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a b s t r a c t

We introduce improved reduced-order models for turbulent flows. These models are
inspired from successful methodologies used in large eddy simulation, such as artificial
viscosity, applied to standardmodels created by proper orthogonal decomposition of flows
coupled with Galerkin projection. As a first step in the analysis and testing of our new
methodology, we use the Burgers equation with a small diffusion parameter. We present
a thorough numerical analysis for the time discretization of the new models. We then
test these models in two problems displaying shock-like phenomena. Of course, since the
Burgers equation does not model turbulence, we next need to test our new models in
realistic turbulent flow settings. This is the subject of a forthcoming report.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamical system ideas have recently gained increasedmomentum in the field of fluid dynamics [1,2]. In turbulent flows,
these ideas are of particular interest. Indeed, dynamical systems could be used to describe low-dimensional structures that
play an important role in the dynamics of the flow, such as the coherent structures in the turbulent boundary layer, which
are believed to be central in understanding the mechanism of turbulence.

One of the most successful dynamical system ideas in the study of turbulent flows has been the Proper Orthogonal
Decomposition (POD) [3–6]. POD starts with data from an accurate numerical simulation and extracts the most energetic
modes in the system by using the singular value decomposition. POD has been used to generate reduced-order models for
the prediction and control of turbulent flows [7–15]. Aubry et al. proposed in [7] a low-dimensional model to approximate
the coherent structures in the turbulent boundary layer. This model has truncated the POD basis and has used a mixing-
length type approximation to model the effect of the discarded PODmodes on the PODmodes kept in the model. The model
has yielded good qualitative results, considering the coarseness of the approximation. In [16,17], it was shown that the
model reproduced qualitatively well the physics of the turbulent boundary layer and that by adding new POD modes, the
accuracy of the model was increased.

The model in [7] relies fundamentally on the assumption of energy cascade, which states that energy flows from large
scales to small scales. This concept has been thoroughly tested experimentally and numerically and has played a central
role in the large eddy simulation of turbulent flows. The validity of the extension of the concept of energy cascade from the
Fourier space setting to the POD setting has been investigated in [18]. In this numerical study, it was shown that there is a
net forward energy transfer from low index POD modes to higher index POD modes.

The studies in [7,16–18] represent the motivation of our present study. They clearly suggest that the concept of energy
cascade is also valid in a POD setting. Therefore, LES ideas based on the concept of energy cascade could also be used in
devising reduced-order models in a POD context. Our current study proposes the use of the artificial viscosity as a means
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of improving the reduced-order POD model in [7]. As a first step in a thorough theoretical and numerical investigation of
these new artificial viscosity PODmodels, we use the Burgers equationwith a small viscosity parameter.We emphasize that
the Burgers equation does not represent turbulence. We use it, however, for simplicity and clarity of exposition. Of course,
to assess the success of our new methodology, we will next investigate it in the numerical simulation of realistic turbulent
flows.

The rest of the paper is organized as follows. In Section 2, we briefly describe the PODmethodology. Section 3 introduces
the new POD artificial viscosity model. The error analysis for the time discretization of the new model is presented in
Section 4. The new methodology is tested numerically in Section 5 for two problems displaying shock-like phenomena.
Finally, Section 6 presents the conclusions and future research directions.

2. Proper orthogonal decomposition

In this section, we briefly describe the proper orthogonal decomposition (POD), following [19]. For a detailed presentation,
the reader is referred to [3–6].

Let H be a real Hilbert space endowed with the inner product (·, ·)H , and u(·, t) ∈ H, t ∈ [0, T ] be the state variable of
a dynamical system. Given the time instances t1, . . . , tn ∈ [0, T ], we consider the ensemble of snapshots

V := span {u(·, t1), . . . , u(·, tn)} ,

with dim V = d. The POD seeks a low-dimensional (r) basis {ϕ1, . . . , ϕr} that optimally approximates the input collection
in the sense

min
1
n

n−
i=1

u(·, ti)−

r−
j=1

(u(·, ti), ϕj(·))H ϕj(·)


2

H

(1)

subject to the conditions that (ϕi, ϕj)H = δij, 1 ≤ i, j ≤ r . In order to solve (1), we consider the eigenvalue problem

Kv = λv, (2)

where K ∈ Rn×n, with Kij =
1
n (u(·, tj), u(·, ti))H , is the snapshot correlation matrix, vk, k = 1, . . . , n are the eigenvectors,

and λ1 ≥ λ2 ≥ · · · ≥ λd > 0 are the positive eigenvalues. It can then be shown (see [3–6]), that the solution of (1) is given
by

ϕk(·) =
1

√
λk

n−
j=1

(vk)j u(·, tj), 1 ≤ k ≤ r, (3)

where (vk)j is the j-th component of the eigenvector vk. It can also be shown that the following error formula holds

1
n

n−
i=1

u(·, ti)−

r−
j=1

(u(·, ti), ϕj(·))H ϕj(·)


2

H

=

d−
j=r+1

λj. (4)

In what follows, we will use the notation Sr = span{ϕ1, ϕ2, . . . , ϕr}.

3. Artificial viscosity POD model

In this section, we present the artificial viscosity POD model. To this end, we start by introducing some notation.
The mathematical model we consider is the Burgers equationut − ν uxx + u ux = f inΩ,

u(x, 0) = u0(x) inΩ,
u(x, t) = g(x, t) on ∂Ω,

(5)

where ν is the diffusion parameter, f the forcing term,Ω ⊂ R the computational domain, t ∈ [0, T ], with T the final time,
u0(·) the initial condition, and g(·) the boundary conditions. Without loss of generality, we assume that g = 0 in what
follows. We emphasize that Burgers equation (5), while being commonly used as a one-dimensional approximation of the
Navier–Stokes equations, does not model turbulence. We use it, however, for simplicity and clarity of exposition.

Let L2,H1
0 ,W

1,3,W 1,3
0 denote the usual Sobolev spaces onΩ [20] and (·, ·) = (·, ·)L2 . Let a : H1

0 ×H1
0 → R be defined as

a(ϕ, ψ) := ν(ϕ′, ψ ′) ∀ϕ,ψ ∈ H1
0 . (6)

For all ϕ,ψ ∈ H1
0 , we define

(F(ϕ), ψ) := (ϕϕ′, ψ). (7)
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Furthermore, for ϕ,ψ ∈ W 1,3 and c a positive constant, we define

(G(ϕ), ψ) := c (|ϕ′
|ϕ′, ψ ′). (8)

Let u0 ∈ L2 and f ∈ C(0, T ; L2). Then the weak formulation of (5) reads
(ut , ϕ)+ a(u, ϕ)+ (F(u), ϕ) = (f , ϕ) ∀ϕ ∈ H1

0 ,

(u(0), χ) = (u0, χ) ∀χ ∈ L2.
(9)

We denote the time-step 1t := T/m and the time instances tk = k1t, k = 0, 1, . . . ,m. Following [19], we consider the
following 2m + 1 snapshots

{u(t0), u(t1), . . . , u(tm), ∂u(t1), . . . , ∂u(tm)}, (10)

where ∂u(tk) =
u(tk)−u(tk−1)

1t . As explained in [19], we included ∂u(tk) in the set of snapshots in order to avoid an extra (1t)−2

factor in the error estimates.
By using the backward Eulermethod for the timediscretization anddenoting ∂Uk =

Uk−Uk−1
1t , the PODGalerkin truncation

of (9) is
(∂Uk, ϕ)+ a(Uk, ϕ)+ (F(Uk), ϕ) = (f (tk), ϕ) ∀ϕ ∈ Sr ,
(U0, χ) = (u0, χ) ∀χ ∈ Sr . (11)

Asmentioned in the introduction, in turbulent flow computations, such a simple POD Galerkin truncationwould not suffice.
Themodelwe propose herein is an improvement of themixing-lengthmodel in [7]. Specifically, we use an artificial viscosity
term similar to the one used in the Smagorinsky model [21], which yields the artificial viscosity Burgers equation

(ut , ϕ)+ a(u, ϕ)+ (F(u), ϕ)+ (G(u), ϕ) = (f , ϕ) ∀ϕ ∈ W 1,3
0 ,

(u(0), χ) = (u0, χ) ∀χ ∈ L2.
(12)

This approach yields the following artificial viscosity (AV) PODmodel, which we will denote POD–AV
(∂Uk, ϕ)+ a(Uk, ϕ)+ (F(Uk), ϕ)+ (G(Uk), ϕ) = (f (tk), ϕ) ∀ϕ ∈ Sr ,
(U0, χ) = (u0, χ) ∀χ ∈ Sr . (13)

We emphasize again that, since we illustrate our new model in the context of the Burgers equation, its role is somehow
different from its original purpose. Indeed, in the numerical simulation of turbulent flows, the POD–AV model (13) should
dissipate energy according to the well known concept of energy cascade [22,23]. In the context of the Burgers equation,
however, the POD–AV model’s role is to stabilize the numerical solution in test problems displaying shock-like behavior.

4. Error estimates

In this section, we prove estimates for the error 1
m

∑m
k=1 ‖Uk−u(tk)‖2, where the approximationUk is the solution of (13)

and u(tk) is the solution of (12). To this end, we follow the presentation in [19]. We emphasize that, although the general
approach that we use is that in [19], there are several differences stemming from the nonlinear AV term thatwas not present
in the formulation found in [19]. We also note that the error estimates in this paper, as well as those in [19,24], only concern
the time discretization and the POD truncation. For a finite element spatial discretization error analysis and alternative error
estimates, the reader is referred to [25,26], respectively.

We start by listing several results that will be used throughout this section. The first is the Poincaré inequality: there
exists a constant α > 0 such that the following relationship between the L2-norm and the H1-seminorm holds

‖ϕ‖
2

≤ α |ϕ|
2
1 ∀ϕ ∈ H1

0 . (14)

The bilinear form a(·, ·) is continuous and coercive: there exist constants β and κ such that

|a(ϕ, ψ)| ≤ β‖ϕ‖1 ‖ψ‖1 ∀ϕ, ψ ∈ H1
0 (15)

|a(ϕ, ϕ)| ≥ κ ‖ϕ‖
2
1 ∀ϕ ∈ H1

0 . (16)

We will also use the following lemma [27,28]:

Lemma 4.1 (Strong Monotonicity and Lipschitz Continuity of G). For all ϕ1, ϕ2, ψ ∈ W 1,3, there exists a generic constant C
independent of ϕ1, ϕ2 or ψ , such that the following inequalities hold:

(G(ϕ1)− G(ϕ2), (ϕ1 − ϕ2)) ≥ C ‖(ϕ1 − ϕ2)
′
‖
3
L3 , (17)

(G(ϕ1)− G(ϕ2), ψ) ≤ C M ‖(ϕ1 − ϕ2)
′
‖L3 ‖ψ ′

‖L3 , (18)

where M := max

‖ϕ′

1‖L3 , ‖ϕ
′

2‖L3

.
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Using the strongmonotonicity of G (17) and following [29–31], one can prove that both (12) and (13) have a unique solution.
For clarity of notation, we will denote by Ck, k ∈ N, a generic constant that can depend on all the parameters in the

system, except on r (the number of POD modes retained in the Galerkin truncation) andm (the number of snapshots).
We define the projection P r

: H1
0 → Sr as follows: For all u ∈ H1

0 ,

a(P ru, ψ) = a(u, ψ) ∀ψ ∈ Sr . (19)

For1t small enough, the projection operator P r has the following approximation properties [19]:

1
m

m−
k=1

‖u(tk)− P ru(tk)‖2
1 ≤ C1

d−
k=r+1

λk, (20)

1
m

m−
k=1

‖∂u(tk)− P r∂u(tk)‖2
1 ≤ C2

d−
k=r+1

λk. (21)

We will also be using the following inverse estimate:

Lemma 4.2. There exist constants C3 and C4, such that, for all v ∈ V , the following inequalities hold

‖v‖L3 ≤ C3 ‖v‖L2 and ‖v‖L2 ≤ C4 ‖v‖L3 . (22)

Proof. Since {ϕ1, . . . , ϕd} is an orthonormal basis for V and v ∈ V , there exist scalars vi = (v, ϕi), i = 1, . . . , d, such that
v =

∑d
i=1 vi ϕi. Thus,

‖v‖L3 =

 d−
i=1

vi ϕi


L3

≤

d−
i=1

|vi| ‖ϕi‖L3 ≤


max

i=1,...,d
‖ϕi‖L3

 d−
i=1

|vi|. (23)

By using Lemma 2.4-1 in [32], there is a constant C > 0 independent of v such that

d−
i=1

|vi| ≤ C ‖v‖L2 . (24)

Inequalities (23) and (24) clearly imply the first inequality in (22). The other inequality is derived in a similar fashion. �

Remark 4.1. Although the constantsmaxi=1,...,d ‖ϕi‖L3 in (23) and C in (24) do not depend on r , theymight depend onm.We
notice that the dependence onm also appears in the inverse estimate in Lemma 2 in [19] through the factor ‖S‖ (with S being
the stiffness matrix Sij = (φ′

j , φ
′

i )). We emphasize, however, that this dependence on m will disappear in the asymptotic
limit m → ∞ (or, equivalently, 1t → 0). Since the error estimates we prove in this paper are for 1t → 0, we can safely
assume that C3 and C4 in (22) do not depend on m.

We next prove the following a priori stability estimates.

Lemma 4.3. Assume that the solution to (12) satisfies u′
∈ H1

0 . Then the following stability estimates hold: there exist constants
C5, C6 and C7, such that, for all k = 1, . . . ,m, the following inequalities hold

‖u′(tk)‖L2 ≤ C5, ‖u′(tk)‖L3 ≤ C6, and ‖P ru′(tk)‖L3 ≤ C7. (25)

Proof. The first two inequalities in (25) follow immediately by letting ϕ = u in (12), using (F(u), u) = 0, and (17) (the
strong monotonicity of G). To prove the last inequality, we first use (6)

a(P ru′, ψ) = a(u′, ψ) ∀ψ ∈ Sr . (26)

Next, we let ψ := P ru′ in (26):

a(P ru′, P ru′) = a(u′, P ru′). (27)

We then use the continuity of a (15) in (27):

a(u′, P ru′) ≤ β ‖P ru′
‖L2 ‖u′

‖L2 ≤ β C4 ‖P ru′
‖L3 ‖u′

‖L2 . (28)

On the other hand, using the coercivity of a (16) in (27), we get

a(P ru′, P ru′) ≥ κ‖P ru′
‖
2
L2 ≥ κC−2

3 ‖P ru′
‖
2
L3 . (29)

Thus, (27)–(29) imply the last inequality in (25). �
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We are now ready to prove the main result of this section.

Theorem 4.1. Let u be the solution of (12) and {Uk}
m
k=1 be the solution of (13). Assume that u′

∈ H1
0 and utt ∈ L2(0, T ; L2). If

1t is small enough, then there exists a constant C > 0, such that

1
m

m−
k=1

‖Uk − u(tk)‖2
≤ C


‖u0 − P ru0‖

2
+

d−
k=r+1

λk +1t2

. (30)

Proof. The proof follows along the same lines as the proofs of Theorems 7 and 11 in [19]. Therefore, we highlight the main
differences and only sketch the rest of the proof. We start by decomposing the error as

Uk − u(tk) = Uk − P ru(tk)+ P ru(tk)− u(tk) = ϑk + ϱk, (31)

where ϑk := Uk − P ru(tk) and ϱk := P ru(tk)− u(tk). Clearly, we have

1
m

m−
k=1

‖Uk − u(tk)‖2
≤

2
m

m−
k=1

‖ϑk‖
2
+

2
m

m−
k=1

‖ϱk‖
2. (32)

The approximation properties (20)–(21) and Poincaré’s inequality (14) imply

1
m

m−
k=1

‖ϱk‖
2

≤ C8

d−
k=r+1

λk. (33)

We now introduce the following notation: For k = 1, . . . ,m, ∂ϑk :=
ϑk−ϑk−1

1t , vk := ut(tk) − ∂P ru(tk) = wk + zk, wk :=

ut(tk)− ∂u(tk), zk := ∂u(tk)− ∂P ru(tk). For all ψ ∈ Sr , we have

(∂ϑk, ψ)+ a(ϑk, ψ) = (∂Uk, ψ)+ a(Uk, ψ)− (∂P ru(tk), ψ)− a(P ru(tk), ψ)

= (f (tk), ψ)− (F(Uk), ψ)− (G(Uk), ψ)− (∂P ru(tk), ψ)− a(u(tk), ψ)
= (vk, ψ)+ (F(u(tk))− F(Uk), ψ)+ (G(u(tk))− G(Uk), ψ).

By letting ψ := ϑk in the above equation, we get

‖ϑk‖
2
− (ϑk, ϑk−1)+1t ν ‖ϑ ′

k‖
2

= 1t (vk, ϑk)+1t (F(u(tk))− F(Uk), ϑk)+1t (G(u(tk))− G(Uk), ϑk). (34)

We now have to estimate the terms on the RHS of (34). To this end, we follow [19] (see page 139). First, by using the
Cauchy–Schwartz inequality, we get

(vk, ϑk) ≤ ‖vk‖ ‖ϑk‖. (35)

Then, exactly as in [19], we get

|(F(u(tk))− F(Uk), ϑk)| ≤ ν ‖ϑk‖
2
1 + C9 ‖ϑk‖

2
+ C10 ‖ϱk‖

2
1. (36)

The last term on the RHS of (34), however, needs to be treated differently, since it did not show up in the analysis in [19].
We start by adding and subtracting terms

(G(u(tk))− G(Uk), ϑk) = (G(u(tk))− G(P ru(tk)), ϑk)+ (G(P ru(tk))− G(Uk), ϑk). (37)

Wenowmove the last termon the RHS of (37) to the LHS of (34) (and thus change its sign) and apply the strongmonotonicity
property of G (17) to obtain

(G(Uk)− G(P ru(tk)), ϑk) ≥ C11 ‖ϑ ′

k‖
3
L3 . (38)

For the first term on the RHS of (37), we need to apply the Lipschitz continuity of G (18):

(G(u(tk))− G(P ru(tk)), ϑk) ≤ CM‖ρ ′

k‖L3 ‖ϑ ′

k‖L3 , (39)

where M = max{‖u′(tk)‖L3 , ‖P
ru′(tk)‖L3}. Here we have used the stability of u′(tk) and P ru′(tk) in the L3 norm, which we

proved in Lemma 4.3.
To estimate the term on the RHS of (39), we use the inverse estimates in Lemma 4.2 and the Cauchy–Schwartz inequality:

‖ρ ′

k‖L3 ‖ϑ ′

k‖L3 ≤ C2
3 ‖ρ ′

k‖ ‖ϑ ′

k‖ ≤
ν ‖ϑ ′

k‖
2

2
+

1
2 ν

C4
3 ‖ρ ′

k‖
2. (40)
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The rest of the proof now follows exactly as in [19]. Specifically, by using (35)–(40) in (34), by choosing1t sufficiently small,
and by summing over k, we get

‖ϑ ′

k‖
2

≤ eC12T


‖ϑ ′

0‖
2
+1t

k−
j=1


‖vj‖

2
+ C13 ‖ρ‖

2
1


. (41)

By using (33) and the estimates for vk in the proof of Theorem 7 in [19], we get (30). �

5. Numerical results

The goal of this section is twofold: First, it will provide numerical evidence for the improved performance of the
POD–AV model (13) over the simple POD Galerkin truncation (11). Second, the numerical results will illustrate the
theoretical estimate proved in Theorem 4.1. Our numerical study is presented in the context of the Burgers equation.
We emphasize again that Burgers equation (5), while being commonly used as a one-dimensional approximation of the
Navier–Stokes equations, does not model turbulence. We use it, however, for simplicity and clarity of exposition.

The following numerical discretization has been used in all our numerical tests. We used a finite element discretization
in space. The computational domainΩ = [0, 1] was uniformly discretized and the finite element space used was piecewise
linears.We used backward Euler for the temporal discretization. The nonlinearity in (5) was treatedwith a Newton iteration
that was stoppedwhen the norm of the difference between two consecutive iterations was less than 10−8. All computations
were carried out using MATLAB.

We consider two test problems. Both problems develop shock-like phenomena that are challenging to capture with
the usual POD Galerkin truncation (11). For both test problems we provide graphical illustrations of the improvement in
accuracy for the POD–AV model (13) over the usual POD Galerkin truncation (11). To illustrate the theoretical estimate in
Theorem 4.1, we also present tables with error convergence rates with respect to the number of POD modes.

5.1. Experiment 1

This test problem is similar to that used in [19]. The initial condition in (5) is

u0(x) =


1 if x ∈


0,

1
2

]
0 if x ∈


1
2
, 1

.

(42)

The boundary conditions in (5) are homogeneous Dirichlet u(0, t) = u(1, t) = 0 for all t , the forcing term is f = 0, and
the time interval is [0, T ] = [0, 1]. The following parameters were used in the numerical discretization: Number of equally
spaced mesh-points n = 2048 (which implies a mesh-size 1x = 1/2048); time-step 1t = 10−3; diffusion parameter
ν = 10−5; number of snapshots m + 1 = 1001. We deliberately chose a small value for ν, since this would be similar to
choosing a large Reynolds number in the Navier–Stokes equations. We also chose relatively small values for 1t and 1x,
since themain goal of this study is to investigate the contribution to the total error of the POD truncation andmodeling, and
not the contribution of spatial and temporal discretization.

We first ran a direct numerical simulation (DNS). Indeed, given the spatial and temporal resolutions used, we can safely
consider the results of the Galerkin finite element discretization in Fig. 1 as our benchmark solution. The 1001 snapshots
were used to generate the POD modes. We followed [19] and we did not include ∂u(tk), since we used a small time-step
1t . The first 20 POD modes were used to run (i) the POD Galerkin truncation (11); and (ii) the POD–AV model (13) with
c = 10−4.

The time evolutions of the two models are presented in Figs. 2 and 3. Notice the clear improvement in solution accuracy
in the POD–AV model. Indeed, the large numerical oscillations of the POD Galerkin truncation are dramatically decreased
by the POD–AVmodel. A better visualization of this improvement is given in Fig. 4, where results from both PODmodels are
compared with the ‘‘truth’’ (DNS) solution at the final time T = 1.

A quantitative illustration of the theoretical estimate (30) in Theorem 4.1 is given in Table 1. We present the L2 norms of
the errors for bothmodels—the PODGalerkin truncation (11) (third column) and the POD–AVmodel (13) (fourth column). As
noticed earlier, the spatial and temporal discretizations account only for a small percentage of the total error. Indeed, since
1t = 10−3 and 1x = 1/2048, the first and third terms on the right-hand side of the inequality (30) in Theorem 4.1 are
much smaller than the second term, which represents the POD truncation and modeling errors. The number of POD modes
(first column) was chosen so that the POD truncation errors (second column) decrease by a factor of 2. As indicated by the
theoretical estimate in [19], the square of the errors of the POD Galerkin truncation should decrease by a factor of 4. This
behavior is observed in the third column of Table 1 (for r ≥ 20). The numerical results for the POD–AVmodel (in the fourth
column) are, as expected, much better than those of the POD Galerkin truncation (third column). They, however, do not
seem to follow the theoretical estimate (30) in Theorem 4.1.We think that this is due to the fact that the POD truncation and
modeling error in the POD–AV model initially dominates the spatial and temporal discretization errors, but once it reaches
a certain threshold, the latter become significant.
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Fig. 1. Experiment 1: direct numerical simulation.

Fig. 2. Experiment 1: POD Galerkin truncation (11). Notice the poor quality of the approximations.

5.2. Experiment 2

This test problem is similar to that used in [33]. We simulate the propagation of an initial Gaussian disturbance given by

u0(x) =
10

5
√
π

exp


−
(x − 50)2

ω


, (43)

where ω = 400 is the initial width of the wave and t ∈ [0, 600]. We rescale parameters so that x ∈ [0, 1]. Thus, the time
interval becomes [0, 1.5] and ν = 0.015/400 = 3.75 × 10−5.

The boundary conditions in (5) are homogeneous Dirichlet u(0, t) = u(1, t) = 0 for all t and the forcing term is f = 0.
The following parameters were used in the numerical discretization: Number of equally spaced mesh-points n = 2048
(which implies a mesh-size 1x = 1/2048); time-step 1t = 10−3; number of snapshots m + 1 = 1001. As in the first
numerical example, we again chose a small value for ν and relatively small values for1t and1x (Fig. 5).
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Fig. 3. Experiment 1: POD–AV model (13). Notice the significant improvement over the POD Galerkin truncation.
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Fig. 4. Experiment 1: snapshots of DNS, POD Galerkin truncation and POD–AV models at the final time T = 1. Notice the significant improvement of the
POD–AV model over the POD Galerkin truncation.

Table 1
Experiment 1: average errors for POD Galerkin truncation (11) and POD–AV model (13).

r Normalized energy
∑1001

i=r λi∑1001
i=1 λi

POD POD–AV

6 0.0223 0.0778 0.0305
11 0.0111 0.0943 0.0090
20 0.0056 0.0428 0.0053
36 0.0028 0.0130 0.0051
62 0.0014 0.0038 0.0050

We first ran a DNS that we consider as our benchmark solution. The 1001 snapshots were used to generate the POD
modes. We followed [19] and we have not included ∂u(tk) since we used a small time-step1t . The first 20 POD modes are
used to run (i) the POD Galerkin truncation (11); and (ii) the POD–AV model (13) with c = 5 × 10−5.
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Fig. 5. Experiment 2: direct numerical simulation.

Fig. 6. Experiment 2: POD Galerkin truncation (11). Notice the poor quality of the approximations.

Table 2
Experiment 2: average errors for POD Galerkin truncation (11) and POD–AV model (13).

r Normalized energy
∑858

i=r λi∑858
i=1 λi

POD POD–AV

6 0.0702 0.0358 0.0118
11 0.0345 0.0562 0.0022
20 0.0167 0.0263 8.78e−4
34 0.0085 0.0056 7.56e−4
56 0.0042 0.0009 7.44e−4

The time evolutions of the two models are presented in Figs. 6 and 7. As in the first numerical example, there is a
clear improvement in solution accuracy in the POD–AV model. Indeed, the large numerical oscillations of the POD Galerkin
truncation are dramatically decreased by the POD–AV model (see also Fig. 8).
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Fig. 7. Experiment 2: POD–AV model (13). Notice the significant improvement over the POD Galerkin truncation.

Fig. 8. Experiment 2: snapshots of DNS, POD Galerkin truncation and POD–AV models at the final time T = 1.5. Notice the significant improvement of
the POD–AV model over the POD Galerkin truncation.

To illustrate the theoretical estimate (30) in Theorem 4.1, we present in Table 2 the L2 norms of the errors for the POD
Galerkin truncation (11) (third column) and the POD–AVmodel (13) (fourth column). As in the first numerical example, we
notice that the numerical results for the POD–AV model are much better than those for the POD Galerkin truncation. We
also notice that the error for the POD Galerkin truncation in the third column of Table 2 follow the theoretical estimates
in [19] (for r ≥ 20). Although the numerical results for the POD–AV model are much better than those of the POD Galerkin
truncation, they do not seem to follow the theoretical estimate (30) in Theorem 4.1.We think that this behavior is due to the
fact that for r ≥ 20, the spatial and temporal discretization errors have the same order of magnitude as the POD truncation
and modeling error.

6. Conclusions

In this paper, we have developed, analyzed and tested numerically a new reduced-order model that introduces an
artificial viscosity term to account for the loss of information in the POD Galerkin truncation. Although similar models were



Author's personal copy

J. Borggaard et al. / Mathematical and Computer Modelling 53 (2011) 269–279 279

proposed in one of our earlier papers [34], this is the first time to our knowledge that such a model is analyzed and tested
numerically. All theoretical and numerical results in this paper have been developed for Burgers equation (5). This choice
allowedus a clear presentation of our results.We emphasize, however, that the newPOD–AVmodel is by nomeans restricted
to this one-dimensional setting. It is, in fact, developed for realistic turbulent flows.

Following [19], we presented a thorough numerical analysis for the discretization of the new POD–AVmodel. We proved
the specific dependence of the total error on the temporal discretization and, more importantly, the dependence on the POD
truncation. To test the new POD–AV model numerically, we used two test problems, both displaying shock-like behavior.
In both tests, the POD–AVmodel clearly outperformed the usual Galerkin truncation by damping the numerical oscillations
produced by the latter. The improved performance of the POD–AV model was displayed graphically as well as numerically.

These first steps in the assessment of the new POD–AVmodel are encouraging. There are, however, several steps that we
need to take next. First and foremost, the new POD–AVmodelmust be tested in a realistic turbulent flow, such as a turbulent
pipe flow or flow past a cylinder. Second, the optimization of the constant c in the POD–AV model might yield a significant
improvement in the performance of themodel. To this end, wewill investigate the dependence of c on different parameters,
such as the number of POD modes and ν. Finally, we believe that our new methodology could have a major impact in the
reduced-order modeling and data assimilation of oceanic and atmospheric flows [35].
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