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Abstract. A first-order, Monte Carlo ensemble method has been recently introduced for solving4
parabolic equations with random coefficients in [26], which is a natural synthesis of the ensemble-5
based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme.6
With the introduction of an ensemble average of the diffusion function, this algorithm leads to a7
single discrete system with multiple right-hand sides for a group of realizations, which could be8
solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same9
direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic10
partial differential equations. Comparing with the approach in [26], this method possesses a second-11
order accuracy in time and further reduces the computational cost by using the multilevel Monte12
Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of13
convergence. Several numerical experiments are presented to illustrate the theoretical results.14
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1. Introduction. In this paper, we consider numerical solutions to the following16

unsteady heat conduction equation in a random, spatially varying medium: to find a17

random function, u : Ω×D × [0, T ]→ R satisfying almost surely (a.s.)18

(1)


ut(ω,x, t)−∇ · [(a(ω,x)∇u(ω,x, t)] = f(ω,x, t), in Ω×D × [0, T ]

u(ω,x, t) = g(ω,x, t), on Ω× ∂D × [0, T ]

u(ω,x, 0) = u0(ω,x), in Ω×D
,19

where D is a bounded Lipschitz domain in Rd (d = 1, 2, or 3) and (Ω,F , P ) is a20

probability space with the sample space Ω, σ-algebra F , and probability measure P ;21

diffusion coefficient a : Ω×D → R and body force f : Ω×D× [0, T ]→ R are random22

fields with continuous and bounded covariance functions.23

Many numerical methods, either intrusive or non-intrusive, have been developed24

for random partial differential equations (PDEs), see, e.g., in the review papers [16, 40]25

and the references therein. For the random steady or unsteady heat equation, non-26

intrusive numerical methods such as Monte Carlo methods are known for easy imple-27

mentation but requiring a very large number of PDE solutions to achieve small errors;28

while intrusive methods such as the stochastic Galerkin or collocation approaches can29

achieve faster convergence but would require the solution of discrete systems that30

couple all spatial and probabilistic degrees of freedom [2, 3, 41]. To improve the com-31

putational efficiency of the non-intrusive approaches, other sampling methods such32

as quasi-Monte Carlo, multilevel Monte Carlo (MLMC), Latin hypercube sampling33

and Centroidal Voronoi tessellations can be used [29, 19, 8, 35]. In particular, the34

MLMC method is designed to greatly reduce the computational cost by performing35

most simulations at a low accuracy, while running relatively few simulations at a36
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high accuracy. It was first introduced by Heinrich [18] for the computation of high-37

dimensional, parameter-dependent integrals and was analyzed extensively by Giles38

[11, 10] in the context of stochastic differential equations in mathematical finance. In39

[7], Cliffe et al. applied the MLMC method to the elliptic PDEs with random coeffi-40

cients and demonstrated its numerical superiority. Under the assumptions of uniform41

coercivity and boundedness of the random parameter, numerical error of the MLMC42

approximation has been analyzed in [4]. The result was extended in [5] for random43

elliptic problems with weaker assumptions on the random parameter and a limited44

spatial regularity.45

Overall, the above mentioned sampling methods are ensemble-based. To quantify46

probabilistic uncertainties in a system governed by random PDEs, an ensemble of in-47

dependent realizations of the random parameters needs to be considered. In practice,48

this process would involve solving a group of deterministic PDEs corresponding to all49

the realizations. A straightforward solution strategy is to find numerical approximate50

solutions of the deterministic PDEs from a sequence of discrete linear systems. Obvi-51

ously, this approach ignores any possible relationships among the group members, thus52

cannot improve the overall computational efficiency. To speed up the group of simu-53

lations, current active research mainly starts from the perspective of numerical linear54

algebra, and develops iterative algorithms that can take advantage of the relationship55

in the sequence of discrete systems. For instance, subspace recycling techniques such56

as GCRO with deflated restarting have been introduced in [33] for accelerating the57

solutions of slowly-changing linear systems, which is further developed in [1] for cli-58

mate modeling and uncertainty quantification applications. For sequences sharing a59

common coefficient matrix, block iterative algorithms [17, 27, 31, 32, 36] have been60

developed to solve the system with many right-hand sides. The algorithms have been61

used to accelerate convergence even when there is only one right-hand side in [6, 32].62

The block version of GCRO with deflated restarting was introduced in [34], and its63

high-performance implementation is available in the Belos package of the Trilinos64

project developed at US Sandia National Laboratories.65

Recently, the Monte Carlo ensemble method was introduced by the authors of this66

paper for solving the random heat equations in [26]. This method is motivated by67

the ensemble-based time stepping algorithm, which was proposed for solving Navier-68

Stokes incompressible flow ensembles in [23, 20, 22, 24, 37, 21] and for simulating69

ensembles of parameterized Navier-Stokes flow problems in [14, 15]. It has been70

extended to MHD flows in [28] and to low-dimensional surrogate models in [12, 13].71

The main idea is to manipulate the numerical scheme so that all the simulations in72

the ensemble could share a common coefficient matrix. As a consequence, simulating73

the ensemble only requires to solve a single linear system with multiple right-hand74

sides, which could be easily handled by a block iterative solver and, thus, improves75

the overall computational efficiency. Thus, the Monte Carlo ensemble method was76

proposed in [26] for synthesizing a first-order, ensemble-based time-stepping and the77

ensemble-based, Monte Carlo sampling method in a natural way, which speeds up the78

numerical approximation of the random parabolic PDE solutions and other possible79

quantities of interest. However, it is known that the Monte Carlo method, although80

easy for implementations, is a computationally expensive random sampling approach.81

Therefore, we develop a new method for solving the same random heat equations82

with a better accuracy and efficiency in this paper: the new method is second-order83

accurate in time, which improves the temporal accuracy of our previous work; it84

employs the idea of multilevel Monte Carlo methods, which improves the sampling85

efficiency comparing with the Monte Carlo. We further perform theoretical analysis on86

2

This manuscript is for review purposes only.



the method and present numerical tests that illustrate our theoretical findings. Upon87

the completion of this paper, we found the second-order ensemble-based time-stepping88

scheme had been used in [9] for solving heat equation with uncertain conductivity,89

however, without discussing the sampling error in their analysis.90

The rest of this paper is organized as follows. In Section 2, we present some91

notation and mathematical preliminaries. In Section 3, we introduce the multilevel92

Monte Carlo ensemble scheme in the context of finite element (FE) methods. In93

Section 4, we analyze the proposed algorithm, prove its stability and convergence, and94

discuss its computational complexity. Numerical experiments are presented in Section95

5, which illustrate the effectiveness of the proposed scheme on random parabolic96

problems. A few concluding remarks are given in Section 6.97

2. Notation and preliminaries. Denote the L2(D) norm and inner product98

by ‖ · ‖ and (·, ·), respectively. Let W s,q(D) be the Sobolev space of functions having99

generalized derivatives up to the order s in the space Lq(D), where s is a nonnegative100

integer and 1 ≤ q ≤ +∞. The equipped Sobolev norm of v ∈ W s,q(D) is denoted101

by ‖v‖W s,q(D). When q = 2, we use the notation Hs(D) instead of W s,2(D). As102

usual, the function space H1
0 (D) is the subspace of H1(D) consisting of functions103

that vanish on the boundary of D in the sense of trace, equipped with the norm104

‖v‖H1
0 (D) =

(∫
D
|∇v|2 dx

)1/2
. When s = 0, we shall keep the notation with Lq(D)105

instead of W 0,q(D). The space H−s(D) is the dual space of bounded linear functions106

on Hs
0(D). A norm for H−1(D) is defined by ‖f‖−1 = sup

06=v∈H1
0 (D)

(f,v)
‖∇v‖ .107

Let (Ω,F , P ) be a complete probability space. If Y is a random variable in the
space that belongs to L1

P (Ω), its expected value is defined by

E[Y ] =

∫
Ω

Y (ω)dP (ω).

With the multi-index notation, α = (α1, . . . , αd) is a d-tuple of nonnegative in-108

tegers with the length |α| =
∑d
i=1 αi. The stochastic Sobolev space W̃ s,q(D) =109

LqP (Ω,W s,q(D)) containing stochastic functions, v : Ω × D → R, that are measur-110

able with respect to the product σ-algebra F
⊗
B(D) and equipped with the averaged111

norms ‖v‖
W̃ s,q(D)

=
(
E[‖v‖qW s,q(D)]

)1/q

=
(
E[
∑
|α|≤s

∫
D
|∂αv|qdx]

)1/q

, 1 ≤ q < +∞.112

Observe that if v ∈ W̃ s,q(D), then v(ω, ·) ∈ W s,q(D) a.s. and ∂αv(·, x) ∈ LqP (Ω) a.e.113

on D for |α| < s. In particular, we consider the Hilbert space L̃2(Hs(D); 0, T ) of114

stochastic functions v : Ω×D× [0, T ]→ R, in which any element v belongs to H̃s(D)115

for each 0 ≤ t ≤ T with the property that ‖v‖
W̃ s,q(D)

is square integrable on [0, T ];116

and H̃s(L2(D); 0, T ) in which any element v belongs to L̃2(D) for each 0 ≤ t ≤ T117

with the property that ‖v‖L̃2(D) belongs to Hs(0, T ).118

3. Multilevel Monte Carlo ensemble method. Given statistical information119

on the inputs of a random/stochastic PDE, uncertainty quantification fulfills the task120

of determining statistical information about outputs of interest that depend on the121

PDE solutions. When stochastic sampling methods such as the Monte Carlo are122

used to solve (1), one has to find approximate solutions associated to an ensemble123

of independent realizations, that is, deterministic PDEs at randomly selected sample124

values. Usually, numerical simulations are implemented separately, thus the total125

computational cost is simply multiplied as the sampling set grows. To improve the126

efficiency, we propose an ensemble-based multilevel Monte Carlo method in this paper,127
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which is an extension of the Monte Carlo ensemble method we introduced in [26]. The128

new approach outperforms the previous one in both accuracy and efficiency, which is129

due to the combination of a second-order, ensemble-based time stepping scheme and130

the multilevel Monte Carlo method.131

Next, we present the algorithm in the context of numerical solutions to the random132

PDE (1). For the spatial discretization, we use conforming finite elements, although133

other numerical methods could be applied as well. To fit in the hierarchic nature134

of multilevel Monte Carlo methods, we consider a sequence of quasi-uniform meshes135

comprising a set of shape-regular triangles (or tetrahedra), {Tl}Ll=0, for a polygonal136

(or polyhedral) domain D. Denote the mesh size of Tl by137

hl = max
K∈Tl

diam K.138

Assume the sequence of meshes is generated by uniform refinements satisfying139

(2) hl = 2−lh0.140

Define the function space H1
g (D) = {v ∈ H1(D) : v|∂D = g} and the FE space141

V gl := {v ∈ H1
g (D) ∩Hm+1(D) : v|K is a polynomial of degree m,∀K ∈ Tl}142

for a non-negative integer m. The sequence of finite element spaces satisfies

V g0 ⊂ V
g
1 ⊂ · · · ⊂ V

g
l ⊂ · · · ⊂ V

g
L .

Denoted by ul(ω,x, tn) the finite element solution in V gl at the time instance tn. The
MLMC FE solution at the L-th level mesh can be written as

uL(ω,x, tn) =

L∑
l=1

(
ul(ω,x, tn)− ul−1(ω,x, tn)

)
+ u0(ω,x, tn).

Based on linearity of the expectation operator E[·], we have143

E
[
uL(ω,x, tn)

]
= E

[ L∑
l=1

(
ul(ω,x, tn)− ul−1(ω,x, tn)

)
+ u0(ω,x, tn)

]
144

=

L∑
l=1

E
[
ul(ω,x, tn)− ul−1(ω,x, tn)

]
+ E

[
u0(ω,x, tn)

]
.145

Numerically, the expected value of the FE solution on the l-th level, E[ul(ω,x, tn)] is146

approximated by the sampling average Ψn
Jl

= ΨJl [ul(ω,x, tn)] = 1
Jl

∑Jl
j=1 ul(ωj ,x, tn),147

where Jl is the sample size. Correspondingly, E[uL(ω,x, tn)] is approximated by an148

unbiased estimator:149

(3) Ψ[uL(ω,x, tn)] :=

L∑
l=1

(
ΨJl [ul(ω,x, tn)− ul−1(ω,x, tn)]

)
+ ΨJ0 [u0(ω,x, tn)].150

It is seen that, at each mesh level, a group of simulations needs to be imple-151

mented. Thus, it is natural to extend ensemble-based time stepping to such settings152

for reducing the computational cost. Next, we introduce the multilevel Monte Carlo153

ensemble (MLMCE) method to achieve this goal.154
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For simplicity of presentation, we assume that, at the l-th level, a uniform time
partition with the time step ∆tl is used for the simulations and further setNl = T/∆tl;
Jl independent, identically distributed (i.i.d.) samples are selected, and the associ-
ated random functions are denoted by aj ≡ a(ωj , ·), fj ≡ f(ωj , ·, ·), gj ≡ g(ωj , ·, ·),
and u0

j ≡ u0(ωj , ·) for j = 1, . . . , Jl, and define the ensemble mean of the diffusion
coefficient functions by

al :=
1

Jl

Jl∑
j=1

a(ωj ,x).

Here, we note that the corresponding exact solutions {u(ωj ,x, t)}Jlj=1 are i.i.d. Let155

unj,l = ul(ωj ,x, tn), the finite element approximation of u(ωj ,x, tn) at the l-th level.156

The multilevel Monte Carlo ensemble method (MLMCE) applied to (1) solves the157

following group of simulations at the l-th level: for j = 1, . . . , Jl, given u0
j,l and u1

j,l,158

to find un+1
j,l ∈ V

g
l such that,159

(4)

(
3un+1

j,l − 4unj,l + un−1
j,l

2∆tl
, vl

)
+ (al∇un+1

j,l ,∇vl)

= −
(
(aj − al)∇(2unj,l − un−1

j,l ),∇vl
)

+ (fn+1
j , vl), ∀ vl ∈ V 0

l ,

160

for n = 1, . . . , Nl − 1. Once the numerical solutions at all the L levels are found, the161

MLMCE approximates the random PDE solution at the time instance tn, E[u(tn)], by162

(3). Meanwhile, given a quantity of interest Q(u), one can analyze the outputs from163

the ensemble simulations, Q(uh(ω1, ·, ·)), . . . , Q(uh(ωJ , ·, ·)), to extract the underlying164

stochastic information of the system.165

The MLMCE naturally combines the ensemble-based sampling method and the166

ensemble-based time stepping algorithm, and inherits advantages from both sides. As167

the MLMC, the method can reduce the computational cost by balancing the time step168

size, mesh size, and the number of samples at each level. Meanwhile, the ensemble-169

based time stepping algorithm leads to a discrete linear system (4) whose coefficient170

matrix is independent of j. Indeed, denote the mass matrix by Ml that is associated171

with (vl, vl) and the stiffness matrix Sl that is related to (al∇vl,∇vl), the coefficient172

matrix of (4) is 3
2∆tMl + Sl. Hence, for evaluating Jl realizations, one only needs to173

solve one linear system with Jl right-hand sides, which leads to great computational174

savings comparing with a sequence of individual simulations: when the number of175

degrees of freedom is small, one only need to perform the LU factorization once176

instead of Jl times; when the number of degrees of freedom is large, one can use the177

block iterative algorithms to accelerate solutions. Next, we will analyze the stability178

and asymptotic error estimate of the MLMCE method.179

4. Stability and error estimate. To simplify the presentation, we only con-180

sider equation (1) with the homogeneous boundary condition (that is, g = 0 and181

un+1
j,l ∈ V 0

l in the FE weak form (4)), while the nonhomogeneous cases can be sim-182

ilarly analyzed by incorporating the method of shifting. Meanwhile, we will include183

numerical test cases with nonhomogeneous boundary conditions in Section 5. As the184

MLMCE approximation is based on the MC solutions at various levels, we first an-185

alyze the ensemble-based single-level Monte Carlo in Subsection 4.1 and derive the186

error estimate for MLMCE in Subsection 4.2.187

Assume the exact solution of (1) is smooth enough, in particular,188

uj ∈ L̃2(H1
0 (D) ∩Hm+1(D); 0, T ) ∩ H̃1(Hm+1(D); 0, T ) ∩ H̃2(L2(D); 0, T )189
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and suppose
fj ∈ L̃2

(
H−1(D); 0, T

)
.

Here we use the notation introduced in Section 2. We emphasize the assumed regu-190

larity only requires the random fields to be square integrable. Assume the following191

two conditions hold:192

(i) There exists a positive constant θ such that193

P{ω ∈ Ω; min
x∈D

a(ω,x) > θ} = 1.194

(ii) There exists a positive constant θ+, for l = 0, . . . , L, such that195

P{ωj ∈ Ω; |a(ω,x)− al|∞ ≤ θ+} = 1.196

Here, condition (i) guarantees the uniform coercivity a.s. and condition (ii) gives an197

upper bound of the distance from coefficient a(ω,x) to the ensemble average al a.s.198

4.1. Single-level Monte Carlo ensemble finite element method. When199

E[u(tn)] is numerically approximated by Ψn
Jl

, the associated approximation error can200

be separated into two parts:201

E[u(tn)]−Ψn
Jl

=
(
E[uj(tn)]− E[unj,l]

)
+
(
E[unj,l]−Ψn

Jl

)
:= Enl + EnS ,202

where we use the fact that E[u(tn)] = E[uj(tn)]. The finite element discretization203

error, Enl = E[uj(tn) − unj,l], is controlled by the size of spatial triangulations Tl and204

time step; while the statistical sampling error, EnS = E[unj,l] − Ψn
Jl

, is dominated by205

the number of realizations and variance. Next, we will first discuss the stability of the206

ensemble scheme (4) at the l-th level (Theorem 1), derive the bounds for EnS (Theorem207

3) and Enl (Theorem 4), and then obtain the asymptotic error estimation (Theorem208

5).209

Theorem 1. Under conditions (i) and (ii), the scheme (4) is stable provided that210

(5) θ > 3θ+.211

Furthermore, the numerical solution to (4) satisfies212

(6)

1

4
E
[
‖uNlj,l ‖

2
]

+
1

4
E
[
‖2uNlj,l − u

Nl−1
j,l ‖2

]
+
(θ

3
− θ+

)
∆tl

Nl∑
n=1

E
[
‖∇unj,l‖2

]
≤ ∆tl

2(θ − 3θ+)

Nl−1∑
n=1

E
[
‖fn+1
j ‖2−1

]
+

1

4
E
[
‖u1

j,l‖2
]

+
1

4
E
[
‖2u1

j,l − u0
j,l‖2

]
+
θ

2
∆tlE

[
‖∇u1

j,l‖2
]

+
θ

6
∆tlE

[
‖∇u0

j,l‖2
]
.

213

Proof. Choosing vh = un+1
j,l in (4), we obtain214

215

(7)

(
3un+1

j,l − 4unj,l + un−1
j,l

2∆tl
, un+1
j,l

)
+
(
al∇un+1

j,l ,∇un+1
j,l

)
= −

(
(aj − al)∇(2unj,l − un−1

j,l ),∇un+1
j,l

)
+
(
fn+1
j , un+1

j,l

)
.

216
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Multiplying both sides by ∆tl, integrating over the probability space and considering217

the coercivity, we get218

(8)

1

4
E
[
‖un+1

j,l ‖
2 + ‖2un+1

j,l − u
n
j,l‖2

]
− 1

4
E
[
‖unj,l‖2 + ‖2unj,l − un−1

j,l ‖
2
]

+
1

4
E
[
‖un+1

j,l − 2unj,l + un−1
j,l ‖

2
]

+ ∆tlθE
[
‖∇un+1

j,l ‖
2
]

≤ ∆tlE
[∣∣(fn+1

j , un+1
j,l

)∣∣]+ ∆tlθ+E
[∣∣(∇(2unj,l − un−1

j,l ),∇un+1
j,l

)∣∣].
219

Apply Young’s inequality to the terms on the right-hand side (RHS), we have, for any220

βi > 0, i = 1, 2, 3,221

(9) E
[∣∣(fn+1

j , un+1
j,l )

∣∣] ≤ β1

4
E
[
‖∇un+1

j,l ‖
2
]

+
1

β1
E
[
‖fn+1
j ‖2−1

]
,222

and223

(10)

E
[∣∣(∇(2unj,l − un−1

j,l ),∇un+1
j,l

)∣∣] = E
[∣∣(2∇unj,l,∇un+1

j,l )− (∇un−1
j,l ,∇un+1

j,l )
∣∣]

≤ β2 + β3

2
E
[
‖∇un+1

j,l ‖
2
]

+
2

β2
E
[
‖∇unj,l‖2

]
+

1

2β3
E
[
‖∇un−1

j,l ‖
2
]
.

224

The term ∆tlθE
[
‖∇un+1

j,l ‖2
]

on the left-hand side (LHS) can be split into several225

parts, for any C1 ∈ (0, 1):226

(11)
∆tlθE

[
‖∇un+1

j,l ‖
2
]

= C1∆tlθE
[
‖∇un+1

j,l ‖
2
]

+ (1− C1)∆tlθE
[
‖∇un+1

j,l ‖
2 − ‖∇unj,l‖2

]
+ (1− C1)∆tlθE

[
‖∇unj,l‖2

]
.

227

Substituting (9)-(11) into (8), we get228

(12)
1

4

(
E
[
‖un+1

j,l ‖
2
]

+ E
[
‖2un+1

j,l − u
n
j,l‖2

])
− 1

4

(
E
[
‖unj,l‖2

]
+ E

[
‖2unj,l − un−1

j,l ‖
2
])

+
1

4
E
[
‖un+1

j,l − 2unj,l + un−1
j,l ‖

2
]

+
(
C1θ −

β1

4
− β2 + β3

2
θ+

)
∆tlE

[
‖∇un+1

j,l ‖
2
]

+ (1− C1)∆tlθE
[
‖∇un+1

j,l ‖
2 − ‖∇unj,l‖2

]
+
(2

3
(1− C1)θ − 2θ+

β2

)
∆tlE

[
‖∇unj,l‖2

]
+
(1

3
(1− C1)θ

)
∆tlE

[
‖∇unj,l‖2 − ‖∇un−1

j,l ‖
2
]

+
(1

3
(1− C1)θ − θ+

2β3

)
∆tlE

[
‖∇un−1

j,l ‖
2
]
≤ ∆tl

β1
E
[
‖fn+1
j ‖2−1

]
.

229

Selecting β1 = 4δθ+, β2 = 2, and β3 = 1 for some positive δ, (12) becomes230

(13)

1

4
E
[
‖un+1

j,l ‖
2 + ‖2un+1

j,l − u
n
j,l‖2

]
− 1

4
E
[
‖unj,l‖2 + ‖2unj,l − un−1

j,l ‖
2
]

+
1

4
E
[
‖un+1

j,l − 2unj,l + un−1
j,l ‖

2
]

+
(
C1θ −

2δ + 3

2
θ+

)
∆tlE

[
‖∇un+1

j,l ‖
2
]

+ (1− C1)∆tlθE
[
‖∇un+1

j,l ‖
2 − ‖∇unj,l‖2

]
+
(2

3
(1− C1)θ − θ+

)
∆tlE

[
‖∇unj,l‖2

]
+
(1

3
(1− C1)θ

)
∆tlE

[
‖∇unj,l‖2 − ‖∇un−1

j,l ‖
2
]

+
(1

3
(1− C1)θ − θ+

2

)
∆tlE

[
‖∇un−1

j,l ‖
2
]
≤ ∆tl

4δθ+
E
[
‖fn+1
j ‖2−1

]
.

231
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Stability follows if the following conditions hold:232

C1θ −
2δ + 3

2
θ+ ≥ 0,(14)233

1

3
(1− C1)θ − θ+

2
≥ 0.(15)234

By taking C1 = 1
2 and δ = θ−3θ+

2θ+
, under the assumption (5), we have

C1θ −
2δ + 3

2
θ+ =

θ

2
− θ

2
= 0 and

θ

3
− θ+ > 0.

Then, by dropping a positive term, (13) becomes235

(16)

1

4
E
[
‖un+1

j,l ‖
2 + ‖2un+1

j,l − u
n
j,l‖2

]
− 1

4
E
[
‖unj,l‖2 + ‖2unj,l − un−1

j,l ‖
2
]

+
θ

2
∆tlE

[
‖∇un+1

j,l ‖
2 − ‖∇unj,l‖2

]
+
(θ

3
− θ+

)
∆tlE

[
‖∇unj,l‖2

]
+
θ

6
∆tlE

[
‖∇unj,l‖2 − ‖∇un−1

j,l ‖
2
]

+
(θ

6
− θ+

2

)
∆tlE

[
‖∇un−1

j,l ‖
2
]

≤ ∆tl
2(θ − 3θ+)

E
[
‖fn+1
j ‖2−1

]
.

236

Summing (16) from n = 1 to n = Nl − 1 and dropping two positive terms gives237

(17)

1

4
E
[
‖uNlj,l ‖

2
]

+
1

4
E
[
‖2uNlj,l − u

Nl−1
j,l ‖2

]
+
(θ

3
− θ+

)
∆tl

Nl∑
n=1

E
[
‖∇unj,l‖2

]
≤ ∆tl

2(θ − 3θ+)

Nl−1∑
n=1

E
[
‖fn+1
j ‖2−1

]
+

1

4
E
[
‖u1

j,l‖2
]

+
1

4
E
[
‖2u1

j,l − u0
j,l‖2

]
+
θ

2
∆tlE

[
‖∇u1

j,l‖2
]

+
θ

6
∆tlE

[
‖∇u0

j,l‖2
]
,

238

which completes the proof.239

Remark 2. The ensemble-based time stepping scheme (4) is stable if condition240

(5) is satisfied. Moreover, it becomes to be unconditionally stable when the size of241

ensemble equals one since θ+ would shrink to zero. Thus, given a group of problems,242

one can use condition (5) as a guideline to divide problems into subgroups so that243

condition (5) holds in each of them. The smallest subgroup could contain only one244

member for that no stability condition is required.245

Next, by using the standard error estimate for the Monte Carlo method (e.g.,246

[25]), we can bound the statistical error EnS as follows.247

Theorem 3. Let EnS = E[unj,l] − Ψn
Jl

, where unj,l is the result of scheme (4) and248

Ψn
Jl

= 1
Jl

∑Jl
j=1 u

n
j,l. Suppose conditions (i) and (ii), and the stability condition (5)249

hold, there is a generic positive constant C independent of Jl, hl and ∆tl such that250

(18)

1

4
E
[
‖ENlS ‖

2
]

+
1

4
E
[
‖2ENlS − E

Nl−1
S ‖2

]
+

(
θ

3
− θ+

)
∆tl

Nl∑
n=1

E
[
‖∇EnS‖2

]
≤ C

Jl

(
∆tl

Nl∑
n=1

E
[
‖fnj ‖2−1] + ∆tlE

[
‖∇u1

j,l‖2
]

+ E
[
‖∇u0

j,l‖2
]

+ E
[
‖u1

j,l‖2
]

+ E
[
‖2u1

j,l − u0
j,l‖2

])
.

251
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Proof. First, we estimate E
[
‖∇EnS‖2

]
.252

E
[
‖∇EnS‖2

]
= E

[(
1

Jl

Jl∑
i=1

(
∇E[uni,l]−∇uni,l

)
,

1

Jl

Jl∑
j=1

(
∇E[unj,l]−∇unj,l

))]
253

=
1

Jl
2

Jl∑
i,j=1

E

[(
∇E[unl ]−∇uni,l,∇E[unl ]−∇unj,l

)]
254

=
1

Jl
2

Jl∑
j=1

E

[(
∇E[unl ]−∇unj,l,∇E[unl ]−∇unj,l

)]
.255

The last equality is due to the fact that un1,l, . . . , u
n
Jl,l

are i.i.d., and thus the ex-

pected value of
(
∇E[unl ]−∇uni,l,∇E[unl ]−∇unj,l

)
is a zero for i 6= j. We now expand

E
[(
∇E[unl ] − ∇unj,l,∇E[unl ] − ∇unj,l

)]
and use the fact that E[∇unj,l] = ∇E[unj,l] and

E[unl ] = E[unj,l] to obtain

E
[
‖∇EnS‖2

]
= − 1

Jl
‖∇E[unj,l]‖2 +

1

Jl
E[‖∇unj,l‖2],

which yields

E
[
‖∇EnS‖2

]
≤ 1

Jl
E
[
‖∇unj,l‖2

]
.

With the help pf Theorem 1, we have256

(19)

(θ
3
− θ+

)
∆tl

Nl∑
n=1

E
[
‖∇EnS‖2

]
≤ C

Jl

( ∆tl
θ − 3θ+

Nl∑
n=1

E
[
‖fnj ‖2−1]

+ θ∆tlE
[
‖∇u1

j,l‖2 + ‖∇u0
j,l‖2

]
+ E

[
‖u1

j,l‖2 + ‖2u1
j,l − u0

j,l‖2
])
.

257

The other terms on the LHS of (18) can be treated in the same manner. This completes258

the proof.259

Next, we estimate the finite element discretization error Enl .260

Theorem 4. Let Enl = E[uj(tn) − unj,l], where uj(tn) is the solution to equation261

(1) when ω = ωj and t = tn and unj,l is the result of scheme (4). Assume that the262

initial errors ‖uj(t0)−u0
j,l‖, ‖uj(t1)−u1

j,l‖, ‖∇(uj(t0)−u0
j,l)‖ and ‖∇(uj(t1)−u1

j,l)‖263

are all at least O(hm). Suppose conditions (i) and (ii), and the stability condition (5)264

hold, there exists a generic constant C independent of Jl, hl and ∆tl such that265

(20)

1

4
E
[
‖ENll ‖

2
]

+
1

4
E
[
‖2ENll − E

Nl−1
l ‖2

]
+
(θ

3
− θ+

)
∆tl

Nl∑
n=1

E
[
‖∇Enl ‖2

]
≤ C(∆t4l + h2m

l ).

266

Proof. We first derive the error equation for (4). Equation (1) evaluated at tn+1267

and tested by ∀ vl ∈ V 0
l yields268

(21)

(
3uj(tn+1)− 4uj(tn) + uj(tn−1)

2∆tl
, vl

)
+ (aj∇uj(tn+1),∇vl)

= (fn+1
j , vl)− (Rn+1

j , vl),

269
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where fn+1
j = fj(tn+1) and Rn+1

j = uj,t(tn+1) − 3uj(tn+1)−4uj(tn)+uj(tn−1)
2∆tl

. Denoted270

by enj := uj(tn) − unj,l the approximation error at the time tn. Subtracting (4) from271

(21) produces272

(22)

(
3en+1
j − 4enj + en−1

j

2∆tl
, vl

)
+ (al∇en+1

j ,∇vl) +
(
(aj − al)∇(2enj − en−1

j ),∇vl
)

+
(
(aj − al)∇(un+1

j − 2unj + un−1
j ),∇vl

)
+ (Rn+1

j , vl) = 0.

273

Let Pl(uj(tn)) be the Ritz projection of uj(tn) onto V 0
l satisfying

(
al
(
∇(uj(tn)− Pl(uj(tn))),∇vl

)
= 0, ∀ vl ∈ V 0

l .

The error can be decomposed as

enj = ρnj,l − φnj,l with ρnj,l = uj(tn)− Pl(uj(tn)) and φnj,l = unj,l − Pl(uj(tn)).

By substituting this decomposition into (22) and choosing vl = φn+1
j,l , we obtain274

(23)(
3φn+1

j,l − 4φnj,l + φn−1
j,l

2∆tl
, φn+1
j,l

)
+ (al∇φn+1

j,l ,∇φn+1
j,l )

= −
(

(aj − al)∇(2φnj,l − φn−1
j,l ),∇φn+1

j,l

)
+

(
3ρn+1
j,l − 4ρnj,l + ρn−1

j,l

2∆tl
, φn+1
j,l

)
+ (al∇ρn+1

j,l ,∇φn+1
j,l ) +

(
(aj − al)∇(2ρnj,l − ρn−1

j,l ),∇φn+1
j,l

)
+
(

(aj − al)∇(un+1
j − 2unj + un−1

j ),∇φn+1
j,l

)
+ (Rn+1

j , φn+1
j,l ).

275

After integrating over probability space, we have, for the LHS,276

(24)

LHS ≥ 1

4∆tl
E
[
‖φn+1

j,l ‖
2 + ‖2φn+1

j,l − φ
n
j,l‖2

]
− 1

4∆tl
E
[
‖φnj,l‖2 + ‖2φnj,l − φn−1

j,l ‖
2
]

+
1

4∆tl
E
[
‖φn+1

j,l − 2φnj,l + φn−1
j,l ‖

2
]

+ θE
[
‖∇φn+1

j,l ‖
2
]
.

277

We then bound the terms on the RHS of (23) one by one. By applying the Cauchy-278

Schwarz and Young’s inequalities, we have279

(25)

E
[ ∣∣∣((aj − al)∇(2φnj,l − φn−1

j,l ),∇φn+1
j,l

)∣∣∣ ]
≤ θ+E

[
|(2∇φnj,l,∇φn+1

j,l )|
]

+ θ+E
[
|(∇φn−1

j,l ,∇φn+1
j,l )|

]
≤ θ+E

[
‖∇φnj,l‖2

]
+
θ+

2
E
[
‖∇φn−1

j,l ‖
2
]

+
3θ+

2
E
[
‖∇φn+1

j,l ‖
2
]
.

280
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We further use the Poincáre inequality and have281

E

[∣∣∣∣∣
(

3ρn+1
j,l − 4ρnj + ρn−1

j,l

2∆tl
, φn+1
j,l

)∣∣∣∣∣
]

(26)282

≤ C

4C0θ
E

∥∥∥∥∥3ρn+1
j,l − 4ρnj + ρn−1

j,l

2∆tl

∥∥∥∥∥
2
+ C0θE

[
‖∇φn+1

j,l ‖
2
]

283

≤ C

4C0θ
E

∥∥∥∥∥ 1

∆tl

∫ tn+1

tn−1

ρj,t dt

∥∥∥∥∥
2
+ C0θE

[
‖∇φn+1

j,l ‖
2
]

284

≤ C

4C0θ∆tl
E

[∫ tn+1

tn−1

‖ρj,t‖2dt

]
+ C0θE

[
‖∇φn+1

j,l ‖
2
]
,(27)285

where C is the Poincáre coefficient and C0 is an arbitrary positive constant. The rest286

of terms can be bounded as follows.287

E
[∣∣∣(al∇ρn+1

j,l ,∇φn+1
j,l )

∣∣∣] = 0.(28)288

E
[∣∣∣((aj − al)∇(2ρnj,l − ρn−1

j ),∇φn+1
j,l

)∣∣∣](29)289

≤ θ+E
[
|(2∇ρnj,l,∇φn+1

j,l )|
]

+ θ+E
[
|(∇ρn−1

j ,∇φn+1
j,l )|

]
290

≤ 1

C0

θ2
+

θ
E
[
‖∇ρnj ‖2

]
+

1

4C0

θ2
+

θ
E
[
‖∇ρn−1

j ‖2
]

+ 2C0θE
[
‖∇φn+1

j,l ‖
2
]
.291

E
[∣∣∣((aj − a)∇(un+1

j − 2unj + un−1
j ),∇φn+1

j,l )
∣∣∣](30)292

≤ 1

4C0

θ2
+

θ
E
[
‖∇(un+1

j − 2unj + un−1
j )‖2

]
+ C0θE

[
‖∇φn+1

j,l ‖
2
]

293

≤ C∆t3l
4C0

θ2
+

θ
E
[ ∫ tn+1

tn−1

‖∇uj,tt‖2dt
]

+ C0θE
[
‖∇φn+1

j,l ‖
2
]
,294

295

and296

(31) E
[∣∣∣(Rn+1

j , φn+1
j,l )

∣∣∣] ≤ C0θE
[
‖∇φn+1

j,l ‖
2
]

+
C∆t3l
C0θ

E
[ ∫ tn+1

tn−1

‖uj,ttt‖2dt
]
.297

Substituting (24) to (31) into (23), we get298

1

4∆tl

(
E
[
‖φn+1

j,l ‖
2
]

+ E
[
‖2φn+1

j,l − φ
n
j,l‖2

])
− 1

4∆tl

(
E
[
‖φnj,l‖2

]
+ E

[
‖2φnj,l − φn−1

j,l ‖
2
])

+
1

4∆tl
E
[
‖φn+1

j,l − 2φnj,l + φn−1
j,l ‖

2
]

+ θ(1− 5C0 −
3θ+

2θ
)E
[
‖∇φn+1

j,l ‖
2
]

− θ+E
[
‖∇φnj,l‖2

]
− θ+

2
E
[
‖∇φn−1

j,l ‖
2
]

≤ C

4C0θ∆tl
E

[∫ tn+1

tn−1

‖ρj,t‖2dt

]
+

θ2
+

C0θ
E
[
‖∇ρnj ‖2

]
+

θ2
+

4C0θ
E
[
‖∇ρn−1

j,l ‖
2
]

+
C∆t3l
4C0

θ2
+

θ
E
[ ∫ tn+1

tn−1

‖∇uj,tt‖2dt
]

+
C∆t3l
C0θ

E
[ ∫ tn+1

tn−1

‖uj,ttt‖2dt
]
.

299
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Now we split the term θE
[
‖∇φn+1

j,l ‖2
]
, and choose C0 = 1

30 (1− 3θ+
θ ):300

(32)
1

4∆tl
(E
[
‖φn+1

j,l ‖
2
]

+ E
[
‖2φn+1

j,l − φ
n
j,l‖2

]
)− 1

4∆t
(E
[
‖φnj,l‖2

]
+ E

[
‖2φnj,l − φn−1

j,l ‖
2
]
)

+
1

4∆tl
E
[
‖φn+1

j,l − 2φnj,l + φn−1
j,l ‖

2
]

+ θ
(1

3
− θ+

θ

)
E
[
‖∇φn+1

j,l ‖
2
]

+ θ
(1

3
− θ+

θ

)
E
[
‖∇φnj,l‖2

]
+ θ
(1

6
− θ+

2θ

)
E
[
‖∇φn−1

j,l ‖
2
]

+
θ

2

(
E
[
‖∇φn+1

j,l ‖
2
]
− E

[
‖∇φnj,l‖2

])
+
θ

6

(
E
[
‖∇φnj,l‖2

]
− E

[
‖∇φn−1

j,l ‖
2
])

≤ C

(θ − 3θ+)

{
1

∆tl
E

[∫ tn+1

tn−1

‖ρj,t‖2dt

]
+ θ2

+E
[
‖∇ρnj ‖2

]
+ θ2

+E
[
‖∇ρn−1

j,l ‖
2
]

+ C∆t3l θ
2
+E
[ ∫ tn+1

tn−1

‖∇uj,tt‖2dt
]

+ ∆t3lE
[ ∫ tn+1

tn−1

‖uj,ttt‖2dt
]}
.

301

Summing (32) from n = 1 to Nl − 1, multiplying both sides by ∆tl, and dropping302

several positive terms, we have303

(33)

1

4
E
[
‖φNlj,l ‖

2
]

+
1

4
E
[
‖2φNlj,l − φ

Nl−1
j,l ‖2

]
+
(θ

3
− θ+

)
∆tl

Nl∑
n=1

E
[
‖∇φnj,l‖2

]
≤ C

(θ − 3θ+)

Nl−1∑
n=1

{
E

[∫ tn+1

tn−1

‖ρj,t‖2dt

]
+ ∆tlθ

2
+E
[
‖∇ρnj ‖2

]
+ ∆tlθ

2
+E
[
‖∇ρn−1

j,l ‖
2
]

+ ∆t4l θ
2
+E
[ ∫ tn+1

tn−1

‖∇uj,tt‖2dt
]

+ ∆t4lE
[ ∫ tn+1

tn−1

‖uj,ttt‖2dt
]}

+
1

4
E
[
‖φ1

j,l‖2
]

+
1

4
E
[
‖2φ1

j,l − φ0
j,l‖2

]
+
θ

2
∆tlE

[
‖∇φ1

j,l‖2
]

+
θ

6
∆tlE

[
‖∇φ0

j,l‖2
]
.

304

By the regularity assumption and standard finite element estimates of Ritz projection305

error (see, e.g., Lemma 13.1 in [39] ), namely, for any unj ∈ Hm+1(D) ∩H1
0 (D),306

(34) ‖ρnj,l‖2 ≤ Ch2m+2
l ‖uj(tn)‖2l+1 and ‖∇ρnj,l‖2 ≤ Ch2m

l ‖uj(tn)‖2l+1,307

and use the assumption that ‖e0
j,l‖, ‖e1

j,l‖, ‖∇e0
j,l‖, and ‖∇e1

j,l‖ are at least O(hm),308

we have309

(35)

1

4
E
[
‖φNlj,l ‖

2
]

+
1

4
E
[
‖2φNlj,l − φ

Nl−1
j,l ‖2

]
+
(θ

3
− θ+

)
∆tl

Nl∑
n=1

E
[
‖∇φnj,l‖2

]
≤ C

(θ − 3θ+)

{
h2m+2
l + θ2

+h
2m
l + ∆t4l θ

2
+E
[ ∫ T

0

‖∇uj,tt‖2dt
]

+ ∆t4lE
[ ∫ T

0

‖uj,ttt‖2dt
]}

+ h2m
l + θ∆tlh

2m
l ,

310

where C is a generic constant independent of the sample size Jl, time step ∆tl and311
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mesh size hl. By the triangle inequality, we have312

1

4
E
[
‖uj(tNl)− u

Nl
j,l ‖

2
]

+
1

4
E
[
‖2
(
uj(tNl)− u

Nl
j,l

)
−
(
uj(tNl−1)− uNl−1

j,l

)
‖2
]

+
(θ

3
− θ+

)
∆tl

Nl∑
n=1

E
[
‖∇
(
uj(tn − unj,l

)
‖2
]
≤ C(∆t4l + h2m

l ).
313

Applying Jensen’s inequality to terms on the LHS leads to the error estimate (20).314

This completes the proof.315

The combination of the error contributions from the Monte Carlo sampling and316

finite element approximation leads to the following estimate for the l-th level Monte317

Carlo ensemble approximation.318

Theorem 5. Let u(tn) be the solution to equation (1) and Ψn
Jl

= 1
Jl

∑Jl
j=1 u

n
j,l.319

Suppose conditions (i) and (ii) hold, and suppose the stability condition (5) is satisfied,320

then321

(36)
1

4
E
[
‖E[u(tNl)]−ΨNl

Jl
‖2
]

+
1

4
E
[
‖2(E[u(tNl)]−ΨNl

Jl
)− (E[u(tNl−1)]−ΨNl−1

Jl
)‖2
]

+
(θ

3
− θ+

)
∆tl

Nl∑
n=1

E[‖∇(E[u(tn)]−Ψn
Jl

)‖2]

≤ C

Jl

(
∆tl

Nl∑
n=1

E
[
‖fnj ‖2−1] + ∆tlE

[
‖∇u1

j,l‖2 + ‖∇u0
j,l‖2

]
+ E

[
‖u1

j,l‖2 + ‖2u1
j,l − u0

j,l‖2
])

+ C(∆t4l + h2m
l ),

322

where C is a positive constant independent of Jl,∆tl and hl.323

324

Proof. Consider the first term on the LHS of (36). By the triangle and Young’s
inequalities, we get

E
[
‖E[u(tNl)]−ΨNl

Jl
‖2
]
≤ 2
(
E
[
‖E[uj(tNl)]− E[uNlj,l ]‖

2
]

+ E
[
‖E[uNlj,l ]−ΨNl

Jl
‖2
])
.

Then the conclusion follows from Theorems 3-4. The other terms on the LHS of (36)325

can be estimated in the same manner.326

4.2. Multilevel Monte Carlo ensemble finite element method. Now, we327

derive the error estimate for the MLMCE method.328

Theorem 6. Suppose conditions (i) and (ii) and the stability condition (5) hold,329

then the MLMCE approximation error satisfies330

(37)

1

4
E
[∥∥E[u(tNL)

]
−Ψ

[
uL(tNL)

]∥∥2
]

+
1

4
E
[∥∥E[uNL ]−Ψ[uL(tNL)

]
−
(
E
[
uNL−1

]
−Ψ

[
uL(tNL−1)

])∥∥2
]

+
(θ

3
− θ+

)
∆tL

NL∑
n=1

E
[∥∥∇E[u(tn)

]
−∇Ψ

[
uL(tn)

]∥∥2
]

≤ C
(
h2m
L + ∆t4L +

L∑
l=1

1

Jl
(h2m
l + ∆t4l )

)
+
C

J0

(
∆t0

N0∑
n=1

E
[
‖fnj ‖2−1]

+ ∆t0E
[
‖∇u1

j,0‖2 + ‖∇u0
j,0‖2

]
+ E

[
‖u1

j,0‖2 + ‖2u1
j,0 − u0

j,0‖2
])
,

331
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where C > 0 is a constant independent of Jl,∆tl and hl.332

333

Proof. We only analyze the first term on the LHS because the other terms can334

be treated in the same manner. First, we introduce u−1(t) = 0.335

(38)

E
[∥∥E[u(tNL)]−Ψ[uL(tNL)]

∥∥2
]

= E
[∥∥E[u(tNL)]− E[uL(tNL)] + E[uL(tNL)]−

L∑
l=0

ΨJl [ul(tNL)− ul−1(tNL)]
∥∥2
]

≤ C
(
E
[∥∥E[u(tNL)]− E[uL(tNL)]

∥∥2
]

+

L∑
l=0

E
[∥∥(E[ul(tNL)− ul−1(tNL)]

−ΨJl [ul(tNL)− ul−1(tNL)]
)∥∥2

])
.

336

By Jensen’s inequality and Theorem 4, we get337

(39)
E
[∥∥E[u(tNL)]− E[uL(tNL)]

∥∥2
]
≤ E

[∥∥u(tNL)− uL(tNL)
∥∥2
]

≤ C(∆t4L + h2m
L ).

338

By Theorems 3-4 and the triangle inequality, we have339

(40)

E
[∥∥E[ul(tNL)− ul−1(tNL)]−ΨJl [ul(tNL)− ul−1(tNL)]

∥∥2
]

= E
[∥∥(E−ΨJl)[ul(tNL)− ul−1(tNL)]

∥∥2
]

≤ 1

Jl
E
[
‖ul(tNL)− ul−1(tNL)‖2

]
≤ 2

Jl

(
E
[
‖u(tNL)− ul(tNL)‖2

]
+ E

[
‖u(tNL)− ul−1(tNL)‖2

])
≤ C

Jl

(
∆t4l + h2m

l + ∆t4l−1 + h2m
l−1

)
≤ C

Jl

(
∆t4l + h2m

l

)
.

340

Meanwhile, based on Theorem 5, we have341

(41)

E
[
‖E[u0(tNL)]−ΨJ0 [u0(tNL)]‖2

]
≤ C

J0

(
∆t0

N0∑
n=1

E
[
‖fnj ‖2−1

]
+ ∆t0E

[
‖∇u1

j,0‖+ ‖∇u0
j,0‖2

]
+ E

[
‖u1

j,0‖2 + ‖2u1
j,0 − u0

j,0‖2
])
.

342

Plugging (39), (40) and (41) into (38), we have343

(42)

1

4
E
[
‖E[u(tNL)]−Ψ[uL(tNL)]‖2

]
≤ C

(
∆t4L + h2m

L +

L∑
l=1

1

Jl
(∆t4l + h2m

l )
)

+
C

J0

(
∆t0

N0∑
n=1

E
[
‖fnj ‖2−1] + ∆t0E

[
‖∇u1

j,0‖2 + ‖∇u0
j,0‖2

]
+ E

[
‖u1

j,0‖2 + ‖2u1
j,0 − u0

j,0‖2
])
.

344
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The other terms on the LHS of (37) can be treated in the same manner. This completes345

the proof.346

Since, in general, the finite element simulation cost increases as the mesh is refined,347

we can balance the time step size ∆tl, mesh size hl and sampling size Jl in the348

preceding error estimation for achieving an optimal rate of convergence.349

Corollary 7. By taking

∆tl = O
(√

hml
)

and Jl = O
(
l1+ε22m(L−l))

for an arbitrarily small positive constant ε and l = 0, 1, · · · , L, the MLMCE approxi-350

mation satisfies351

(43)

1

4
E
[∥∥E[u(tNL)

]
−Ψ

[
uL(tNL)

]∥∥2
]

+
1

4
E
[∥∥E[uNL ]−Ψ[uL(tNL)

]
−
(
E
[
uNL−1

]
−Ψ

[
uL(tNL−1)

])∥∥2
]

+
(θ

3
− θ+

)
∆tL

NL∑
n=1

E
[∥∥∇E[u(tn)

]
−∇Ψ

[
uL(tn)

]∥∥2
]

≤ Ch2m
L ,

352

where C > 0 are constants independent of Jl,∆tl and hl.353

Similar to the MLMC method [7, 38, 16], one can choose the sample size in
MLMCE by minimizing the total computational cost while achieving a desired error.
Take ∆tl = O

(√
hml
)

to match the spatial and temporal errors, and suppose that, as
the mesh size decreases, the average cost of solving the PDE at level l increases and
the average variance decreases in the following relations:

Cl = Ch−γ1l and σl = Cσh
β
l ,

where C,Cσ, γ1 and β are some positive constants. One can optimize the number of
samples at the l-th level, Jl, by minimizing the total sampling cost while ensuring the
statistical error stays at the user-defined tolerance ε. This can be formulated as an
unconstrained optimization problem using the Lagrangian approach:

min
Jl

L∑
l=0

JlCl + λ

[
(L+ 1)

L∑
l=0

σl
Jl
− ε2

4

]
.

Applying the Euler-Lagrange condition, we get

Jl =
4(L+ 1)

ε2

(
L∑
l=0

√
σlCl

)√
σl
Cl

and the associated total cost is

C =
4(L+ 1)

ε2

(
L∑
l=0

√
σlCl

)2

.

Note that, in this setting, the MLMCE shares the same expression of optimal sample
size and total cost as those of the MLMC. However, the use of scheme (4) in MLMCE
leads to smaller average cost for solving the PDE than the MLMC. Denote the average
cost of MLMC at level l to be Ch−γ2l , we have γ1 < γ2 when either direct or block
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iterative methods are used in the linear solver. Let CMLMCE and CMLMC be the
total costs of MLMCE and MLMC methods, respectively, we have

CMLMCE

CMLMC
=

∑L
l=0

√
σlh
−γ1
l∑L

l=0

√
σlh
−γ2
l

2

=

∑L
l=0

√
hβ−γ1l∑L

l=0

√
hβ−γ2l

2

.

Then354

CMLMCE

CMLMC
=


hβ−γ10 /hβ−γ20 = hγ2−γ10 if γ2 < β,

hβ−γ10 /hβ−γ2L = 2L(β−γ2)hγ2−γ10 if γ1 < β < γ2,

hβ−γ1L /hβ−γ2L = hγ2−γ1L if γ2 < β.

355

It is seen the total computational complexity of the MLMCE is lower than standard356

MLMC in any case. In particular, when the standard LU factorization is used in357

the linear solver, we can derive a more concrete computational complexity. Let d be358

the dimension of domain. The complexity for LU factorization is Ch−3d and that for359

solving triangular systems is Ch−2d. Then the total computational cost for sampling360

is
∑L
l=0

(
Jlh
−2d
l + h−3d

l

)
since only one LU factorization is needed at each level. The361

corresponding optimal sample size is362

(44) Jl =
4(L+ 1)

ε2

(
L∑
l=0

√
σlh
−2d
l

)√
σlh2d

l363

by minimizing the total cost while achieving error ε. The associated computational364

complexity is365

(45) CMLMCE =
4(L+ 1)

ε2

(
L∑
l=0

√
σlh
−2d
l

)2

+

L∑
l=0

h−3d
l .366

That of the optimized MLMC complexity is367

(46) CMLMC =
4(L+ 1)

ε2

(
L∑
l=0

√
σl
(
h−2d
l + h−3d

l

))2

.368

5. Numerical Experiments. In this section, we apply the proposed ensemble-369

based multilevel Monte Carlo algorithm to two numerical tests for solving the random370

parabolic equation (1). The goal is two-fold: to illustrate the theoretical results in371

Test 1; and to show the efficiency of the proposed method in Test 2.372

5.1. Test 1. We first check the convergence rate of the MLMCE method numer-373

ically by considering a problem with an a priori known exact solution. The diffusion374

coefficient and the exact solution of equation (1) are selected as follows.375

a(ω,x) = 8 + (1 + ω) sin(xy),

u(ω,x, t) = (1 + ω)[sin(2πx) sin(2πy) + sin(4πt)],
376

where ω obeys a uniform distribution on [−
√

3,
√

3], t ∈ [0, 1], and (x, y) ∈ [0, 1]2.377

The initial condition, inhomogeneous Dirichlet boundary condition and source term378
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are chosen to match the prescribed exact solution. Therefore, the expectation of the379

solution is380

E[u] = sin(2πx) sin(2πy) + sin(4πt).381

For the spatial discretization, we use quadratic finite elements on uniform trian-
gulations, that is, m = 2. To verify the analysis given in (7), we fix L and choose
the mesh size hl =

√
2 · 2−2−l, time step size ∆tl = 2−3−l, and number of samples

Jl = 24(L−l)+1 at the l-th level of the MLMCE simulation for l = 0, . . . , L. The
experiment is repeated for R = 10 times. Let

EL2 =

√√√√ 1

R

R∑
r=1

∥∥∥E[u(T )
]
−Ψ

[
u

(r)
L (tNL)

]∥∥∥2

,

EH1 =

√√√√ 1

RM

R∑
r=1

M∑
m=1

∥∥∥E[∇u(tm)
]
−Ψ

[
∇u(r)

L (tm)
]∥∥∥2

,

where u is the exact solution and u
(r)
L is the MLMCE solution of the r-th replica.382

Hence, EL2 and EH1 represent the numerical error in L2 and H1 norms, respectively.383

With the above choice of discretization and sampling strategy, we expect both quan-384

tities converge quadratically with respect to hL as indicated in Corollary 7 .385

Table 1: Numerical errors of the MLMCE.

L EL2 rate EH1 rate
1 6.11× 10−2 - 5.60× 10−1 -
2 1.43× 10−2 2.10 1.50× 10−1 1.90
3 3.60× 10−3 1.99 3.81× 10−2 1.98

The MLMCE numerical errors as L varies from 1 to 3 are listed in Table 1. It is386

observed that both EL2 and EH1 converge at the order of nearly 2 with respect to hL,387

which matches our expectation.388

5.2. Test 2. Next, we use a test problem to demonstrate the effectiveness of the389

MLMCE method. The same test problem was considered in [26] for testing the first-390

order, ensemble-based Monte Carlo method and a similar computational setting was391

used in [30] to compare numerical approaches for parabolic equations with random392

coefficients.393

The test problem is associated with the zero forcing term f , zero initial conditions,394

and homogeneous Dirichlet boundary conditions on the top, bottom and right edges395

of the domain but inhomogeneous Dirichlet boundary condition, u = y(1− y), on the396

left edge. The random coefficient varies in the vertical direction and has the following397

form398

(47) a(ω,x) = a0 + σ
√
λ0Y0(ω) +

nf∑
i=1

σ
√
λi
[
Yi(ω) cos(iπy) + Ynf+i(ω) sin(iπy)

]
399

with λ0 =
√
πLc
2 , λi =

√
πLce

− (iπLc)
2

4 for i = 1, . . . , nf and Y0, . . . , Y2nf are uncorre-400

lated random variables with zero mean and unit variance. In the following numerical401
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test, we take a0 = 1, Lc = 0.25, σ = 0.15, nf = 3 and assume the random variables402

Y0, . . . , Y2nf are independent and uniformly distributed in the interval [−
√

3,
√

3]. We403

use quadratic finite elements for spatial discretization and simulate the system over404

the time interval [0, 0.5].405

We use the MLMCE method to analyze some stochastic information of the system
such as the expectation of the solution at final time. More precisely, we apply the
MLMCE with the maximum level L = 2, the mesh size hl =

√
2 · 2−3−l and time step

size ∆tl = 2−4−l. Due to the small size of the problem, we apply LU factorization in
solving linear systems. Targeting a numerical error ε = 10−3, we choose the number
of samples Jl = 24(L−l)+1 at the l-th level, for l = 0, . . . , L based on (44) with d = 2
and β = 4. Note that if the samples does not satisfy the stability condition (5), we
will divide the sample set into small subsets so that (5) holds on each smaller group.
Since the diffusion coefficient function is independent of time, such a process can be
efficiently implemented for ensemble calculations at each level. The MLMCE solution
at the final time T is

ΨE
h (x) = Ψ[uEL (tNL)],

which is shown in Figure 1 (left).406

Since the exact solution is unknown, to quantify the performance of the MLMCE
method, we compare the result with that of the standard MLMC finite element simu-
lations using the same computational setting. The same set of sample values is used,
thus, the only difference is that individual finite element simulations are implemented
at each level in the latter. Denote the approximated expected value of the latter
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Fig. 1: Comparison of the simulation mean: MLMCE simulations (left), MLMC finite
element simulations (middle), and the associated difference (right).

approach by

ΨI
h(x) = Ψ[uIL(tNL)],

which is shown in Figure 1 (middle). Note that for a fair comparison, we also use
the LU factorization in solving all the linear systems in individual simulations. The
difference between ΨE

h and ΨI
h, |ΨE

h −ΨI
h|, is shown in Figure 1 (right). It is observed

that the difference is on the order of 10−4, which indicates the MLMCE method is
able to provide the same accurate approximation as individual simulations. However,
the computational complexity of the MLMCE simulation is smaller than that of the
individual MLMC simulations. By (45)-(46), we have the complexity estimations of
both approaches as follows:

CMLMCE =
4(L+ 1)3

ε2
+

2∑
l=0

h−6
l ≈ 1.39× 109
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and

CMLMC =
4(L+ 1)

ε2

(
2∑
l=0

h−1
l

)
≈ 5.37× 109.

Meanwhile, the CPU time for the ensemble simulation in this numerical test is 2.65×407

103 seconds and that of the MLMC finite element simulations is 1.01 × 104 seconds,408

which matches our complexity estimations.409

6. Conclusions. A multilevel Monte Carlo ensemble method is developed in410

this paper to solve second-order random parabolic partial differential equations. This411

method naturally combines the ensemble-based, multilevel Monte Carlo sampling ap-412

proach with a second-order, ensemble-based time stepping scheme so that the com-413

putational efficiency for seeking stochastic solutions is improved. Numerical analysis414

shows the numerical approximation achieves the optimal order of convergence. As415

a next step, we will investigate performance of the method on large-scale, nonlinear416

problems, in which we will deal with nonlinearity of the system and use block iterative417

solvers to treat high-dimensional linear systems.418
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