinear coordinates in an
Eulerian reference frame. The governing equations are solved using a methodology similar to that employed by Zang
et al. [97]. To implement the algorithm on a distributed-memory, message-passing parallel computer, we use a 2D domain
decomposition technique such that each processor gets a ‘‘slice” of the grid, as shown in Fig. 9.

A non-staggered-grid layout is employed to solve the transformed NSE. The Cartesian velocity components (u1,u2,u3) and
pressure (p) are defined at the center of the control volume in the computational space and the volume fluxes (U1,U2,U3) are
defined at the midpoints of the corresponding faces. All spatial derivatives are approximated with second-order accurate
central differences except for the convective terms, which are discretized by using a variation of QUICK [92]. Dirichlet
and Neumann boundary conditions are used for the inflow and outflow boundary conditions, respectively. No-slip and
no-penetration boundary conditions are prescribed on the cylinder surface.

A semi-implicit scheme is employed to advance the solution in time. The diagonal viscous terms are advanced implicitly
using the second-order accurate Crank–Nicolson method, whereas all of the other terms are advanced using the second-or-
der accurate Adams–Bashforth method.

In the present formulation, we apply a fractional-step method [93–97] to advance the solution in time. The fractional-step
method splits the momentum equation into: (a) an advection–diffusion equation – momentum equation solved without the
pressure term; and (b) a pressure Poisson equation – constructed by implicit coupling between the continuity equation and
the pressure in the momentum equation, thus satisfying the mass conservation constraint.

We perform a DNS of the flow past a circular cylinder on a 144 	 192 	 16 grid distributed over 16 processors in circum-
ferential direction. Thus, the load per processor is 144 	 12 	 16 grid points. In this simulation, the outer domain is 15D with
a nondimensional spanwise length of 2D. A CFL number based on the convection term in curvilinear coordinates is used as a
guideline in choosing the time step. The simulations show that a stable time stepping is achieved for a CFL � 0.2, which
corresponds to a nondimensional time step size Dt = 2 	 10�3 for this grid.
Table 4
3 D flow past a cylinder at Re = 1,000. Validation of DNS
results. Notice that the mean drag coefficient CD and Strouhal
number St match those from [89,90].

Data from CD St

Experiment [89] 1.0 0.21
3-D DNS [90] 1.02 0.202
3-D DNS (present) 1.11 0.205
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Fig. 10. 3 D flow past a cylinder at Re = 1000. Energy spectrum.
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To validate our DNS results, we compute the mean drag coefficient CD and the Strouhal number St at Re = 1000. In Table 4,
these quantities are compared with those obtained by Norberg [89] and Evangelinos and Karniadakis [90].

We also discuss the pointwise statistics focusing on the structure as well as the wake. In Fig. 10, the 1 D power energy
spectrum at (x/D,y/D,z/D) = (1.0,0.5,1.0) shows a peak at the shedding frequency of 0.205. Moreover, it exhibits a � 5

3 law
in the inertial range, which extends about half a decade in wave number. For more details on discretization, validation,
verification, and parallel implementation of the numerical scheme, the reader is referred to [37,87].
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