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INTRODUCTION 

 
The task of uncertainty quantification consists of 

relating the available information on uncertainties in the 
model setup to the resulting variation in the outputs of the 
model. Uncertainty quantification plays an important role 
in complex simulation models of nuclear engineering, 
where better understanding of uncertainty results in 
greater confidence in the model and in the improved 
safety and efficiency of engineering projects.  

In our previous work, we have shown that the effect 
of uncertainty can be approximated by polynomial 
regression with derivatives (PRD): a hybrid regression 
method that uses first-order derivatives of the model 
output as additional fitting conditions for a polynomial 
expansion. Numerical experiments have demonstrated the 
advantage of this approach over classical methods of 
uncertainty analysis: in precision, computational 
efficiency, or both [1]. To obtain derivatives, we used 
automatic differentiation (AD) on the simulation code [2]; 
hand-coded derivatives are acceptable for simpler models. 

We now present improvements on the method. We 
use a tuned version of the method of snapshots, a 
technique based on proper orthogonal decomposition 
(POD) [3], to set up the reduced order representation of 
essential information on uncertainty in the model inputs. 
The automatically obtained sensitivity information is 
required to set up the method. 

Dimensionality reduction in combination with PRD 
allows analysis on a larger dimension of the uncertainty 
space (>100), at modest computational cost. 
 
DESCRIPTION OF THE WORK  

 
Given a generic model with state vector , 

intermediate parameters  dependent on the state of the 
model and on a collection of uncertainty quantifiers  
(generic quantities describing uncertainty-induced errors), 
and a code implementing the solution of model equations 

, we redefine an output of interest as a 
function of uncertainty quantifiers: , and we 
approximate using an expansion in multivariate 
polynomial basis : 

 
.    (1) 

We have shown that the use of derivatives 
reduces the size of the sample required for regression, so 
that approximations of the effect of 10-50 uncertainty 
quantifiers can be constructed with 10 or fewer model 
runs. With higher dimension of the uncertainty space (100 
or more), however, the size of multivariate polynomial 
becomes very large (104, with combinatorial growth) if 
higher-order polynomials are included; an efficient and 
well-conditioned regression procedure is no longer 
possible. We use dimensionality reduction on the 
uncertainty space to counter the effects of large 
dimension; that is, we use a reducing projection 

leading to an approximation  
 

,   (2) 

 
with the basis constructed on fewer variables. 

 
A straightforward method of snapshots [3] applies to 

high-dimensional data sets as follows. Given samples of 
data  of vectors , we define the 
empirical correlation matrix as .  

The projection , , is defined as a 
dominant eigenspace of . The projected data then 
optimally reproduces the snapshots (in 2-norm) and is 
also expected to preserve the rest of the data well, 
provided the snapshots are representative. 

Straightforward reduction, or data compression, on 
the uncertainty space would not have a useful effect, 
because in the described setup there is no interaction with 
the model; only the shape of the uncertainty domain is 
subject to compression. 

 We can provide the feedback from the model by 
defining the model output as a feature of interest and 
modifying the reduction technique so that this feature is 
best represented in model evaluations over compressed 
data. Two related approaches of assessing the influence of 
input set components on the output are available. 

 
Approach I: dual-weighted POD  

 
We use a dual-weighted modification of the method 

[4]. It is based on assigning importance measures:  to 
each of the input vectors , , and  to each 
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individual uncertainty quantifier , . The 
weighted form of the correlation matrix is defined as  

 
.       (3) 

 
We define the measures empirically: with derivative 

information already obtained, an effective scheme is  
 

.      (4) 

 
Approach II: reduction by extraction of latent factors 
 

Suppose there exists a function  on a few variables 
such that 

 
.        (5) 

 
Differentiation of (5) shows that 

 
.       (6) 

 
The projection  can then be chosen as 

the dominant eigenspace of the matrix that contains 
gradients of the output function at snapshot values. 

 
In both approaches, the projected set of inputs is used 

to construct approximation (2) by PRD or by regression 
without derivative information. 

 
Applied Example 
 

We test the performance of the method on a 
simplified, three-dimensional, steady-state reactor core 
model with a simple heat transport description; the 
operational parameters chosen correspond to those of a 
sodium-cooled fast reactor core. The uncertainty is 
introduced into the dependencies of thermodynamic 
properties of reactor materials on temperature. We also 
take into account the discrepancies in the chemical 
composition of different fuel elements. We use a setup 
with 19 fuel pins; the dimension of uncertainty is 66. We 
choose the maximal fuel centerline temperature, measured 
in degrees Kelvin, as an output of interest. 

 
RESULTS 
 

In Table 1 we compare the performance of different 
approximations of the output: linear approximation, PRD 
approximation using polynomials of up to second order, 
and PRD approximation on reduced uncertainty space 
using approaches I and II. We show the error mean and 

variance on a sample of 100 points, and the number of full 
model runs required to construct each approximation. 

Dimensionality reduction on the uncertainty space 
allowed using higher-order polynomials on fewer 
variables and gained approximately an order of magnitude 
improvement in precision over PRD models, for lower 
computational cost. Approach II is empirically the best 
option so far.  

 
Table 1. Comparison of approximation methods 

Method Error mean Error var. # runs 
Linear -1.9045 7.2376 2 
PRD -0.2193 1.2588 68 
Reduced PRD, I -0.0148 0.4864 14 
Reduced PRD, II -0.0123 0.0878 14 
 

With the use of advanced sampling techniques and 
development of error models for both PRD and POD, the 
results may be improved further. We note the relationship 
of this study with ongoing work in Gaussian-based 
statistical models of uncertainty that use PRD 
approximations as the mean of an unknown distribution 
[4]. 

Our current direction of work is to apply model 
reduction to automatically extracted parts of model 
equations, to be able to obtain sensitivity information and 
construct PRD approximations for high-resolution models 
that require extreme-scale computational resources. We 
hope to provide more details in our upcoming larger 
publication. 
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