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A MULTILEVEL MONTE CARLO ENSEMBLE SCHEME FOR
SOLVING RANDOM PARABOLIC PDES

YAN LUO * AND ZHU WANGT

Abstract. A first-order, Monte Carlo ensemble method has been recently introduced for solving
parabolic equations with random coefficients in [26], which is a natural synthesis of the ensemble-
based, Monte Carlo sampling algorithm and the ensemble-based, first-order time stepping scheme.
With the introduction of an ensemble average of the diffusion function, this algorithm leads to a
single discrete system with multiple right-hand sides for a group of realizations, which could be
solved more efficiently than a sequence of linear systems. In this paper, we pursue in the same
direction and develop a new multilevel Monte Carlo ensemble method for solving random parabolic
partial differential equations. Comparing with the approach in [26], this method possesses a second-
order accuracy in time and further reduces the computational cost by using the multilevel Monte
Carlo sampling method. Rigorous numerical analysis shows the method achieves the optimal rate of
convergence. Several numerical experiments are presented to illustrate the theoretical results.
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1. Introduction. In this paper, we consider numerical solutions to the following
unsteady heat conduction equation in a random, spatially varying medium: to find a
random function, u : @ x D x [0,T] — R satisfying almost surely (a.s.)

ug(w,x,t) — V- [(a(w, x) Vu(w, x,t)] = f(w,x,1), in Qx D x[0,T]
(1) u(w,x,t) = g(w, x,1), on Q2 x 0D x [0,T],

u(w,x,0) = u’(w, x), in Qx D

where D is a bounded Lipschitz domain in R¢ (d = 1,2, or 3) and (92, F,P) is a
probability space with the sample space €2, o-algebra F, and probability measure P;
diffusion coefficient a : 2 x D — R and body force f : Q x D x [0,T] — R are random
fields with continuous and bounded covariance functions.

Many numerical methods, either intrusive or non-intrusive, have been developed
for random partial differential equations (PDEs), see, e.g., in the review papers [16, 40]
and the references therein. For the random steady or unsteady heat equation, non-
intrusive numerical methods such as Monte Carlo methods are known for easy imple-
mentation but requiring a very large number of PDE solutions to achieve small errors;
while intrusive methods such as the stochastic Galerkin or collocation approaches can
achieve faster convergence but would require the solution of discrete systems that
couple all spatial and probabilistic degrees of freedom [2, 3, 41]. To improve the com-
putational efficiency of the non-intrusive approaches, other sampling methods such
as quasi-Monte Carlo, multilevel Monte Carlo (MLMC), Latin hypercube sampling
and Centroidal Voronoi tessellations can be used [29, 19, 8, 35]. In particular, the
MLMC method is designed to greatly reduce the computational cost by performing
most simulations at a low accuracy, while running relatively few simulations at a
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high accuracy. It was first introduced by Heinrich [18] for the computation of high-
dimensional, parameter-dependent integrals and was analyzed extensively by Giles
[11, 10] in the context of stochastic differential equations in mathematical finance. In
[7], Cliffe et al. applied the MLMC method to the elliptic PDEs with random coeffi-
cients and demonstrated its numerical superiority. Under the assumptions of uniform
coercivity and boundedness of the random parameter, numerical error of the MLMC
approximation has been analyzed in [4]. The result was extended in [5] for random
elliptic problems with weaker assumptions on the random parameter and a limited
spatial regularity.

Overall, the above mentioned sampling methods are ensemble-based. To quantify
probabilistic uncertainties in a system governed by random PDEs, an ensemble of in-
dependent realizations of the random parameters needs to be considered. In practice,
this process would involve solving a group of deterministic PDEs corresponding to all
the realizations. A straightforward solution strategy is to find numerical approximate
solutions of the deterministic PDEs from a sequence of discrete linear systems. Obvi-
ously, this approach ignores any possible relationships among the group members, thus
cannot improve the overall computational efficiency. To speed up the group of simu-
lations, current active research mainly starts from the perspective of numerical linear
algebra, and develops iterative algorithms that can take advantage of the relationship
in the sequence of discrete systems. For instance, subspace recycling techniques such
as GCRO with deflated restarting have been introduced in [33] for accelerating the
solutions of slowly-changing linear systems, which is further developed in [1] for cli-
mate modeling and uncertainty quantification applications. For sequences sharing a
common coefficient matrix, block iterative algorithms [17, 27, 31, 32, 36] have been
developed to solve the system with many right-hand sides. The algorithms have been
used to accelerate convergence even when there is only one right-hand side in [6, 32].
The block version of GCRO with deflated restarting was introduced in [34], and its
high-performance implementation is available in the Belos package of the Trilinos
project developed at US Sandia National Laboratories.

Recently, the Monte Carlo ensemble method was introduced by the authors of this
paper for solving the random heat equations in [26]. This method is motivated by
the ensemble-based time stepping algorithm, which was proposed for solving Navier-
Stokes incompressible flow ensembles in [23, 20, 22, 24, 37, 21] and for simulating
ensembles of parameterized Navier-Stokes flow problems in [14, 15]. It has been
extended to MHD flows in [28] and to low-dimensional surrogate models in [12, 13].
The main idea is to manipulate the numerical scheme so that all the simulations in
the ensemble could share a common coefficient matrix. As a consequence, simulating
the ensemble only requires to solve a single linear system with multiple right-hand
sides, which could be easily handled by a block iterative solver and, thus, improves
the overall computational efficiency. Thus, the Monte Carlo ensemble method was
proposed in [26] for synthesizing a first-order, ensemble-based time-stepping and the
ensemble-based, Monte Carlo sampling method in a natural way, which speeds up the
numerical approximation of the random parabolic PDE solutions and other possible
quantities of interest. However, it is known that the Monte Carlo method, although
easy for implementations, is a computationally expensive random sampling approach.
Therefore, we develop a new method for solving the same random heat equations
with a better accuracy and efficiency in this paper: the new method is second-order
accurate in time, which improves the temporal accuracy of our previous work; it
employs the idea of multilevel Monte Carlo methods, which improves the sampling
efficiency comparing with the Monte Carlo. We further perform theoretical analysis on
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the method and present numerical tests that illustrate our theoretical findings. Upon
the completion of this paper, we found the second-order ensemble-based time-stepping
scheme had been used in [9] for solving heat equation with uncertain conductivity,
however, without discussing the sampling error in their analysis.

The rest of this paper is organized as follows. In Section 2, we present some
notation and mathematical preliminaries. In Section 3, we introduce the multilevel
Monte Carlo ensemble scheme in the context of finite element (FE) methods. In
Section 4, we analyze the proposed algorithm, prove its stability and convergence, and
discuss its computational complexity. Numerical experiments are presented in Section
5, which illustrate the effectiveness of the proposed scheme on random parabolic
problems. A few concluding remarks are given in Section 6.

2. Notation and preliminaries. Denote the L?(D) norm and inner product
by || - || and (-, -), respectively. Let W*4(D) be the Sobolev space of functions having
generalized derivatives up to the order s in the space LI(D), where s is a nonnegative
integer and 1 < ¢ < +o0. The equipped Sobolev norm of v € W*4(D) is denoted
by ||v]|wsa(p). When ¢ = 2, we use the notation H*(D) instead of W*2(D). As
usual, the function space H}(D) is the subspace of H'(D) consisting of functions
that vanish on the boundary of D in the sense of trace, equipped with the norm

vl a0y = (/o \Vv|2dx)1/2. When s = 0, we shall keep the notation with L?(D)
instead of W%4(D). The space H~*(D) is the dual space of bounded linear functions

on H§(D). A norm for H~1(D) is defined by || f||-1 =  sup \%Z?\'
0#veHJ (D)
Let (2, F, P) be a complete probability space. If Y is a random variable in the
space that belongs to LL(€2), its expected value is defined by

E[Y] = /Q Y (w)dP(w).

With the multi-index notation, o« = (aq,...,aq) is a d-tuple of nonnegative in-
tegers with the length |o| = Z?:I a;. The stochastic Sobolev space stq(D) =
LL(Q,W=4(D)) containing stochastic functions, v : & x D — R, that are measur-
able with respect to the product o-algebra F Q) B(D) and equipped with the averaged

4 1/q o 1/a
norms ||v||stq(D) = (E[||v||WS>q(D)]> = (E[ngs Jplo v|qu]) .1 < g < 4o0.
Observe that if v € W*4(D), then v(w, ) € W*4(D) a.s. and 8°v(-,z) € L%(Q 2(Q) a
on D for |a| < s. In particular, we consider the Hilbert space L2(H*(D);0 T)

stochastic functions v : Q x D x [0,T] — R, in which any element v belongs to H*(D )
for each 0 < t < T with the property that ||v||Ws,q(D) is square integrable on [0, T7;

and H*(L2(D);0,T) in which any element v belongs to L2(D) for each 0 < t < T
with the property that ||’UHZ2(D) belongs to H*(0,T).

3. Multilevel Monte Carlo ensemble method. Given statistical information
on the inputs of a random/stochastic PDE, uncertainty quantification fulfills the task
of determining statistical information about outputs of interest that depend on the
PDE solutions. When stochastic sampling methods such as the Monte Carlo are
used to solve (1), one has to find approximate solutions associated to an ensemble
of independent realizations, that is, deterministic PDEs at randomly selected sample
values. Usually, numerical simulations are implemented separately, thus the total
computational cost is simply multiplied as the sampling set grows. To improve the
efficiency, we propose an ensemble-based multilevel Monte Carlo method in this paper,
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which is an extension of the Monte Carlo ensemble method we introduced in [26]. The
new approach outperforms the previous one in both accuracy and efficiency, which is
due to the combination of a second-order, ensemble-based time stepping scheme and
the multilevel Monte Carlo method.

Next, we present the algorithm in the context of numerical solutions to the random
PDE (1). For the spatial discretization, we use conforming finite elements, although
other numerical methods could be applied as well. To fit in the hierarchic nature
of multilevel Monte Carlo methods, we consider a sequence of quasi-uniform meshes
comprising a set of shape-regular triangles (or tetrahedra), {’ﬁ}lLZO7 for a polygonal
(or polyhedral) domain D. Denote the mesh size of 7; by

h; = max diam K.
KeT,

Assume the sequence of meshes is generated by uniform refinements satisfying
(2) hy = 2""he.
Define the function space H}(D) = {v € H'(D) : v|opp = g} and the FE space
9:={v e H,(D)NH™(D) : v|x is a polynomial of degree m,VK € T;}
for a non-negative integer m. The sequence of finite element spaces satisfies
Vicvlc-.-cVfc---cCVf.

Denoted by u;(w, X, t,) the finite element solution in V;? at the time instance t,,. The
MLMC FE solution at the L-th level mesh can be written as

L

’U,L(W7X, tn) = Z (ul(w7x7tn) - ul—l(w7x7tn)) + UJO(WaX7 tn)
=1

Based on linearity of the expectation operator E[-], we have

L
E[uL(w X, tn) [Z u(w, X, t, —ul,l(w,x,tn)) +u0(w,x,tn)}
1=1

L
Z wy(w, X, ty) — ul_l(w,x,tn)] —l—E[uo(w,x, tn)]

Numerically, the expected value of the FE solution on the I-th level, E[u;(w, x, t,,)] is
approximated by the sampling average U’} = W j, [u(w, %, t,)] = Jiz Z'j]l:l w(wj, X, tn),
where J; is the sample size. Correspondingly, Elur,(w,x,t,)] is approximated by an

unbiased estimator:
L

(3)  Yup(w,x,t,) Z W, [wi(w, x, tn) — w—1(w, X, t,)]) + U [uo(w, x, t,)].
=1

It is seen that, at each mesh level, a group of simulations needs to be imple-
mented. Thus, it is natural to extend ensemble-based time stepping to such settings
for reducing the computational cost. Next, we introduce the multilevel Monte Carlo
ensemble (MLMCE) method to achieve this goal.
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For simplicity of presentation, we assume that, at the [-th level, a uniform time
partition with the time step At is used for the simulations and further set N; = T'/Aty;
Ji independent, identically distributed (i.i.d.) samples are selected, and the associ-
ated random functions are denoted by a; = a(wj,-), f; = f(wj,- ), 95 = g(wj, ),

and ug = u%(wj,-) for j = 1,...,J;, and define the ensemble mean of the diffusion
coefficient functions by
Ji
_ 1
a; = 7 ; a(wj, x).

Here, we note that the corresponding exact solutions {u(w;,x, t)}‘»]‘: , are iid. Let

uly = (wj,X,ty), the finite element approximation of u(w;,x,t,) at the I-th level.
The multilevel Monte Carlo ensemble method (MLMCE) applied to (1) solves the

following group of simulations at the I-th level: for j = 1,...,J;, given u(;’l and u;,l,
to find u?fl € V7 such that,
3ut — du, 4wt
3,1 3,1 7,0 —_ n+1
, Vui T,V
(4) ( oAt o ) @V, Vo)

- —((aj —a)V(2uj, - uﬁ[l),Vvl) + (f;’“,vl), Yo, € VP,

forn=1,...,N; — 1. Once the numerical solutions at all the L levels are found, the
MLMCE approximates the random PDE solution at the time instance t,,, E[u(t,)], by
(3). Meanwhile, given a quantity of interest ¢(u), one can analyze the outputs from
the ensemble simulations, Q(up (w1, ")), ..., Q(ur(wy,-, ), to extract the underlying
stochastic information of the system.

The MLMCE naturally combines the ensemble-based sampling method and the
ensemble-based time stepping algorithm, and inherits advantages from both sides. As
the MLMC, the method can reduce the computational cost by balancing the time step
size, mesh size, and the number of samples at each level. Meanwhile, the ensemble-
based time stepping algorithm leads to a discrete linear system (4) whose coefficient
matrix is independent of j. Indeed, denote the mass matrix by M; that is associated
with (v;,v;) and the stiffness matrix S; that is related to (a@;Vu;, Vuy), the coefficient
matrix of (4) is ﬁMl + S;. Hence, for evaluating J; realizations, one only needs to
solve one linear system with J; right-hand sides, which leads to great computational
savings comparing with a sequence of individual simulations: when the number of
degrees of freedom is small, one only need to perform the LU factorization once
instead of J; times; when the number of degrees of freedom is large, one can use the
block iterative algorithms to accelerate solutions. Next, we will analyze the stability
and asymptotic error estimate of the MLMCE method.

4. Stability and error estimate. To simplify the presentation, we only con-
sider equation (1) with the homogeneous boundary condition (that is, ¢ = 0 and
uﬁrl € V in the FE weak form (4)), while the nonhomogeneous cases can be sim-
ilarly analyzed by incorporating the method of shifting. Meanwhile, we will include
numerical test cases with nonhomogeneous boundary conditions in Section 5. As the
MLMCE approximation is based on the MC solutions at various levels, we first an-
alyze the ensemble-based single-level Monte Carlo in Subsection 4.1 and derive the
error estimate for MLMCE in Subsection 4.2.

Assume the exact solution of (1) is smooth enough, in particular,

u; € L*(HY(D) N H™(D);0,T) N H (H™(D);0,T) N H*(L*(D);0,T)
5
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and suppose B

fi € L* (H'(D);0,T).
Here we use the notation introduced in Section 2. We emphasize the assumed regu-
larity only requires the random fields to be square integrable. Assume the following

two conditions hold:
(i) There exists a positive constant 6 such that

P{w € Q;mina(w,x) > 0} = 1.
xeD

(ii) There exists a positive constant 6, for [ =0,..., L, such that
P{w;j € Q;a(w,x) —Tiloc <04} =1

Here, condition (i) guarantees the uniform coercivity a.s. and condition (ii) gives an
upper bound of the distance from coefficient a(w,x) to the ensemble average @, a.s.

4.1. Single-level Monte Carlo ensemble finite element method. When
E[u(ty)] is numerically approximated by W' , the associated approximation error can
be separated into two parts:

Elu(tn)] — 5, = (Elu;(tn)] — Eluj]) + (E[uj,] — ¥3,) = &' + &5,

where we use the fact that E[u(t,)] = E[u;(¢,)]. The finite element discretization
error, &' = Elu;(t,) — u}], is controlled by the size of spatial triangulations 7; and
time step; while the statistical sampling error, £ = E[u?l} — U7, is dominated by
the number of realizations and variance. Next, we will first discuss the stability of the
ensemble scheme (4) at the [-th level (Theorem 1), derive the bounds for £ (Theorem
3) and & (Theorem 4), and then obtain the asymptotic error estimation (Theorem
5).

THEOREM 1. Under conditions (i) and (i), the scheme (4) is stable provided that
(5) 0> 30,.

Furthermore, the numerical solution to (4) satisfies

1
LE[l ||]+ZE[||2u§Y;f Wt + (—fe+)AtzZEuwﬂ||]

N;—1

1 1
T j 20 Bl + Rl + B {126 — ]

0
+ 5Amrz[||vfu},l\|2] + GAUE[|Vu,[].

n+1

%7 in (4), we obtain

Proof. Choosing v, = u

3u Tt — qu, 4+t
J,l Jil J,l n+1 — n+1 n+1
( At sug; | H{@Vug o, Vg

=~ (0 — @)V uy, = w7, Vgt ) + (£t
6
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Multiplying both sides by At;, integrating over the probability space and considering
the coercivity, we get

n n n 1 n n n—
*E[llu TP 20 = ] = SRl + 126, - uj

’]

® Rl - 20+ ) + ARV )
gAtlEH(f"H, ufO|] + AL E[|(V(2u, - ufr ), Vui ) |].

Apply Young’s inequality to the terms on the right-hand side (RHS), we have, for any
Bi > 071 = 17273a

(9) E[|( gl < B[ ) + SEIR,

» Uj g

E U(V(2u;l —u

;1),vw1)@ - [\(wu
(10) < Ba ;53

. b VUit = (g, v |

[V ]+ ]E[HV%JII ]+ 2; E[| vl t?].
3
The term AtleE[HVU"HH | on the left-hand side (LHS) can be split into several
parts, for any Cy € (0,1):
(11)
AGOE[||Vul ] = CLAGOE[ |Vl P] 4 (1 — CHAWOIE][Vul 112 = (V][]

+ (1= Cy)ALOE[||Vul, %]

Substituting (9)-(11) into (8), we get
(12)

1 _
(E[||U"+1|| ]+ ElI2ui = udall?]) = 7 Bllugal] + E[l1205; - w57 1%))

Bl - 2uf, + g ) + (oo - B - 22

4

+ 0+) AGE[[|Vul ]

2 260
+ (1= COALBE[| VTP — [Vl 7] + (50—01) T ) AUE(|Vu ]

g
4
1 _
+ (31— C0)0) AE[| Va2 - IV ]
1 0 At
+ (5(1_01)9— ﬁ)AtﬂE[HVU 12 < Slig

Selecting f1 = 4004, B2 = 2, and B3 = 1 for some positive §, (12) becomes

E[ILF 2]

n n n 1 n n n—
o I 1205 = ufl?] = B[l + 1205, — ufy 7]
26 + 3

Bl — 200, + 7 2] + (G0 — 2220, ) B[Vt ?)

l

1

T

2

(13) + (1= CO)ALOE[||Vu 12 — [ Vul, 7] + (5(1 - C1)f - 9+)AtlE[||VuZl||2]

1 -
+ (30— CO0)ARE[| Vel ~ 1 IP)
1 0 At
+(300- 000 = 5 ) ME[IVe ] < Je R

7
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Stability follows if the following conditions hold:

20 43
(14) co—212g, >0,
1 0,
15 -(1-C1)8 — — >0.
(15) 5( 10—
By taking Cy = % and § = egg’f*, under the assumption (5), we have
20+ 3 6 6 0
010— D) 0+—§—§—0 and §—9+>0

Then, by dropping a positive term, (13) becomes

n n n 1 n n n—
*]E[Ilu TP 20 = wlP] = SR (llgal® + 120, — P

0 0
+ SAUE[IVa 2 — [V [2] + (5 — 0+ ) ALE[|[ V2]
+ S ARE[IVug I — Va1 + (8 - ) Ank[Ivu
At
< ME[HJC;LHHQ—J-

Summing (16) from n =1 to n = N; — 1 and dropping two positive terms gives

1
TEL 2] + FE[I20f — ult "2 + (, —9+>AtlZE IV |?]

N;—1

(17) n+1)2 1 121, L 1 012
9 30 Z E Hf [} + ZE[HUNH ] + ZE[”%“ - Uj,z” ]
0 0 0 N2
+ Atl]E[HVquH ]+6AtlE[||qu|| 1.
which completes the proof. 0

REMARK 2. The ensemble-based time stepping scheme (4) is stable if condition
(5) is satisfied. Moreover, it becomes to be unconditionally stable when the size of
ensemble equals one since 04 would shrink to zero. Thus, given a group of problems,
one can use condition (5) as a guideline to divide problems into subgroups so that
condition (5) holds in each of them. The smallest subgroup could contain only one
member for that no stability condition is required.

Next, by using the standard error estimate for the Monte Carlo method (e.g.,
[25]), we can bound the statistical error £ as follows.

THEOREM 3. Let &g = E[u},| — V7, where uf, is the result of scheme (4) and

vro= J.% Z]lel u?,. Suppose conditions (i) and (i), and the stability condition (5)

hold, there is a generic positive constant C independent of Jy, h; and Aty such that
N,

1 1 _ 0 n
SE[1E31%] + ZE[H%?L -] + <3 - 9+> Aty ZE[IIWSHZ)}
=1

1 Q(MZE L1240 + ABE[[ Vg, 7] + E[[[Vuj, |17

E[llu}, 2] + E[I2u), - ud,)2])-
8
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Proof. First, we estimate E[[|[VEZ||?].

E[|vez|?] _EK}I i(vm ). i T ))]

=1 :

Ji
1 n n
= P Z ]E <VE[ul ] VUZ s V]E[UZ ] — Vuj7l>
ij=1
1 &
= 7 ZE <VE[UZ | = Vui, VE[u'] — Vu%)
j=1
The last equality is due to the fact that ufy,...,ulj  are i.i.d., and thus the ex-

pected value of (VE[u}'] — Vul",, VE[u]'] - VU?J) is a zero for ¢ # j. We now expand
E[(VE[u}'] — Vu},, VE[up] — Vu?,)] and use the fact that E[Vu},] = VE[u},] and
E[up'] = E[u};] to obtain

ot

1 1
E[|IVER|?] = —=||VE[LT,]||? + =E[|Vu?
[IVES]®] 7 IVE[u7 ]|l 7 [V}
which yields
E[|VELIP] < E[IIW 7]

With the help pf Theorem 1, we have

N,

N
0 nn2 9 Atl n||2
(5 -0 )an n§:le[|\v55|| J<7 (5= 30 nﬂE[llfj [

+OALE[[[ Vg |I* + Ve 7] + Elfuj, 7 + [12u5, — U?,lHQ])

(19)

The other terms on the LHS of (18) can be treated in the same manner. This completes
the proof. ]
Next, we estimate the finite element discretization error &

THEOREM 4. Let &' = Elu;(t,) — u},], where u;(t,) is the solution to equation
(1) when w = w; and t = t, and uj, is the result of scheme (4). Assume that the
initial errors |lu;(to) —uj |, llu;(t1) —ugyll, IV (u;(to) —u )l and |V (u;(t1) —uj,)||
are all at least O(h™). Suppose conditions (i) and (ii), and the stability condition (5)
hold, there exists a generic constant C' independent of Jy, hy and At; such that

N2 1 N; N;—1)12 Q al n|2
o) aBIIECIPT+ GEREY & |}+(3—e+)Atl;E[||vsl 1]

< C(At} + hi™).

Proof. We first derive the error equation for (4). Equation (1) evaluated at 41
and tested by Vv, € V) yields

(3uj(tn+1) — du(tn) + uj(tn-1)

2Atl ,Ul) + (ajVuj(tn+1), V’Ul)

= (fi* o) = (Ry™ o),

(21)
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0 where f;”l = fi(tn4+1) and R;-LH = uj¢(tny1) — 3uj(t"“)_‘l;i%"”uj(t”’l). Denoted

I bye} = w;(tn) — u?l the approximation error at the time ¢,. Subtracting (4) from
72 (21) produces

3Tt — 4et 4 "t
’ L |+ (@Ve; T Vo) + ((a — @)V (2e] — e 7, V)
(22) 2Atl J J J

+ ((a; — El)V(u?‘H —2uf + u?_l)7 Vo) + (R?H,vl) =0.
Let P,(u;(t,)) be the Ritz projection of w;(t,) onto V; satisfying
(@(V (i (tn) — Pi(uj(tn))), Vor) =0, Yo € VP,
The error can be decomposed as
el = pj, — ¢, with p7) = u;(t,) — Pi(u;(tn)) and ¢} = uj; — Pi(u;(tn))-

274 By substituting this decomposition into (22) and choosing v; = (b"“ we obtain

(23)
305" 0% + ot I
< QAZJ P o+ @Veptt verh
30 —dpn, 4+ it
_ o n 1 n+1 g, Jr! g, n+41
275 - ((a] al) (2¢]l ) v¢ ) < 2Atl a¢

+ @V, Vert) + ((aj—aﬂvmp;;l—pjl h, Vo)

+ (0 — @)Vt = 20y + up ™), Vortt) + (R 60,

276 After integrating over probability space, we have, for the LHS,

(24)
1 n mn n n p—
LHS > rm E[l¢5 117 + 11207 — 67017 — [||¢ 2+ 11267, — 6771
277
+ Tm E[lle) " — 207, + ¢77 1] +9E[Hv¢n+1|| ].

278 We then bound the terms on the RHS of (23) one by one. By applying the Cauchy-
279 Schwarz and Young’s inequalities, we have

E[ |((a; — @)V (26}, - 037, Vort)

)

280 (25) < 0,.E[|(2Vey,, Vi I + 0. E[[(Vel Vel )]
4 30
< OE[IVeLIP] + S E[IVer 1] + SE[IVer ).
10
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281 We further use the Poincére inequality and have

3p51 " — Aoy + o
252 (26) E ( TR
o [3entt = ey 4o
28! < E = OR[[| Vel
" = 4Gy 241, + CotB[IVe5 ]
C i 1 it ’ o0 1
< ——E || e dt E[||Ve]
284 < 1000 A /tn1 Pt + CobE[|| Vo5 I°]
C B ¢t )
285 (27) TN I / pjelldt| + CobE[I[Ve] ;1]
tn—1

286 where C' is the Poincare coefficient and (Y is an arbitrary positive constant. The rest
287 of terms can be bounded as follows.

288 (28) H(alej qu"“)H =0.
280 (29) EH((aj—m)v@pﬂ ), v¢"+1)]
290 = 9+E[|(2Vpg,z,v¢"“)l] + 0L E[|(Vp; " Vel ]

163 162 .
! < e g EIVAIT) + 4o T RUIVA ] + 2Co0R Ve 2],
292 (30) H(( —a)V(u ?H—?Uj +u§“1) vd)nH)H

1 62
o < 30y ¢ BV = 26 + i D] + CobE (Ve ]
. C’At3 0% ¢ .
295 < a0 0 Bl / IV usaeldt] + CotB (|97 1],
296 and

n+1 n+t1 n+1 CAt?’ et 9

w0t (31) B[R en)]] < CoR [V + o E[/ el ]

298 Substituting (24) to (31) into (23), we get

1

1AL ( (63 12] + El2627 — 6401%]) —

4& (E[lle7:01%] +EllI265, — ¢5:11])
360,

[||<z>”+1 =207, + ¢ 1P + 0(1 — 5Co — = B[ Vel ?]
26

fm[nw 1) - E[IIW 7]

299
¢ tnﬂ 2 03 62

G — .
< 16,080 " /_ lpsall*dt| + BNV + 155 B IVe5 1)

CAt3 9 it CAt ¢l
+ 1Cy 0 E[/ Hvuj',ttszt} Cob [/ Huj,ttt”?dt]

tn—l ne1
11

This manuscript is for review purposes only.



w

10 Now we split the term JE[||[ V¢! |[?], and choose Co = 55(1 — 3+):
(32)

1
4&( o3 12) + E Q263 = 6512)) — 1 ElI05?] + E[I265, — 637 7))
1
o Ellen! - 25 + o3 (g——) (1961

10z~ ZR[I963 ) (6——)E
+ 5 (BIVSLI) - E(I96307]) + ¢ (BIIV ] l||] E[Ive;17))

tn+1

C 1
<——{ —_F )
< e ma | [ eadar

tn+1 tn+1

+0At§’931@[/ﬂ71 ] +At?E{/tnil ||uj’ttt||2dt]}.

+O2E[IVo3 7] + 02E[IVej 7]

302 Summing (32) from n = 1 to N; — 1, multiplying both sides by At;, and dropping
303 several positive terms, we have
(33)
1
TE[ION 7] + B (120 — 6717 + (5 — 04 ) At ZE V67 12)
= gt
< mais 2 AB| [ esalPe| + SB[V 1) + A2 {1903 )
304 (0 —364) — tn—1
t’n+1 t7L+l
+AGORE[ [ |Vujuldt] + A / 1 ||uj,ttt|2dt}}
tn— n—
1 1 0
*E[”(?l', ]+ ZE[HQ(bjl‘,l - l” ]+ Atl]E[||V<Z5 ]+ éAtlE“|V¢?,l||2]'

305 By the regularity assumption and standard finite element estimates of Ritz projection
306 error (see, e.g., Lemma 13.1 in [39] ), namely, for any u} € H™Y(D)n HY(D),

307 (34)  lepll® < ORI 2luy(t)llF . and (VS < O™ flug (80) 741,

308 and use the assumption that ||e] A ||ej7l|| Ve
309  we have

J,l| and HVe;’lH are at least O(h™™),

1
ZE[I6N1) + 7E[l26 — oI + (f—e+)AtlZE V67 12]
310 (35) ¢ 2m+2 | 2 12m 492 / 2
< (9_30+){hl + 02 13 +Atle+1E[ 19wl dt}
T
+ At?E{/ ||uj,tttH2dt} } + hi™ + 0Nt R,
0

311 where C is a generic constant independent of the sample size J;, time step At; and
12
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314

316
317
318
319
320
321

w
N
[\

323

331

mesh size h;. By the triangle inequality, we have

1
SB[l (ty,) — ) t*] + ZE[H?(%‘@N;) —ut) = (uj(tn,—1) —upi )|
0 Al
+ (g — 9+)Atl ZE[HV(uj(tn —ul)|I°] < C(At + hi™).
n=1

Applying Jensen’s inequality to terms on the LHS leads to the error estimate (20).
This completes the proof. 0

The combination of the error contributions from the Monte Carlo sampling and
finite element approximation leads to the following estimate for the I-th level Monte
Carlo ensemble approximation.

THEOREM 5. Let u(t,) be the solution to equation (1) and ¥% = Ji’ Zj’:l ufl.

Suppose conditions (i) and (i) hold, and suppose the stability condition (5) is satisfied,
then

(36)
TE[IEfu(tN)] = w517 + iE[H?(E[U(tm)] — W5 — (Elu(ty,-1)] = U5 I

N
. (g _ 9+)Atl S ENV(ELu(t.)] - %))
n=1

N
¢ n
<7 (Atz S E[If7121] + ALE[|[ V) |* + Ve, [1*]
n=1

[ )2 + 120}, — S, 1%] ) + C(AL + hE™),

where C' is a positive constant independent of Jy, At; and h;.

Proof. Consider the first term on the LHS of (36). By the triangle and Young’s
inequalities, we get

E[IEfu(ty,)] — U5 11°] < 2(E[IEL; (tn,)] — Elug]|?] +E[[Elugg] — ©51%]).

Then the conclusion follows from Theorems 3-4. The other terms on the LHS of (36)
can be estimated in the same manner. O

4.2. Multilevel Monte Carlo ensemble finite element method. Now, we
derive the error estimate for the MLMCE method.

THEOREM 6. Suppose conditions (i) and (ii) and the stability condition (5) hold,
then the MLMCE approximation error satisfies

2 [IEfu(en, )] — 2 n,)])] + 1E[HWL] Wl (i) ~ (B

= Wfur(ty,-0)]) ] + (f—e+)AtLZE[|VE[ ()] = V0 [us(t)] ]

=1
(37) L C No
2m 4 1 2m 4 n||2
<o(m +at 30 +Atl>)+%(mo;1[«:u|fj I124]

+ AtoE [V o1 + Vg ol*] + Ellujoll* + 12uj0 — U?,OIIQ]),
13
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336

338

339

340

341

342

344

where C' > 0 is a constant independent of J;, At; and h;.

Proof. We only analyze the first term on the LHS because the other terms can
be treated in the same manner. First, we introduce u_;(t) = 0.

E [ Efu(tn, )] — Wl x|

= E[H]E[u(tm)] — Elur(tn,)] + Elur(tn,)] = Y @ funltn,) — w1 (ty,)] ||2}
=0

<C<E[||E[u(tNL)] Elur(tn,)] ]+§L:E[ ( w(tn,) —w-1(tn.)]

=0

(38)

= Uy fu(tn,) —w— tNL H )
By Jensen’s inequality and Theorem 4, we get

59) E[|[Elu(tn,)] - Blus (tn,)]]°] < B[ fJultn,) = wstn,)|]
< C(At] + hi™).
By Theorems 3-4 and the triangle inequality, we have
E[[[Efun(t,) = w-1(tn,)] = Worfutn,) = ws (o))

= B[ - w5)fu(ty,) ~ woa(tn, )]

wy < gEllu) - ua )]
< = (Ellutty,) ~ t,)IP] +Ellutty,) - woalen,)I?])
C C

< < (A + 1P+ ALy + ) < = (AL 4 B,
l l

Meanwhile, based on Theorem 5, we have
E[||E[uo(tx, )] — @ g, [uo(tn, )]II7]
c ol
(41) < = (810 S EIFIZ] + AE[IVujoll + Vo]
n=1
+Efud o + 124} 0 — o7
Plugging (39), (40) and (41) into (38), we have

L
SElELu(en, )] = Pl (o, 7] < O(at + 17+ 30 (At + 1)
=1

(42) C Yo
+ 7 (810 SB[ 120 + AE[[Vud ol + Vo]
n=1

E[Jlufol2 + 126} o — S l1%])-
14

This manuscript is for review purposes only.



w W

The other terms on the LHS of (37) can be treated in the same manner. This completes
the proof. 0

Since, in general, the finite element simulation cost increases as the mesh is refined,
we can balance the time step size At;, mesh size h; and sampling size J; in the
preceding error estimation for achieving an optimal rate of convergence.

COROLLARY 7. By taking
Aty =0O(\/h]")  and J; = O(1M+e22mE)

for an arbitrarily small positive constant € and l =0,1,--- | L, the MLMCE approxi-
mation satisfies

iE (1 e, )] ¥ [ur(tx,)]]] + EE[HE[UNL] ~ Wlug ()] — (B[]

M3) W up(ty, I + (7—9+)AtLZ]E[’V]E[ W] = VO ur(t)]]’]

n=1

< Ch7"

where C' > 0 are constants independent of J;, At; and hy.

Similar to the MLMC method [7, 38, 16], one can choose the sample size in
MLMCE by minimizing the total computational cost while achieving a desired error.
Take At; = O(\/W) to match the spatial and temporal errors, and suppose that, as
the mesh size decreases, the average cost of solving the PDE at level [ increases and
the average variance decreases in the following relations:

Cy=Ch; " and o, = C, A},
where C,C,,~v; and 8 are some positive constants. One can optimize the number of
samples at the [-th level, J;, by minimizing the total sampling cost while ensuring the

statistical error stays at the user-defined tolerance e. This can be formulated as an
unconstrained optimization problem using the Lagrangian approach:

(L+1 Z—]

Applying the Euler-Lagrange condition, we get

e L+1 (Zm>\/7

and the associated total cost is

o= ME+D) (Zm>

mln Z JCp+ A

Note that, in this setting, the MLMCE shares the same expression of optimal sample
size and total cost as those of the MLMC. However, the use of scheme (4) in MLMCE
leads to smaller average cost for solving the PDE than the MLMC. Denote the average
cost of MLMC at level I to be Ch; ™, we have 71 < 2 when either direct or block

15
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364
365

366

367

368

iterative methods are used in the linear solver. Let CMLIMCE gnd OMLMC e the
total costs of MLMCE and MLMC methods, respectively, we have

2
L = L _
CMLMCE im0\ oty " B >0\ hlB "

OMLMC — B = - —
2iso \V oihy i Zleo \V hlB i

Then
CMLMCE hg " /hg "t =hgr T if 2 < B,
cartare =\ ho /by P =2M0TDRgET iy < B <y,
Wy TR = T if 7o < B.

It is seen the total computational complexity of the MLMCE is lower than standard
MLMC in any case. In particular, when the standard LU factorization is used in
the linear solver, we can derive a more concrete computational complexity. Let d be
the dimension of domain. The complexity for LU factorization is Ch~3? and that for
solving triangular systems is Ch~2?. Then the total computational cost for sampling
is Y1 (Jih; 2 + hi3?) since only one LU factorization is needed at each level. The
corresponding optimal sample size is

L
(44) Jl = 4(L€7;_1> (Z \/thl2d> \/O’lh?d
=0

by minimizing the total cost while achieving error e. The associated computational
complexity is

L 2L
4(L+1
(45) CMLMCE _ ( 6:‘ ) (Z /alh12d> + 3 hs,
1=0 =0

That of the optimized MLMC complexity is

L 2
(46) CMEME = LLJ 2 (Z Vou (h+ hl?’d)) .
=0

5. Numerical Experiments. In this section, we apply the proposed ensemble-
based multilevel Monte Carlo algorithm to two numerical tests for solving the random
parabolic equation (1). The goal is two-fold: to illustrate the theoretical results in
Test 1; and to show the efficiency of the proposed method in Test 2.

5.1. Test 1. We first check the convergence rate of the MLMCE method numer-
ically by considering a problem with an a priori known exact solution. The diffusion
coefficient and the exact solution of equation (1) are selected as follows.

a(w,x) =8+ (1 + w) sin(zy),
u(w,x,t) = (1 + w)[sin(2rz) sin(27y) + sin(4rt)],

where w obeys a uniform distribution on [—v/3,v/3], t € [0,1], and (z,y) € [0,1]%.
The initial condition, inhomogeneous Dirichlet boundary condition and source term

16
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380

381

382
383
384
385

386
387
388

389
390
391
392
393
394
395
396
397
398

399

are chosen to match the prescribed exact solution. Therefore, the expectation of the
solution is

E[u] = sin(27z) sin(27y) + sin(4rt).

For the spatial discretization, we use quadratic finite elements on uniform trian-
gulations, that is, m = 2. To verify the analysis given in (7), we fix L and choose
the mesh size h; = V2 - 27271, time step size At; = 273! and number of samples
Jp = 24E=D+1 4t the [-th level of the MLMCE simulation for [ = 0,...,L. The
experiment is repeated for R = 10 times. Let

c Ly (r) 2
2 = \| 7 2 [BR) - ¥l )]

| RoM )
Em = WZZ”E[VU(tm) [Vu(r)( )]H,

r=1m=1

where u is the exact solution and u(LT) is the MLMCE solution of the r-th replica.
Hence, ;2 and &1 represent the numerical error in L? and H' norms, respectively.
With the above choice of discretization and sampling strategy, we expect both quan-
tities converge quadratically with respect to hy as indicated in Corollary 7 .

Table 1: Numerical errors of the MLMCE.

Er2 rate Emn rate
6.11 x 102 - 5.60 x 10~ T -
1.43 x 1072 | 2.10 | 1.50 x 10~ | 1.90
3.60x 1073 | 1.99 | 3.81 x 1072 | 1.98

W N N

The MLMCE numerical errors as L varies from 1 to 3 are listed in Table 1. It is
observed that both £;2 and £:1 converge at the order of nearly 2 with respect to hy,
which matches our expectation.

5.2. Test 2. Next, we use a test problem to demonstrate the effectiveness of the
MLMCE method. The same test problem was considered in [26] for testing the first-
order, ensemble-based Monte Carlo method and a similar computational setting was
used in [30] to compare numerical approaches for parabolic equations with random
coefficients.

The test problem is associated with the zero forcing term f, zero initial conditions,
and homogeneous Dirichlet boundary conditions on the top, bottom and right edges
of the domain but inhomogeneous Dirichlet boundary condition, © = y(1 — y), on the
left edge. The random coefficient varies in the vertical direction and has the following
form

(47)  a(w,x) = ap + o/ Ao Yo(w) + ZU\F ) cos(imy) + Vi, 4i(w) sin(imy)]

. _ GinLe)? .
with \g = ‘@LC, Ai = /mLce T fori=1,...,ny and Yy, ..., Ya,, are uncorre-
lated random variables with zero mean and unit variance. In the following numerical
17
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403
404
405

406

test, we take ag = 1, L. = 0.25, 0 = 0.15, ny = 3 and assume the random variables
Yo, ..., Yan, are independent and uniformly distributed in the interval [—V/3,V/3]. We
use quadratic finite elements for spatial discretization and simulate the system over
the time interval [0,0.5].

We use the MLMCE method to analyze some stochastic information of the system
such as the expectation of the solution at final time. More precisely, we apply the
MLMCE with the maximum level L = 2, the mesh size h; = v/2-273~! and time step
size At; = 274!, Due to the small size of the problem, we apply LU factorization in
solving linear systems. Targeting a numerical error € = 1073, we choose the number
of samples J; = 24L=D+1 gt the I-th level, for [ = 0,..., L based on (44) with d = 2
and 8 = 4. Note that if the samples does not satisfy the stability condition (5), we
will divide the sample set into small subsets so that (5) holds on each smaller group.
Since the diffusion coefficient function is independent of time, such a process can be
efficiently implemented for ensemble calculations at each level. The MLMCE solution
at the final time T is

Uy (x) = [uf (tn,)],

which is shown in Figure 1 (left).

Since the exact solution is unknown, to quantify the performance of the MLMCE
method, we compare the result with that of the standard MLMC finite element simu-
lations using the same computational setting. The same set of sample values is used,
thus, the only difference is that individual finite element simulations are implemented
at each level in the latter. Denote the approximated expected value of the latter

Ensemble mean of sol. at t= 0.5

BDF2 MLMC mean of sol. at t= 0.5 Difference in mean of sol. at t= 0.5

Fig. 1: Comparison of the simulation mean: MLMCE simulations (left), MLMC finite
element simulations (middle), and the associated difference (right).

approach by
U (x) = Plug(tn,)],

which is shown in Figure 1 (middle). Note that for a fair comparison, we also use
the LU factorization in solving all the linear systems in individual simulations. The
difference between W and W/, [WF — W/ is shown in Figure 1 (right). It is observed
that the difference is on the order of 10~%, which indicates the MLMCE method is
able to provide the same accurate approximation as individual simulations. However,
the computational complexity of the MLMCE simulation is smaller than that of the
individual MLMC simulations. By (45)-(46), we have the complexity estimations of
both approaches as follows:

4(L+1)3
CMLMCE _ (67"2') + thG ~ 1.39 x 10°
1=0

18
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418

419

420
421
422
123
424
425
426
427
428
429
130
431
432
433
434
435
436
437
438
139
440
441
443
444
445
146
447
448
450
451
452
153
454

455

and

2

4(L+1
CMLMC _ % Zh;l ~ 5.37 x 10°.
=0

Meanwhile, the CPU time for the ensemble simulation in this numerical test is 2.65 x
103 seconds and that of the MLMC finite element simulations is 1.01 x 10* seconds,
which matches our complexity estimations.

6. Conclusions. A multilevel Monte Carlo ensemble method is developed in
this paper to solve second-order random parabolic partial differential equations. This
method naturally combines the ensemble-based, multilevel Monte Carlo sampling ap-
proach with a second-order, ensemble-based time stepping scheme so that the com-
putational efficiency for seeking stochastic solutions is improved. Numerical analysis
shows the numerical approximation achieves the optimal order of convergence. As
a next step, we will investigate performance of the method on large-scale, nonlinear
problems, in which we will deal with nonlinearity of the system and use block iterative
solvers to treat high-dimensional linear systems.
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