
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

NUMERICAL INVESTIGATION OF ENSEMBLE METHODS

WITH BLOCK ITERATIVE SOLVERS FOR EVOLUTION

PROBLEMS

Lili Ju

Department of Mathematics, University of South Carolina, Columbia, SC 29208

Wei Leng

State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences

Beijing 100190, China

Zhu Wang∗ and Shuai Yuan

Department of Mathematics, University of South Carolina, Columbia, SC 29208

(Communicated by the associate editor name)

Abstract. The ensemble method has been developed for accelerating a se-
quence of numerical simulations of evolution problems. Its main idea is, by

manipulating the time stepping and grouping discrete problems, to make all

members in the same group share a common coefficient matrix. Thus, at each
time step, instead of solving a sequence of linear systems each of which contains

only one right-hand-side vector, the ensemble method simultaneously solves a

single linear system with multiple right-hand-side vectors for each group. Such
a system could be solved efficiently by using direct linear solvers when the prob-

lems are of small scale, as the same LU factorization would work for the entire

group members. However, for large-scale problems, iterative linear solvers of-
ten have to be used and then this appealing advantage becomes not obvious.

In this paper we systematically investigate numerical performance of the en-
semble method with block iterative solvers for two typical evolution problems:

the heat equation and the incompressible Navier-Stokes equations. In particu-

lar, the block conjugate gradient (CG) solver is considered for the former and
the block generalized minimal residual (GMRES) solver for the latter. Our

numerical results demonstrate the effectiveness and efficiency of the ensemble

method when working together with these block iterative solvers.

2010 Mathematics Subject Classification. Primary: 65M60.
Key words and phrases. Ensemble method, ensemble-based time stepping, block CG, block

GMRES, iterative linear solver.
The first author’s research was partially supported by U.S. National Science Foundation under

grant number DMS-1818438 and U.S. Department of Energy under grant numbers DE-SC0016540
and DE-SC0020270. The second author’s research was partially supported the National Key

Research and Development Program of China under grant number 2016YFB0201304, National
Natural Science Foundation of China under grant numbers 91430215, 91530323, 11501553 and
11771440, State Key Laboratory of Scientific and Engineering Computing (LSEC), and National
Center for Mathematics and Interdisciplinary Sciences of Chinese Academy of Sciences (NCMIS).

The third author’s research was partially supported by U.S. Department of Energy under grant
numbers DE-SC0016540 and DE-SC0020270, U.S. National Science Foundation under grant num-

ber DMS-1913073 and Office of the Vice President for Research at the University of South Carolina
through an ASPIRE grant.
∗ Corresponding author: Zhu Wang.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx

1. Introduction. It is common to run a sequence of numerical simulations in sci-
entific and engineering application problems, such as numerical weather prediction
using the ensemble-based data assimilation, proper orthogonal decomposition re-
duced order modeling that requires offline data generation, and uncertainty quan-
tifications by random sampling approaches. For these numerical simulations, one
needs to first discretize the problems in both space and time, and then solves a
sequence of linear systems:

Ajxj = bj , (1)

for j = 1, 2, . . . , J , and J is the total amount of simulations, named the ensemble
size; Aj , xj and bj are respectively the coefficient matrix, state variable vector
and right-hand-side (RHS) vector in the j-th discrete problem. The choice of linear
solvers is usually determined by the size and structure of Aj . It is well known
that dense direct methods are limited by the size of the problem, and work well
for sizes up to a few thousands; and sparse direct methods, depending on both
size and sparsity pattern, require good ordering. When the fill-in generated by
sparse direct solvers becomes too costly, iterative methods have to be used. Their
computational complexity depends on the size, sparsity of the coefficient matrix,
and preconditioning is usually applied in order to accelerate the convergence [37].

When all simulations in the sequence possess a common coefficient matrix A
(that is, Aj = A for all j), direct methods can easily share information among all
RHS vectors: one factorization of A could be used in solving all the problems. If
the problem size is too big for direct solvers, block iterative methods have to be
used, which are also able to share system information among all RHS vectors by
using the same Krylov subspace, and solve all the linear systems simultaneously.
For sequences sharing a common coefficient matrix, block iterative algorithms, such
as block CG and its variants for symmetric positive definite (SPD) system [28, 29,
25, 19], block GMRES and its variants for nonsymmetric systems [35, 13, 27, 18, 7,
4, 3, 1] and hybrid block algorithms [36], have been developed to solve such system
with many RHS vectors. The block algorithms have been used to accelerate the
solution even for linear systems with only one RHS vector in [29, 6]. The advantage
of a block solver over individual ones lies in the following facts: (i) the product of a
matrix and J vectors is more efficient than J times matrix-vector products [8, 12];
(ii) the search space generated from J RHS vectors is usually larger than that from
one single vector, thus the Krylov subspace method could potentially converge in
fewer iterations [31]; (iii) when some of the RHS vectors are dependent, the search
space could be compressed and problems can be solved more efficiently; and (iv)
it only accesses the coefficient matrix once a time for J problems; when accessing
A represents a main computational bottleneck of a linear solver, or A needs to
re-generate at each time step, this leads to a significant computational advantage
[2]. Several block iterative algorithms were studied using parallel computing in [32],
which shows that they have a high level of parallelization and, thus, can be applied
for solving large-scale multisource problems.

The appearance of a common coefficient matrix for a group of problems is ap-
pealing, however, in general, the coefficient matrix would vary from one problem to
another, then it becomes unapparent on how to share the information among RHS
vectors. Hence, neither direct nor block iterative solvers can be straightforwardly
applied. Approaches such as the seed/recycled Krylov subspace methods have been
developed, which solve each RHS independently, while storing some information
from the solve and using it in subsequent solves [5]. The accumulated information

2

enlarges the search space, thus would potentially reduce the number of iterations.
For slowly-changing linear systems, subspace recycling techniques such as GCRO
with deflated restarting (GCRO-DR) have been introduced for accelerating the so-
lution process in [30]. The block version of GCRO-DR was recently introduced in
[31], and its high-performance implementation is available in the Belos package of
the Trilinos project developed at Sandia National Laboratories. Note that the un-
derlying assumption of such approaches is that all the systems are closely related,
which certainly holds in some applications, but is in lack of rigorous mathematical
foundation.

As seen from the preceding discussion, the research for accelerating a sequence
of numerical simulations mainly starts from the numerical linear algebra’s point of
view and the goal is to solve (1) more efficiently when Aj varies from one case to
another. Recently, the ensemble method has been introduced to tackle this issue for
evolution problems at the numerical algorithm level [21, 22, 20, 16, 26, 14, 15, 11].
The idea is to ensure all the linear systems in a group to share a common coefficient
matrix by manipulating numerical discretization schemes. Then, either direct or
block iterative solvers could be naturally applied. Such an approach would lead to
the following system:

AX = B, (2)

where A is the common coefficient matrix, X = [x1, . . . ,xJ] and B = [b1, . . . ,bJ]
consist of state variable vectors and RHS vectors from J discrete problems, re-
spectively. To the best of our knowledge, the research investigations on ensemble
methods primarily focus on the numerical analysis, including stability analyses and
error estimates so far. The resultant linear systems are solved using direct solvers,
but not with block iterative ones. For instance, the ensemble-based Monte-Carlo
and multi-level Monte-Carlo methods have been developed in [23, 24]. With the
LU factorization, it has been shown that the use of ensemble methods leads to
significant computational savings over the individual simulations. But large-scale
applications certainly need to be considered in practice. Hence, in this paper, we
take a couple of widely used PDE models in heat transfer and incompressible fluid
flows, and for the first time, perform a comprehensive study on numerical behaviors
of the ensemble methods together with block iterative solvers.

The rest of this paper is organized as follows. In Section 2, we briefly review
the ensemble-based time-stepping algorithms for the heat equation and the Navier-
Stokes equations. Block iterative solvers are discussed in Section 3. Several numer-
ical experiments are then performed and presented in Section 4 to demonstrate the
effectiveness and efficiency of the ensemble method working with the block iterative
solvers. Finally some concluding remarks are drawn in Section 5.

2. Ensemble method for evolution problems. We consider two popular math-
ematical models governing heat transfer and incompressible fluid flows respectively:
the heat equation and the Navier-Stokes equations. Assume that, for either case,
one needs to complete J numerical simulations under different computational set-
tings including distinct body source functions, boundary and initial conditions, and
physical parameters. We first present the ensemble time-stepping schemes for the
aforementioned mathematical models and discuss the associated stability conditions
and error estimates.

For simplicity of presentation, we assume the diffusion parameter νj , in the j-th
problem, to be a constant function. The finite element (FE) method is used for

3

the spatial discretization in this paper, but other types of numerical methods could
be used as well. A uniform mesh T h with size h, and a uniform time partition
with the time step size ∆t are taken throughout our discussion. Denoted by Ω the
computational domain, by ΓD the boundary of Ω on which the Dirichlet condition
is imposed and by ΓN where the Neumann boundary condition is imposed. We use
(·, ·) for the L2-inner product on Ω, 〈·, ·〉Γi

for the inner product on Γi, and ‖ · ‖ for
the L2 norm. Define the spaces

VgD := {u ∈ H1(Ω) | u = gD on ΓD}
and V hgD the space of piecewise continuous functions on Ω that reduce to polynomials

of degree ≤ m on each element of T h. Additionally, we assume the total number of
time steps to be N and adopt the following notations: for n = 0, . . . , N ,

tn = n∆t, unj = uj(tn), fnj = fj(tn), gnN,j = gN,j(tn),

with

un =
1

J

J∑
j=1

ũnj , u′nj = ũnj − un,

ν =
1

J

J∑
j=1

νj , ν′ = νj − ν, and |νj − ν|∞ = max
j
|νj − ν|.

(3)

and time discretizations

[first order: backward Euler] ũnj = unj , Dtu
n+1
j =

un+1
j −un

j

∆t ; (4)

[second order: BDF2] ũnj = 2unj − u
n−1
j , Dtu

n+1
j =

3un+1
j −4un

j +un−1
j

2∆t .(5)

2.1. Heat equation. For a group of heat transfer problems, the governing heat
equation describes the distribution of temperature in a given region over time: to
find the scalar unknown function uj(x, t), for j = 1, . . . , J , satisfying

∂uj

∂t −∇ · (νj∇uj) = fj(x, t) in Ω× [0, T],
uj = gD,j(x, t) on ΓD × [0, T],
∂uj

∂n = gN,j(x, t) on ΓN × [0, T],
uj(x, 0) = u0

j (x) in Ω.

(6)

In the ensemble-based time stepping, we introduce the ensemble average of diffusion
coefficients and discretize the equation in an implicit-explicit manner. The resulting
semi-discrete system reads:

Dtu
n+1
j −∇ · (ν∇un+1

j) = fn+1
j +∇ · (ν′∇ũnj), (7)

associated with the same boundary and initial conditions, provided
∂ũn

j

∂n := gn+1
N,j .

Using the standard conforming FE method, we take V hgD,j and V h0 as the trail and

test spaces, respectively, and obtain the fully discrete system: to find un+1
j,h ∈ V hgD,j

such that

(Dtu
n+1
j,h , v)+(ν∇un+1

j,h ,∇v) = (fn+1
j , v)− (ν′∇ũnj,h,∇v)+ 〈νjgn+1

N,j , v〉ΓN
, ∀ v ∈ V h0 .

(8)
The choices ofDt and ũnj,h, as specified in (4) or (5), lead to the ensemble-based time-
stepping algorithms of first- or second-order accuracy, respectively. The scheme
needs an initial condition u0

j,h to start with, for which the projection of u0
j onto the

FE space can be taken. The second-order scheme is a two-step method that requires
one more initial condition u1

j,h, which could be obtained from the first-order scheme.
4

As for the stability condition and error estimate, we have the following results
([23, 24]):

Lemma 2.1. Suppose that fj ∈ L2(H−1(D); 0, T), the ensemble scheme (8) is
stable if the following parameter deviation condition is satisfied:

|νj−ν|∞
ν < 1 for the first-order scheme; (9)

or
|νj−ν|∞

ν < 1
3 for the second-order scheme. (10)

Lemma 2.2. Let unj and unj,h be the solutions of equations (6) and (8) at time tn,

respectively. Assume fj ∈ L2(H−1(Ω); 0, T) and the stability condition, (9) or (10),
holds. Then there exists a generic constant C > 0 independent of J , h and ∆t such
that

‖uNj − uNj,h‖2 +
(
ν − |νj − ν|∞

)
∆t

N∑
n=1

‖∇(unj − unj,h)‖2 ≤ C(∆t2 + h2m) (11)

for the first order scheme and

1

4
‖uNj − uNj,h‖2 +

(ν
3
− |νj − ν|∞

)
∆t

N∑
n=1

‖∇(unj − unj,h)‖2 ≤ C(∆t4 + h2m) (12)

for the second order scheme.

2.2. Navier-Stokes equations. We next consider a group of incompressible flow
problems, the governing Navier-Stokes equations (NSE) describe the motion of
incompressible Newtonian fluid flows: to find the vector-valued velocity function
uj(x, t) and the scalar function pj(x, t), for j = 1, . . . , J , satisfying

∂uj

∂t + uj · ∇uj −∇ · (νj∇uj) +∇pj = f j(x, t) in Ω× [0, T],
∇ · uj = 0 in Ω× [0, T],

uj = gDj (x, t) on ΓD × [0, T],
uj(x, 0) = u0

j (x) in Ω.

(13)

After introducing ensemble averages of diffusion coefficient and velocity field and us-
ing the ensemble-based time stepping, we achieve the following semi-discrete system
associated with the same boundary and initial conditions of (13):

Dtu
n+1
j + un · ∇un+1

j −∇ · (ν∇un+1
j) +∇pn+1

j

= fn+1
j − (ũnj − un) · ∇ũnj +∇ ·

(
(νj − ν)∇ũnj

)
,

∇ · un+1
j = 0.

(14)
Define the skew-symmetric trilinear form

b∗(u,v,w) :=
1

2
(u · ∇v,w)− 1

2
(u · ∇w,v).

Let

Q := L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣ ∫
Ω

q dx = 0

}
,

and Qh is the space of piecewise continuous functions on Ω that reduce to poly-
nomials of degree ≤ s on each element of T h. Assume that, in order to guarantee
the stability of FE approximations, the pair of spaces (V h0 , Q

h) satisfies the discrete
inf-sup (or LBBh) condition. One example for which the LBBh stability condition

5

holds is the family of Taylor-Hood P s+1-P s element pairs (i.e., m = s+1 in the def-
inition of V h0), for s ≥ 1 [17]. The fully discrete system reads: to find un+1

j,h ∈ V hgD,j
and pn+1

j,h ∈ Qh such that
(
Dtu

n+1
j,h ,vh

)
+ b∗(unh,u

n+1
j,h ,vh) + (ν∇un+1

j,h ,∇vh)− (pn+1
j,h ,∇ · vh)

= (fn+1
j ,vh)− b∗(ũnj,h − unh, ũ

n
j,h,vh)−

(
(νj − ν)∇ũnj,h,∇vh

)
,∀vh ∈ V h0 ,(

∇ · un+1
j,h , qh

)
= 0, ∀ qh ∈ Qh.

(15)
The choices of Dt and ũnj,h, as specified in (4) or (5), respectively lead to the
ensemble-based time stepping of first- or second-order accuracy in time. The initial
condition u0

j,h can be obtained by projecting u0
j onto the FE space, while the second

initial condition required for starting the second-order scheme can be sought by the
first-order scheme.

It is seen that the ensemble method is semi-implicit. It first approximates the
advection using the a priori known quantity unh and approximates the diffusion using
the viscosity average ν, and then treats the remainders explicitly, therefore, leads
to a single coefficient matrix for all the members in the group. It could be shown
that the following stability conditions and error estimates hold [16, 15], under the
regularity assumptions on the NSE given by

uj ∈ H2
(
0, T ;Hk+1(Ω)

)
∩H3

(
0, T ;H1(Ω)

)
,

pj ∈ L2
(
0, T ;Hs+1(Ω)

)
, and f j ∈ L2

(
0, T ;L2(Ω)

)
.

Lemma 2.3. The ensemble scheme (15) is stable for all j = 1, . . . , J , if there exists
some µ, 0 ≤ µ < 1, and the following time-step condition and parameter deviation
condition are satisfied:

C
∆t

hν

∥∥∇u′nj,h∥∥2
< 1−√µ (16)

and

|νj − ν|∞
ν

≤ √µ for the first-order scheme, (17)

or

|νj − ν|∞
ν

≤
√
µ

3
for the second-order scheme. (18)

Lemma 2.4. Suppose that the P 2-P 1 Taylor-Hood FE pair is used for the spatial
discretization. For the first-order ensemble time-stepping, assume that ‖u0

j −u0
j,h‖,

‖∇(u0
j − u0

j,h)‖ are both O(h) accurate or better, then we have

1

2
‖uNj − uNj,h‖2 + Cν∆t‖∇

(
uNj − uNj,h

)
‖2 ≤ C(h2 + ∆t2 + h∆t).

For the second-order ensemble time-stepping, assume that the initial errors ‖u0
j −

u0
j,h‖, ‖∇(u0

j−u0
j,h)‖, ‖u1

j−u1
j,h‖ and ‖∇(u1

j−u1
j,h)‖ are all at least O(h2) accurate,

then the approximation error of the ensemble scheme at time tN satisfies

1

4
‖uNj − uNj,h‖2 + Cν∆t‖∇

(
uNj − uNj,h

)
‖2 ≤ C(h4 + ∆t4 + h∆t3), (19)

where C is a generic positive constant which does not depend on J , ∆t, and h.
6

3. Block-based iterative solvers. Since the ensemble method leads to a single
system (2) for the entire group, direct methods can be used to efficiently solve it,
as only one single LU factorization is needed for advancing all the simulations at
each time step. However, for large-scale problems, iterative linear solvers have to
be used due to the memory restriction and computational cost. Because of the
different algebraic structures in discrete heat equation and discrete Navier-Stokes
equations, we will investigate and discuss block-based iterative algorithms for them
separately in this section.

3.1. Solution to discrete heat equation. Assume that there are locally nu de-
grees of freedom for each of the J problems and define the basis functions to be
{ψ1(x), ψ2(x), . . . , ψnu(x)}. Denote the approximate solution of j-th problem by

uj,h(t, x) =
∑nu

i=1 u
(j)
i (t)ψi(x). The mass and stiffness matrices are defined by

M = [mik] and S = [sik] with elementsmik =
∫

Ω
ψkψi dx, and sik =

∫
Ω
∇ψk ·∇ψi dx.

At time tn, the vector related to the source term and boundary term is given by

hnj = [h
(j)
i] with entries h

(j)
i =

∫
Ω
fnj ψidx+〈νgnN,j , ψi〉, and the approximate solution

vector is denoted by unj .
The full discretization of the group of heat equations based on the ensemble

method, (8), yields the following linear system:

AUn+1 = Bn+1, (20)

where A is a sparse SPD, nu×nu matrix and Bn+1 is a nu× J matrix (or so-called
the block vectors in the literature). Furthermore,

A =
1

∆t
M + νS,

Bn+1 = [b1,b2, . . . ,bJ] with bj = hn+1
j − ν′jSunj +

1

∆t
Munj

for the first-order scheme; and

A =
3

2∆t
M + νS,

Bn+1 = [b1,b2, . . . ,bJ] with bj = hn+1
j − ν′jSũnj +

4

2∆t
Munj −

1

2∆t
Mun−1

j

for the second-order scheme.
If one has access to a semi-implicit numerical solver (the coefficient matrix A(j)

and vector b(j)) for any individual simulation, then it is straightforward to obtain
the linear system for the aforementioned ensemble method. Take the first-order
semi-implicit scheme for example, the coefficient matrix A(j) = 1

∆tM + νjS and

vector b(j) = hn+1
j + 1

∆tMunj can be extracted from individual simulation codes for

j = 1, . . . , J , then the matrices in ensemble simulations are: A = 1
J

∑J
j=1 A(j) and

Bn+1 = [b1, . . . ,bJ] with bj = b(j) +(A−A(j))unj . Meanwhile, A inherits the same

sparse, SPD structure of A(j).
Among the iterative solvers in the general family of Krylov subspace methods,

the conjugate gradient method (CG) developed by Hestenes and Stiefel is the most
well known for solving a real SPD system [37]. For a SPD system with multiple
RHS vectors, a block conjugate gradient method (BCG) has been developed as a
generalization of CG in this context in [28] and further in [29, 25]. Comparing
with CG, BCG has the advantage of potentially faster convergence because the
search space is augmented when multiple problems are considered together instead

7

of a single problem. It becomes more attractive when accessing A(j) represents the
main computational bottleneck of a linear solver (e.g. when A(j) is stored outside
of the system memory, or the elements of A(j) have to be regenerated at each
use) as it can explore multiple search directions in a single pass over A. However, in
practice, BCG could fail due to the rank deficiency issues for which the block search
direction vectors become linearly dependent. A simple solution was developed in
[19], which extracts a set of basis vectors from the search space at each iteration
and uses them as new search directions, thus could avoid inverting a potentially
non-full rank matrix. The algorithm is named breakdown-free BCG (BFBCG) and
is presented in Algorithm 1.

Algorithm 1: The breakdown-free block CG [19]

Input: matrix A ∈ Rn×n, matrix B ∈ Rn×J , initial guess X0 ∈ Rn×J ,
preconditioner K ∈ Rn×n, tolerance tol ∈ R and maximum number of
iteration maxit ∈ R.

Output: approximate solution Xs ∈ Rn×J

R0 = B− AX0;

solve KZ0 = R0;

P0 = orth(Z0);

for i=0, . . . , maxit do
Qi = APi;

Ti = P>i Qi;

Θi = T−1
i (P>i Ri);

Xi+1 = Xi + PiΘi;

Ri+1 = Ri −QiΘi;

if converged then exit;

Zi+1 = K−1Ri+1;

Λi = −T−1
i (Q>i Zi+1);

Pi+1 = orth(Zi+1 + PiΛi);

end
Xs = Xi+1.

Different from the original BCG, the breakdown-free BCG introduces an orthog-
onalization process, orth, which extracts an orthogonal basis Pi from the search
space (denoted by Pi). This helps to overcome situations in which two or more
vector components in the residual matrix Ri are dependent because the lack of full
rank in Ri would result in rank deficiency in Zi and Pi, and further fails the BCG
method. Assume the rank of Pi is ri, the resulting orthogonal matrix Pi ∈ Rnu×ri .
In Algorithm 1, the choice of Θi and Λi guarantees the column spaces of Ri+1 is
orthogonal to the search space Pi, and Pi+1 is conjugate to all previous search
spaces.

At each iteration, the algorithm involves three matrix-matrix products

Anu×nu
(Pi)nu×ri , (Pi)>ri×nu

(Qi)nu×J , (Q>i)ri×nu
(Zi+1)nu×J ,

three matrix updates that include three nu × ri matrix and ri × J matrix products
PiΘi, QiΘi and PiΛi, two solutions of linear systems with the coefficient matrix
(Ti)ri×ri , one solution of a linear system with coefficient matrix Mnu×nu

, and an
orthogonalization procedure. Suppose nu is much bigger than ri, and M is easy to
invert as a preconditioner, the above mentioned matrix-matrix products and system

8

solvers require O(nuJ max(`, ri)) flops, where ` is the number of nonzero entries in
each row of A. Special attention needs to be paid to the orthogonalization process
orth, which could be implemented by the reduced (economy) SVD. However, in
order to reduce the computational complexity, we choose the method of snapshots
and drop the singular values smaller than 10−12. To determine left singular vectors
associated with the retained singular values, it only requires O(nuJ

2) flops, thus is
comparable to the other operations in the algorithm.

The performance of the algorithm in the ensemble simulations will be investi-
gated in Section 4, in which we choose the incomplete Cholesky factorization for
preconditioning, but other types of preconditioners such as multigrid and domain
decomposition can be certainly used as well.

3.2. Solution to discrete Navier-Stokes equations. Assume that there are
locally nu degrees of freedom for velocity and denote the basis functions by {φ1(x),
φ2(x), . . . ,φnu

(x)}, and np local degrees of freedom for pressure with the basis
functions defined by {ψ1(x), ψ2(x), . . . , ψnp

(x)}. Let the approximate solution be

uj,h(t, x) =
∑nu

i=1 u
(j)
i (t)φi(x) and pj,h =

∑np

i=1 p
(j)
i (t)ψi(x). The mass and stiffness

matrices for velocity are defined to be M = [mik] and S = [sik] with elements

mik =
∫

Ω
φk · φi dx, and sik =

∫
Ω
∇φk : ∇φi dx. The source term is hnj = [h

(j)
i]

with entries h
(j)
i =

∫
Ω
fnj · φi dx. We also define the matrix D = [dik] with entries

dik = −
∫

Ω
ψk∇ ·φi dx, the matrices from the discretization of the convection term

Nn = [nik] and Rnj = [rik] with entries nik =
∫

Ω
(unh · ∇φk) · φi dx and rik =∫

Ω
(u′nj,h · ∇φk) · φi dx, respectively, and denote the approximate solution vector by

unj .
The fully discrete linear system for the group of NSE problems based on the

ensemble method, (15), reads[
C Dᵀ

D 0

] [
Un+1

Pn+1

]
=

[
Bn+1

0

]
, (21)

where

C =
1

∆t
M + Nn + νS,

Bn+1 = [b1,b2, . . . ,bJ] with bj = hn+1
j − Rnj ũnj − ν′jSũnj +

1

∆t
Munj

for the first-order scheme; and

C =
3

2∆t
M + Nn + νS,

Bn+1 = [b1, . . . ,bJ] with bj = hn+1
j − Rnj ũnj − ν′jSũnj +

2

∆t
Munj −

1

2∆t
Mun−1

j

for the second-order scheme.
Similar to the heat equation case, if one has access to a semi-implicit numerical

solver (the coefficient matrix A(j) and vector b(j) for the j-th problem), then the
linear system for the ensemble simulations could be assembled in a straightforward
manner. Taking the first-order scheme for example, we have

A(j) =

[
1

∆tM + Nnj + νjS Dᵀ

D 0

]
9

and

b(j) =

[
hn+1
j + 1

∆tMunj
0

]
for j = 1, . . . , J , then the linear system in ensemble-based time stepping could be

generated by using A = 1
J

∑J
j=1 A(j) and bj = b(j) + (A−A(j))[ũnj ;0]ᵀ. Note that

A keeps the same sparse structure as A(j).
Since A is non-symmetric, when its dimension is large, the generalized minimum

residual method (GMRES) method could be used to solve the linear system having a
single RHS vector. To speed up the iteration, we follow [10] and use the least-square
commutator preconditioning. The preconditioner K has the following form:

K =

[
C D>
0 −KS

]
and KS = (DM̂−1D>)(DM̂−1CM̂−1D>)−1(DQ̂−1D>),

where M̂ = diag(M) consists of the diagonal entries of the velocity mass matrix. This
preconditioning is applicable when the mixed approximation is uniformly stable with
respect to the inf-sup condition, which is also fully automated, without requiring
the construction of any auxiliary operators.

The GMRES, developed by Saad and Schultz [33], is to find an approximate
solution from the Krylov subspace that minimizes the residual. The algorithm
has been extended to block versions (see [34, 18] for an introduction and [35] for
analysis), which use block Arnoldi process in generating Krylov subspace vectors.
The block GMRES algorithm, named by BGMRES, is presented in Algorithm 2
that makes use of Algorithm 3 for the block Arnoldi process.

Algorithm 2: The block GMRES

Input: matrix A ∈ Rn×n, matrix B ∈ Rn×J , initial guess X0 ∈ Rn×J ,
preconditioner K ∈ Rn×n, tolerance tol ∈ R and maximum number of
iteration maxit ∈ R.

Output: approximate solution Xs ∈ Rn×J .
R0 = B− AX0;

find V1 via a reduced QR factorization of R0 = V1Z;

for m=1, 2, . . . , maxit do
compute Vm+1 by performing the blockArnoldi algorithm on {Vi}mi=1 and form

the block upper Hessenberg Hm ;

solve Ym = argmin‖HmY− E1Z‖F by Householder reflections, where

E1 ∈ R(m+1)J×J is the matrix containing the first J columns of the identity;

if converged then exit;

end
form the solutions: Xm = X0 + [V1,V2, . . . ,Vm]Ym.

Since the search space keeps increasing during the BGMRES process, the iter-
ations can be restarted after certain steps. Meanwhile, within a restart cycle, the
basis matrices could become linearly dependent, thus deflation can be executed to
remove redundant information for improving the efficiency of computation. Such
algorithms have been designed in [4, 3] that perform deflations either at the begin-
ning of iterations or during the entire iteration process. As for the time dependent
problems we considered here, the solution at previous time step serves as a good
initial guess for the current iteration. Together with a well-designed preconditioner,
the number of iterations in BGMRES should be small. Therefore, in our numerical

10

Algorithm 3: One step of block Arnoldi algorithm

Input: matrix A ∈ Rn×n, matrices V1, . . . ,Vm ∈ Rn×J and Hm−1 ∈ RmJ×(m−1)J .
Output: Vm+1 ∈ Rn×J , Hm ∈ R(m+1)J×mJ .

V̂m+1 = AVm;

for i=1, 2, . . . , m do

Hi,m = V>i V̂m+1;

V̂m+1 = V̂m+1 − ViHi,m;

end

find Vm+1, Hm+1,m such that V̂m+1 = Vm+1Hm+1,m via reduced QR factorization;

set Hm =

[
Hm−1 [H1,m, . . . ,Hm,m]ᵀ

0 Hm+1,m

]
.

experiments in Section 4, we choose to perform the deflation once every time step,
at the beginning of the BGMRES iterative solve. The detailed algorithm, named
BGMRES-D, is presented as Algorithm 4.

Algorithm 4: The block GMRES with deflations [4]

Input: matrix A ∈ Rn×n, matrix B ∈ Rn×J , initial guess X0 ∈ Rn×J ,
preconditioner K ∈ Rn×n, tolerance εd, tol ∈ R and maximum number of
iteration maxit ∈ R.

Output: Solution of linear system AX = B.
R0 = B− AX0;

define a scaling matrix D = diag(‖B(·, 1)‖, . . . , ‖B(·, J)‖) ∈ RJ×J ;

compute reduced QR factorization of R0D−1 as R0D−1 = QT;
compute SVD of T = UΣWᵀ and determine the first diagonal entry of Σ, σPd , such
that σPd < εd;

compute S = Σ(1 : Pd, 1 : Pd)W(:, 1 : Pd)ᵀD;

find V1 ∈ Rn×Pd with V1 = QU(:, 1 : Pd);

for m=1, 2, . . . , maxit do
Vm = K−1Vm;

compute Vm+1 and form the block upper Hessenberg Hm by performing the
blockArnoldi iteration;

solve Ym = argmin‖HmY− E1‖F by Householder reflections, where

E1 ∈ R(m+1)Pd×Pd is the matrix containing the first J columns of the identity;

compute Rm = (Bm −HmYm)S;

if ‖Rm‖F ≤ tol · ‖B‖F then

compute X̃ = ZmYmS;

compute Xj = X0 + K−1X̃, and stop
end

end

form the solution: compute X̃ = ZmYmS;

compute Xj = X0 + K−1X̃.

Comparing with the BGMRES in Algorithm 2, the BGMRES-D algorithm has
an extra execution of SVD of the matrix T ∈ RJ×J at the beginning of the iterative
solution, but it only takes O(J3) flops. Due to the truncation of singular values, the
dimension of V1 usually is smaller than, and never greater than, J , which reduces
the computational efforts in performing the block Arnoldi iterations.

11

4. Numerical Experiments. The goal of this section is to test the performance
of the ensemble method that uses the aforementioned preconditioned block itera-
tive solvers. The performance of ensemble simulations will be compared with the
corresponding individual simulations. To this end, we first validate our simulation
codes by checking the convergence rates of ensemble approximations, then use the
CPU time as a criterion for measuring the computational efficiency. In particular,
for approximation errors, we define ENj := ‖uj(tN)− uNj,h‖, the L2 error of the j-th

approximation result at the final time tN in the ensemble simulations; and let ENj be
the L2 error of the j-th individual simulation result at the final time. All simulations
are implemented on Matlab and performed on a PC, equipped with an Intel Core
i7 processor running at 2.9GHz. Our codes are developed within the framework
of IFISS (incompressible flow and iterative solver) software [9], which are executed
sequentially in all the numerical tests. We also note that parallel computing is often
needed in many large-scale engineering problems and would like to leave it to our
future work.
Problem 1. Consider a group of 100 (J = 100) heat transfer problems on a rect-
angular domain [0, 1]× [0, 2] over time interval [0, 1]. Dirichlet boundary conditions
are imposed on the left and right edges. Neumann boundary conditions are imposed
on the top and bottom. In the j-th problem, initial and boundary conditions as
well as body source in (6) are selected to match the prescribed analytic solution

uj(x, y, t) = (1 + wj)[sin(2πx) cos(2πy) + sin(4πt)],

where wj represents a random perturbation in [−0.2, 0.2]. The diffusion coefficient
νj = 0.01(1 + εj) with εj a random number in [−0.2, 0.2].

We first check the rate of convergence in ENj by considering two test cases: (i)
the first one uses the first-order ensemble method together with bilinear elements;
and (ii) the second one uses the second-order ensemble method together with bi-
quadratic elements. Uniform square meshes with size h and uniform time discretiza-
tion with step size ∆t are selected for partitioning the spatial domain and temporal
interval, respectively. Denoted by Nx, Ny and K the number of partitions in hor-
izontal, vertical and temporal directions. Based on Lemma 2.2, when a uniform
mesh refinement is taken, the ensemble simulation is expected to converge linearly
in the first case and converge quadratically in the second case when h ∼ O(∆t).

When the discrete systems are not of very large-scale, one still could use a direct
solver such as LU or sparse LU in solving the systems. However, we would like
to check the performance of ensemble methods working with a block iterative algo-
rithm. Thus, we use the breakdown-free preconditioned BCG as the linear solver for
all the ensemble simulations as discussed in subsection 3.1. An incomplete Cholesky
factorization is applied for preconditioning. In the iterative algorithm, the maxi-
mum number of iterations is set to be maxit = 20 in a restart cycle and convergence
criteria is relative residual less than tol = 1× 10−8. Although the ensemble con-
tains J = 100 members, due to the limit of space, we only list the results of three
problems with j = 1, 50 and 100 in Tables 1 - 2 for these two test cases, respectively.
Wherein,

ν1 = 1.1901× 10−2, ν50 = 8.4951× 10−3, ν100 = 1.0154× 10−2 ;
w1 = 9.6995× 10−2, w50 = −9.4653× 10−2, w100 = −3.3367× 10−2.

It is observed that, in either case, the expected rate of convergence has been
achieved.

12

Table 1. The L2 errors at final time: first-order ensemble, Q1

elements in Problem 1.

(Nx, Ny, K) EN1 Rate EN50 Rate EN100 Rate

(16, 32, 50) 5.8005×10−2 – 4.3544×10−2 – 4.8908×10−2 –
(32, 64, 100) 2.9140×10−2 0.99 2.1972×10−2 0.99 2.4615×10−2 0.99
(64, 128, 200) 1.4629×10−2 0.99 1.1061×10−2 0.99 1.2371×10−2 0.99
(128, 256, 400) 7.3326×10−3 1.00 5.5529×10−3 1.00 6.2053×10−3 1.00

Table 2. The L2 errors at final time: second-order ensemble, Q2

elements in Problem 1.

(Nx, Ny, K) EN1 Rate EN50 Rate EN100 Rate

(8, 16, 50) 3.1827×10−3 – 2.4799×10−3 – 2.7259×10−3 –
(16, 32, 100) 7.6003×10−4 2.07 5.8014×10−4 2.10 6.4617×10−4 2.08
(32, 64, 200) 1.9288×10−4 1.98 1.4695×10−4 1.98 1.6366×10−4 1.98
(64, 128, 400) 4.9629×10−5 1.96 3.7682×10−5 1.96 4.2046×10−5 1.96

Next, we compare the performance of ensemble simulations with individual sim-
ulations on the same group of problems. For this purpose, we take the first-order
ensemble method in time and bilinear finite elements in space with the following
parameters: Nx = 128, Ny = 256 and K = 400. The total number of degrees of
freedom is nu = 33, 153. The individual simulations are based on a semi-implicit
time stepping together with the standard preconditioned CG algorithm, but each
problem in the group is solved separately. We choose the convergence criteria of
CG to be same as the BFBCG: maxit = 20 in each restart cycle and tol = 1× 10−8.
Three individual simulations of problems with j = 1, 50 and 100 have the following
approximation errors:

EN1 = 7.3268× 10−3, EN50 = 5.5584× 10−3, EN100 = 6.2051× 10−3.

Comparing them with the corresponding ensemble simulation errors (listed in the
last row of Table 1), we observe the accuracy of both approaches are very close.
However, as listed in Table 3, the CPU time for time integrations in the ensemble
with BFBCG solver is 5.658×102 seconds, while that of individual simulations with
the preconditioned CG solver is 1.4640×103 seconds, which leads to a speedup factor
of nearly 2.60.

Table 3. CPU time comparison in Problem 1.

Iteration & CPU time BFBCG 100 CG
Average iteration number per time step 4 4× 100

Average execution time per step (seconds) 5.6362×10−1 (1.1482×10−2) × 100
Total CPU time for integration (seconds) 5.658×102 1.464×103

In this case, neither BFBCG nor preconditioned CG needs to restart the itera-
tions during the simulations. The number of iterations per time step in BFBCG is
the same as the individual preconditioned CG solve. The average execution time per
time step in BFBCG (for 100 problems) is 5.6362× 10−1 seconds, and that in each
individual PCG solve is 1.1482× 10−2 seconds. For a fair comparison, we multiply

13

the execution time of a single preconditioned CG solve by 100, which costs about
2 times larger than one BFBCG solve. We observe that the main computational
saving in BFBCG comes from the reduction of search directions. Thus, we plot the
change in the rank of Pi with respect to iterations every 10 time steps in Figure 1.
It is seen that the search dimension increases with iterations, but the largest rank
of Pi during the simulation is 9, which is much less than J .

+ iter 1; # iter 2; B iter 3; × iter 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

1

2

3

4

5

6

7

8

9

R
a
n

k
 o

f
s
e
a
rc

h
in

g
 s

p
a
c
e

iter 1

iter 2

iter 3

iter 4

Figure 1. Time evolution of the dimension of the search space at
different iterations in BFBCG.

Problem 2. Consider a group of 40 (J = 40) Navier-Stokes equations with Taylor-
Green vortex solutions on a square domain [−1, 1] × [−1, 1] over the time interval
[0, 1]. Dirichlet boundary conditions are imposed on the edges. Initial and boundary
conditions and body force are selected to match the prescribed analytic solution.
In the j-th problem,

uj(x, y, t) = sin(πx) cos(πy)e−2νjπ
2t,

vj(x, y, t) = − cos(πx) sin(πy)e−2νjπ
2t,

pj(x, y, t) =
1

4
(cos 2πx+ cos 2πy)e−4νjπ

2t,

and the diffusion coefficient νj = 0.01(1 + εj) with εj a random number uniformly
distributed in [−0.2, 0.2].

We first check the rate of convergence in velocity approximations for the first-
order and second-order ensemble methods, respectively. The Q2/Q1 Taylor-Hood
elements are used in both cases for spatial discretization. Uniform rectangular
meshes with size h and uniform time discretization with step size ∆t are selected
respectively for partitioning the spatial domain and temporal interval. The same
notation h, ∆t, Nx, Ny and K as Problem 1 are used. In both tests, we fix big
enough Nx and Ny so that the temporal error would dominate the approximation
errors, and vary the time step size to check the rate of convergence. Based on
Lemma 2.4, the ensemble simulation is expected to converge linearly in the first
case and converge quadratically in the second case when a uniform time refinement
is taken.

As discussed in subsection 3.2, the BGMRES-D algorithm together with the least-
square commutator preconditioner is used for solving the discrete systems resulted
from the ensemble-based time stepping. The maximum number of iterations in each
restart cycle is maxit = 50 and stopping criterion is fulfilled if the relative residual
is no greater than tol = 1× 10−8. The ensemble size is J = 40. However due to
the limit of space, we only list the results of three problems for j = 1, 20 and 40 in

14

Tables 4 - 5. Wherein,

ν1 = 8.0619× 10−3, ν20 = 1.1681× 10−2, ν40 = 1.0804× 10−2,

and ENj denotes the velocity approximation errors in L2 norm at the final time. It
is seen, in both cases, that the expected rates of convergence have been obtained.

Table 4. The L2 errors at final time: first-order ensemble, Q2/Q1

elements in Problem 2.

(Nx, Ny, K) EN1 Rate EN20 Rate EN40 Rate

(128, 128, 5) 3.7899×10−3 – 3.4660×10−3 – 3.6324×10−3 –
(128, 128, 10) 1.9331×10−3 0.97 1.7626×10−3 0.98 1.8478×10−3 0.98
(128, 128, 20) 9.7905×10−4 0.98 8.9096×10−4 0.98 9.3418×10−4 0.98
(128, 128, 40) 4.8947×10−4 1.00 4.4499×10−4 1.00 4.6666×10−4 1.00

Table 5. The L2 errors at final time: second-order ensemble,
Q2/Q1 elements in Problem 2.

(Nx, Ny, K) EN1 Rate EN20 Rate EN40 Rate

(256, 256, 5) 1.0597×10−3 – 9.5139×10−4 – 9.9694×10−4 –
(256, 256, 10) 2.5992×10−4 2.03 2.3215×10−4 2.03 2.4328×10−4 2.03
(256, 256, 20) 6.3997×10−5 2.02 5.7010×10−5 2.03 5.9748×10−5 2.02
(256, 256, 40) 1.5905×10−5 2.00 1.4112×10−5 2.01 1.4796×10−5 2.01

To illustrate the efficiency of the ensemble method, we take the second test case
when Nx = Ny = 256 and K = 40 for example, and compare the execution time of
ensemble simulations with 40 individual simulations using the same mesh and time
step sizes. In this case, the total number of degrees of freedom is nu = 132, 098
and np = 16, 641. In individual simulations, preconditioned GMRES algorithm
is applied to solve discrete linear systems with the same stopping criterion as the
preconditioned BGMRES-D, but each problem in the group is solved separately.
We choose the convergence criteria of GMRES to be same as the BGMRES-D:
maxit = 50 in each restart cycle and tol = 1× 10−8. Three individual simulations
of problems with j = 1, 20 and 40 have the following approximation errors:

EN1 = 1.0377× 10−5, EN20 = 1.9140× 10−5, EN40 = 1.7075× 10−5.

Comparing with Table 5, we find that the accuracy of ensemble simulations is close
to individual simulations. The corresponding execution times of both approaches
are listed in Table 6. It is shown that the ensemble simulation is over 10 times
faster than the individual simulations.

Table 6. CPU time comparison in Problem 2.

Iteration & CPU time BGMRES-D 40 GMRES
average iteration number per time step 5 5× 40

average execution time per step (seconds) 19.658 12.032 × 40
total CPU time for integration (seconds) 1.965×103 2.103×104

15

0 0.2 0.4 0.6 0.8 1 1.2

t

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

R
a
n

k
 o

f
s
e
a
rc

h
in

g
 s

p
a
c
e

Figure 2. Time evolution of the rank of RHS vectors using the
BGMRES-D solver in Problem 2.

It is also observed that neither the BGMRES-D nor the single GMRES solver
restarts the iterations during the simulations. The iteration number per time step in
BGMRES-D is the same as that of the GMRES in each individual simulation. But
as the deflation is performed at each time step, the dimension of the RHS matrices in
BGMRES-D is always no greater than J . The time evolution of its rank is plotted
in Figure 2, which shows the maximum value of the rank is 8. This indicates
fewer matrix-vector products are evaluated in ensemble simulations than individual
ones. On the other hand, the least-square commutator preconditioning involves two
discrete Poisson solves and matrix-vector products. Since for the group of problems,
the ensemble simulations only apply one preconditioning to the coefficient matrix
per iteration, while each individual simulation would require one preconditioner to
the coefficient matrix at every iteration, which leads to the significant computational
savings.
Problem 3. Next, we consider a group of two-dimensional flow past a square cylin-
der problems with the ensemble size J = 40. The flow problems are governed by
Navier-Stokes equations in the domain Ω = Ω0/Ωs over the time interval [0, 60]
with Ω0 = [0, 8] × [−1, 1] and interior obstacle Ωs = [1.75, 2.25] × [−0.25, 0.25].
Dirichlet condition u = 1 − y2, v = 0 is imposed at the inflow boundary (x = 0
and −1 ≤ y ≤ 1), zero Dirichlet condition on the top and bottom of the channel
(0 ≤ x ≤ 8 and y = ±1), and do-nothing boundary on the outflow boundary (x = 8
and −1 < y < 1). The flow is at rest at the initial time. Viscosity coefficients vary
among the problems, in particular, νj = (1+εj)/300 with εj a random perturbation
uniformly distributed in [−0.2, 0.2] in the j-th problem.

In the simulations, we use second order schemes with a uniform time step size
∆t = 0.01 for time integration, and keep the same parameters in block and indi-
vidual iterative solvers as those in Problem 2. As there is no analytic solutions,
we only show the ensemble simulation results together with individual ones, and
compare their CPU times. Due to the limit of space, we only show the velocity
magnitude field at the final time for three problems associated with Reynolds num-
bers: Re1 = 126.7001, Re20 = 176.9705 and Re40 = 150.6167 in Figure 3, and the
evolution of speed at a point behind the cylinder, (6, 2), in Figure 4. The simulation
results are so close that no obvious difference can be observed.

The time evolution of the dimension of RHS vectors in the ensemble simulation is
shown in Figure 5. It is seen that the size of RHS matrix does shrink after deflations.
The corresponding simulation times of the ensemble simulations with preconditioned
BGMRES-D and individual simulations with preconditioned GMRES are listed in
Table 7. It is shown that, comparing with the individual simulations, the ensemble
simulation saves about 85% CPU time.

16

Figure 3. Speed fields at t = 60 for three problems in the en-
semble simulation (left column) and individual simulations (right
column) in Problem 3.

44 46 48 50 52 54 56 58 60

1

1.1

1.2
Velocity magnitude. Re=126.7001

44 46 48 50 52 54 56 58 60

1

1.1

1.2

1.3

Velocity magnitude. Re=176.9705

44 46 48 50 52 54 56 58 60

1

1.1

1.2

Velocity magnitude. Re=150.6167

44 46 48 50 52 54 56 58 60

1

1.1

1.2
Velocity magnitude. Re=126.7001

44 46 48 50 52 54 56 58 60

1

1.1

1.2

1.3

Velocity magnitude. Re=176.9705

44 46 48 50 52 54 56 58 60

1

1.1

1.2

Velocity magnitude. Re=150.6167

Figure 4. Time evolutions of velocity magnitude for three prob-
lems in the ensemble simulation (left column) and individual sim-
ulations (right column) in Problem 3.

0 10 20 30 40 50 60

t

0

5

10

15

20

25

30

R
a

n
k

 o
f

s
e

a
rc

h
in

g
 s

p
a

c
e

Figure 5. Time evolution of the rank of RHS vectors using
BGMRES-D solver in Problem 3.

Remark 1. We note that the speedup factor of the ensemble simulations over the
individual ones in the Problem 3 is not as great as Problem 2, it is because the
computational saving of the block iterative algorithms is problem dependent. The
solutions in Problem 3 are rapidly changing with time, as small differences in the
viscosity could result in relatively large changes in the state, thus the deflation of

17

Table 7. CPU time comparison in Problem 3.

Iteration & CPU time BGMRES-D 40 GMRES
Average iteration number per time step 7 8× 40

Average execution time per step (seconds) 4.7894 1.7313 × 40
Total CPU time for integration (seconds) 7.106×104 4.836×105

the RHS matrix is not as effective as that in Problem 2, which causes the speedup
less eminent.

5. Conclusions. The ensemble method has recently been developed for efficiently
solving a group of evolution problems. It, using an ensemble-based time stepping,
leads to a single linear system of multiple right-hand-side vectors for the entire
group. Thus, all the problems can be solved simultaneously at each time step, which
naturally share information among right hand sides. In this paper, we demonstrate,
for the first time, the efficacy of the ensemble method when it works together with
block iterative solvers. Our future work would extend the ensemble method to
multi-physics systems and investigate the efficiency and scalability of block iterative
solvers in parallel and high performance computing.

REFERENCES

[1] E. Agullo, L. Giraud and Y.-F. Jing, Block GMRES method with inexact breakdowns and
deflated restarting, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 1625–

1651.
[2] A. H. Baker, J. M. Dennis and E. R. Jessup, On improving linear solver performance: A block

variant of GMRES, SIAM Journal on Scientific Computing, 27 (2006), 1608–1626.

[3] H. Calandra, S. Gratton, R. Lago, X. Vasseur and L. M. Carvalho, A modified block flexible
GMRES method with deflation at each iteration for the solution of non-hermitian linear

systems with multiple right-hand sides, SIAM Journal on Scientific Computing, 35 (2013),

S345–S367.
[4] H. Calandra, S. Gratton, J. Langou, X. Pinel and X. Vasseur, Flexible variants of block

restarted GMRES methods with application to geophysics, SIAM Journal on Scientific Com-

puting, 34 (2012), A714–A736.
[5] T. F. Chan and M. K. Ng, Galerkin projection methods for solving multiple linear systems,

SIAM Journal on Scientific Computing, 21 (1999), 836–850.

[6] A. T. Chronopoulos and A. B. Kucherov, Block s-step Krylov iterative methods, Numerical
Linear Algebra with Applications, 17 (2010), 3–15.

[7] D. Darnell, R. B. Morgan and W. Wilcox, Deflated GMRES for systems with multiple shifts

and multiple right-hand sides, Linear Algebra and its Applications, 429 (2008), 2415–2434.
[8] I. S. Duff, A. M. Erisman and J. K. Reid, Direct methods for sparse matrices, Oxford Uni-

versity Press, 2017.
[9] H. C. Elman, A. Ramage and D. J. Silvester, IFISS: A computational laboratory for investi-

gating incompressible flow problems, SIAM Review, 56 (2014), 261–273.
[10] H. C. Elman, D. J. Silvester and A. J. Wathen, Finite elements and fast iterative solvers:

with applications in incompressible fluid dynamics, Oxford university press, 2005.
[11] J. A. Fiordilino, A second order ensemble timestepping algorithm for natural convection,

SIAM Journal on Numerical Analysis, 56 (2018), 816–837.
[12] W. D. Gropp, D. K. Kaushik, D. E. Keyes and B. F. Smith, Toward realistic performance

bounds for implicit CFD codes, in Proceedings of parallel CFD, vol. 99, Citeseer, 1999, 233–
240.

[13] G.-D. Gu and Z.-H. Cao, A block GMRES method augmented with eigenvectors, Applied
Mathematics and Computation, 121 (2001), 271–289.

18

[14] M. Gunzburger, N. Jiang and M. Schneier, An ensemble-proper orthogonal decomposition
method for the nonstationary Navier–Stokes equations, SIAM Journal on Numerical Analysis,

55 (2017), 286–304.

[15] M. Gunzburger, N. Jiang and Z. Wang, A second-order time-stepping scheme for simulating
ensembles of parameterized flow problems, Computational Methods in Applied Mathematics,

19 (2017), 681–701.
[16] M. Gunzburger, N. Jiang and Z. Wang, An efficient algorithm for simulating ensembles of

parameterized flow problems, IMA Journal of Numerical Analysis, 39 (2019), 1180–1205.

[17] M. D. Gunzburger, Finite element methods for viscous incompressible flows: a guide to
theory, practice, and algorithms, Elsevier, 2012.

[18] M. H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand

sides: an introduction, in: Modern Mathematical Models, Methods and Algorithms for Real
World Systems, 420–447.

[19] H. Ji and Y. Li, A breakdown-free block conjugate gradient method, BIT Numerical Mathe-

matics, 57 (2017), 379–403.
[20] N. Jiang, S. Kaya and W. Layton, Analysis of model variance for ensemble based turbulence

modeling, Computational Methods in Applied Mathematics, 15 (2015), 173–188.

[21] N. Jiang and W. Layton, An algorithm for fast calculation of flow ensembles, International
Journal for Uncertainty Quantification, 4 (2014), 273–301.

[22] N. Jiang and W. Layton, Numerical analysis of two ensemble eddy viscosity numerical regu-
larizations of fluid motion, Numerical Methods for Partial Differential Equations, 31 (2015),

630–651.

[23] Y. Luo and Z. Wang, An ensemble algorithm for numerical solutions to deterministic and
random parabolic PDEs, SIAM Journal on Numerical Analysis, 56 (2018), 859–876.

[24] Y. Luo and Z. Wang, A multilevel Monte Carlo ensemble scheme for solving random parabolic

PDEs, SIAM Journal on Scientific Computing, 41 (2019), A622–A642.
[25] J. McCarthy, Block-conjugate-gradient method, Physical Review D, 40 (1989), 2149.

[26] M. Mohebujjaman and L. G. Rebholz, An efficient algorithm for computation of MHD flow

ensembles, Computational Methods in Applied Mathematics, 17 (2017), 121–137.
[27] R. B. Morgan, Restarted block-GMRES with deflation of eigenvalues, Applied Numerical

Mathematics, 54 (2005), 222–236.

[28] D. P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra
and its Applications, 29 (1980), 293–322.

[29] D. P. O’Leary, Parallel implementation of the block conjugate gradient algorithm, Parallel
Computing, 5 (1987), 127–139.

[30] M. L. Parks, E. De Sturler, G. Mackey, D. D. Johnson and S. Maiti, Recycling Krylov sub-

spaces for sequences of linear systems, SIAM Journal on Scientific Computing, 28 (2006),
1651–1674.

[31] M. L. Parks, K. M. Soodhalter and D. B. Szyld, A block recycled GMRES method with

investigations into aspects of solver performance, arXiv preprint arXiv:1604.01713.
[32] V. Puzyrev and J. M. Cela, A review of block Krylov subspace methods for multisource

electromagnetic modelling, Geophysical Journal International, 202 (2015), 1241–1252.

[33] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on scientific and statistical computing, 7 (1986),

856–869.

[34] Y. Saad, Iterative methods for sparse linear systems, vol. 82, Siam, 2003.
[35] V. Simoncini and E. Gallopoulos, Convergence properties of block GMRES and matrix poly-

nomials, Linear Algebra and its Applications, 247 (1996), 97–119.
[36] V. Simoncini and E. Gallopoulos, A hybrid block GMRES method for nonsymmetric systems

with multiple right-hand sides, Journal of computational and applied mathematics, 66 (1996),

457–469.
[37] L. N. Trefethen and D. Bau III, Numerical linear algebra, vol. 50, SIAM, 1997.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: ju@math.sc.edu

E-mail address: wleng@lsecc.cc.ac.cn

E-mail address: wangzhu@math.sc.edu

E-mail address: syuan@email.sc.edu

19

mailto:ju@math.sc.edu
mailto:wleng@lsecc.cc.ac.cn
mailto:wangzhu@math.sc.edu
mailto:syuan@email.sc.edu

	1. Introduction
	2. Ensemble method for evolution problems
	2.1. Heat equation
	2.2. Navier-Stokes equations

	3. Block-based iterative solvers
	3.1. Solution to discrete heat equation
	3.2. Solution to discrete Navier-Stokes equations

	4. Numerical Experiments
	5. Conclusions
	REFERENCES

